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Abstract. Separation logic is a state-of-the-art logic for dealing with the pro-
gram heap. Using its frame rule, initial works have strived towards automated
modular verification for heap-manipulating programs against user-supplied spec-
ifications. Since manually writing specifications is a tedious and error-prone engi-
neering process, the so-called bi-abduction (a combination of the frame rule and
abductive inference) is proposed to automatically infer pre/post specifications on
data structure shapes. However, it has omitted the inference of pure properties of
data structures such as their size, sum, height, content and minimum/maximum
value, which are needed to express a higher level of program correctness.

In this paper, we propose a novel approach, called pure bi-abduction, for in-
ferring pure information for pre/post specifications, using the result from a prior
shape analysis step. The power of our new bi-abductive entailment procedure is
significantly enhanced by its collection of proof obligations over uninterpreted
relations (functions). Additionally, we design a predicate extension mechanism
to systematically extend shape predicates with pure properties. We have imple-
mented our inference mechanism and evaluated its utility on a benchmark of pro-
grams. We show that pure properties are prerequisite to allow the correctness of
about 20% of analyzed procedures to be captured and verified.

Keywords: Specification Inference, Pure Bi-Abduction, Separation Logic,
Program Verification, Memory Safety, Functional Correctness.

1 Introduction

One of the challenging areas for software verification concerns programs using heap-
based data structures. To prove the correctness of such programs, in the last decade,
research methodologies based on separation logic have offered good solutions [1,13,3].

Separation logic [20,14], an extension of Hoare logic, is a state-of-the-art logic for
dealing with the program heap. Its assertion language can succinctly describe how data
structures are laid out in memory, by providing the separating conjunction operator that
splits the heap into disjoint regions: reasoning about each such region is independent
of the others. This local reasoning is captured by the frame rule of separation logic, a
proof rule that enables compositional verification of heap-manipulating programs.

Initial works [1,13] based on separation logic have strived towards automated mod-
ular verification against user-supplied specifications. However, manually writing speci-
fications is a tedious and error-prone engineering process. Thus, more recent separation
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logic-based shape analyses endeavor to automatically construct such specifications in
order to prove that programs do not commit pointer-safety errors (dereferencing a null
or dangling pointer, or leaking memory). One such leading shape analysis [3] proposes
bi-abduction to be able to scale up to millions lines of codes. Bi-abduction, a combina-
tion of the frame rule and abductive inference, is able to infer “frames” describing extra,
unneeded portions of state (via the frame rule) as well as the needed, missing portions
(via abductive inference). Consequently, it would automatically infer both precondi-
tions and postconditions on the shape of the data structures used by program codes,
enabling a compositional and scalable shape analysis.

Ex. 1. A method where pure properties of
its data structure are critical for proving
its memory safety.

1 data node {
2 int val; node next;}
3 node zip(node x,node y){
4 if (x==null) return y;
5 else {
6 node tmp =
7 zip(x.next,y.next);
8 x.next = y;
9 y.next = tmp;

10 return x;}}

However, bi-abduction in [3] presently
suffers from an inability to analyze for pure
(i.e., heap-independent) properties of data
structures, which are needed to express a
higher-level of program correctness. For il-
lustration, consider a simple C-style recursive
function in Ex. 1 that zips two lists of integers
into a single one. To reduce the performance
overhead of redundant null-checking, in the
zip method there is no null-checking for y.
As a result, the field access y.next at line 7
may not be memory-safe. In fact, it triggers
a null-dereferencing error whenever the list
pointed by x is longer than the list pointed by y. Naturally, to ensure memory safety, the
method’s precondition needs to capture the size of each list.

A direct solution to such limitation is to rely on numerical analyses. However, since
numerical static analyses are often unaware of the shape of a program’s heap, it becomes
difficult for them to capture pure properties of heap-based data structures.

In this paper, we propose a systematic methodology for inferring pure information
for pre/post specifications in the separation logic domain, using the result from a prior
shape analysis step. This pure information is not only critical for proving memory safety
but also helpful to express a higher-level of program correctness. We call our inference
methodology pure bi-abduction, and employ it for inferring pure properties of data
structures such as their size, height, sum, content and minimum/maximum value. Like
bi-abduction, pure bi-abduction is meant to combine the frame rule and abductive in-
ference, but focused on the problem of inferring specifications with both heap and pure
information. To achieve this, we have designed a new bi-abductive entailment proce-
dure. Its power will be significantly enhanced by the collection of proof obligations
over uninterpreted relations (functions).

Though the main novelty of our current work is a systematic inference of pure in-
formation for specifications of heap-manipulating programs, we have also devised a
predicate extension mechanism that can systematically transform shape predicates in
order to incorporate new pure properties. This technique is crucial for enhancing induc-
tive shape predicates with relevant pure properties.
Contributions. Our contributions include the following:
• We design a new bi-abductive entailment procedure for inferring pure information for
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specifications of heap-manipulating programs. We design a set of fundamental mech-
anisms for pure bi-abduction to help ensure succinct and precise specifications. Our
mechanisms include the inference of obligations and definitions for uninterpreted rela-
tions, prior to their synthesis via fixpoint analyses (Sections 4, 5, 6).
• We propose an extension mechanism for systematically enhancing inductive shape
predicates with a variety of pure properties (Section 7).
• We have implemented our approach and evaluated it on a benchmark of programs
(Section 8). We show that pure properties are prerequisite to allow the correctness of
about 20% of analyzed procedures to be captured and verified.

2 Overview and Motivation

Memory Safety. For the zip method, by using shape analysis techniques [3,6], we
could only obtain the following shape specification:

requires ll〈x〉 ∗ ll〈y〉
ensures ll〈res〉;

where pred ll〈root〉 ≡ (root=null) ∨ ∃ q·(root�→node〈 , q〉 ∗ ll〈q〉).
Although this specification cannot ensure memory safety for the y.next field access (at
lines 7 and 9), it still illustrates two important characteristics of separation logic. First,
by using separation logic, the assertion language can provide inductive spatial predi-
cates that describe the shape of unbounded linked data structures such as lists, trees,
etc. For instance, the ll predicate describes the shape of an acyclic singly-linked list
pointed by root. In its definition, the first disjunct corresponds to the case of an empty
list, while the second one separates the list into two parts: the head root �→node〈 , q〉,
where �→ is points-to operator, and the tail ll〈q〉. Second, the use of ∗ (separating con-
junction) operator guarantees that these two parts reside in disjoint memory regions. In
short, for the zip method, its precondition requires x and y point to linked lists (using
ll) that reside in disjoint memory regions (using ∗), while its postcondition ensures the
result also points to a linked list.

Generally speaking, we cannot obtain any valid pre/post specification (valid Hoare
triple) for the zip method by using only the shape domain. To prove memory safety, the
specification must also capture the size of each list.

Using predicate extension mechanism, we first inject the size property (captured by
n) into the ll predicate in order to derive the llN predicate as follows:

pred llN〈root, n〉 ≡ (root=null ∧ n=0)
∨ ∃ q, m·(root�→node〈 , q〉 ∗ llN〈q, m〉 ∧ n=m+1).

With the new llN predicate, we could then strengthen the specification to include unin-
terpreted relations: P(a, b) in the precondition and Q(r, a, b) in the postcondition. Their
purpose is to capture the relationship between newly-introduced variables (a, b, r) de-
noting size properties of linked lists. Uninterpreted relations in the precondition should
be as weak as possible, while ones in the postcondition should be as strong as possible.

infer [P, Q]
requires llN〈x, a〉 ∗ llN〈y, b〉 ∧ P(a, b)
ensures llN〈res, r〉 ∧ Q(r, a, b);
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Intuitively, it is meant to incorporate the inference capability (via infer) into a pair of
pre/post-condition (via requires/ensures). And the inference will be applied to speci-
fied second-order variables P, Q.

By forward reasoning on the zip code, our bi-abductive entailment procedure would
finally gather the following proof obligations on the two uninterpreted relations:

P(a, b) =⇒ b �=0 ∨ a≤0,
P(a, b) ∧ a=ar+1 ∧ b=br+1 ∧ 0≤ar ∧ 0≤br=⇒ P(ar, br),
P(a, b) ∧ r=b ∧ a=0 ∧ 0≤b=⇒ Q(r, a, b),
P(a, b)∧rn=r−2∧bn=b−1∧an=a−1∧0≤bn, an, rn∧Q(rn, an, bn) =⇒ Q(r, a, b).

Using suitable fix-point analysis techniques, we can synthesize the approximations for
these unknowns, which would add a pre-condition a≤b to guarantee memory safety.
Specifically, we have P(a, b) ≡ a≤b, Q(r, a, b) ≡ r=a+b and a new specification:

requires llN〈x, a〉 ∗ llN〈y, b〉 ∧ a≤b
ensures llN〈res, r〉 ∧ r=a+b;

Program Termination. With inference of pure properties for specifications, we can go
beyond memory safety towards functional correctness and even total correctness. Total
correctness requires programs to be proven to terminate.

Program termination is typically proven with a well-founded decreasing measure.
Our inference mechanism can help discover suitable well-founded ranking functions
[16] to support termination proofs. For this task, we would introduce an uninterpreted
function F(a, b), as a possible measure, via the following termination-based specifica-
tion that is synthesized right after size inference. Note that size inference is crucial for
proving not only program safety but also program termination.

infer [F]
requires llN〈x, a〉 ∗ llN〈y, b〉 ∧ a≤b ∧ Term[F(a, b)]
ensures llN〈res, r〉 ∧ r=a+b;

Similarly, applying our pure bi-abduction technique, we can derive the following proof
obligations whose satisfaction would guarantee program termination.

a≥0 ∧ b≥0 ∧ a≤b=⇒ F(a, b)≥0

an=a−1 ∧ bn=b−1 ∧ a≤b ∧ an≥0=⇒ F(a, b)>F(an, bn)

Using suitable fixpoint analyses, we can synthesize F(a, b) ≡ a−1, thus capturing a well-
founded decreasing measure for our method. Though termination analysis of programs
has been extensively investigated before, we find it refreshing to re-consider it in the
context of pure property inference for pre/post specifications. For space reasons, we
shall not consider this aspect that uses uninterpreted functions in the rest of the paper.

3 Specification Language

In this section, we introduce the specification language used in pure bi-abduction (Fig-
ure 1). The language supports data type declarations datat (e.g. node), inductive shape
predicate definitions spred (e.g. ll) and method specifications spec. Each iterative loop
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is converted to an equivalent tail-recursive method, where mutations on parameters are
made visible to the caller via pass-by-reference.

Regarding each method’s specification, it is made up of a set of inferable variables
[v∗, v∗rel], a precondition Φpr and a postcondition Φpo. The intended meaning is whenever
the method is called in a state satisfying precondition Φpr and the method terminates,
the resulting state will satisfy the corresponding postcondition Φpo. The specification
inference process can be enabled by providing a specification with inferable variables. If
[v∗] is specified, suitable preconditions on these variables will be inferred while if [v∗rel]
is specified, suitable approximations for these uninterpreted relations will be inferred.

Program prog ::= tdecl∗ meth∗ tdecl ::= datat | spred | spec
Data declaration datat ::= data c { (t v)∗ }
Shape predicate spred ::= pred p〈v∗〉 ≡ Φ
Method spec spec ::= infer [ v∗, v∗rel ] requires Φpr ensures Φpo;
Formula Φ ::=

∨
(∃v∗·κ∧π)∗

Heap formula κ ::= κ1 ∗κ2 | p〈v∗〉 | v �→c〈u∗〉 | emp
Pure formula π ::= π∧ι | ι ι ::= vrel(v

∗) | α
α ::= γ | i | b | ϕ | α1∨α2 | α1∧α2 | ¬α | ∃v · α | ∀v · α

Linear arithmetic i ::= a1=a2 | a1≤a2

a ::= kint | v | kint×a | a1+a2 | −a | max(a1,a2) | min(a1,a2)
Boolean formula b ::= true | false | v | b1=b2

Bag constraint ϕ ::= v∈B | B1=B2 | B1�B2 | ∀v∈B·α | ∃v∈B·α
B ::= B1�B2 | B1�B2 | B1−B2 | {} | {v}

Ptr. (dis)equality γ ::= v1=v2 | v=null | v1 �=v2 | v �=null

β ::= vrel(v
∗)→α | π→vrel(v

∗)
Δ ::= Δ1∨Δ2 | Δ1∗Δ2 | ∃v·Δ | κ∧π φ ::= π

Fig. 1. The Specification Language used in Pure Bi-Abduction

The Φ constraint is in disjunctive normal form. Each disjunct consists of a ∗-separated
heap constraint κ, referred to as heap part, and a heap free constraint π, referred to as
pure part. The pure part does not contain any heap nodes and is presently restricted
to uninterpreted relations vrel(v∗), pointer (dis)equality γ, linear arithmetic i, boolean
constraints b and bag constraints ϕ. Internally, each uninterpreted relation is annotated
with @pr or @po, depending on whether it comes from the precondition or postcondition
resp. This information will be later used to synthesize the approximation for each unin-
terpreted relation in Sec. 6. The relational definitions and obligations defined in Sec. 4.4
are denoted as π→vrel(v

∗) and vrel(v
∗)→α resp. Lastly, Δ denotes a composite for-

mula that can be normalized into the Φ form, while φ represents a pure formula.

4 Principles of Pure Bi-Abduction

Initial works [1,13] are typically based on an entailment system of the formΔ1 � Δ2 �

Δr, which attempts to prove that the current state Δ1 entails an expected state Δ2 with
Δr as its frame (or residual) not required for proving Δ2.

To support shape analysis, bi-abduction [3] would allow both preconditions and post-
conditions on shape specification to be automatically inferred. Bi-abduction is based on
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a more general entailment of the form Δ1 � Δ2 � (Δp, Δr), whereby a precondition
Δp, the condition for the entailment proving to succeed, may be inferred.

In this paper, we propose pure bi-abduction technique to infer pure information for
pre/post specifications. To better exploit the expressiveness of separation logic, we inte-
grate inference mechanisms directly into it and propose to use an entailment system of
the following form [v1, .., vn] Δ1 � Δ2 � (φp, Δr, βc). Three new features are added
here to support inference on pure properties:
• We may specify a set of variables {v1, .., vn} for which inference is selectively ap-
plied. As a special case, when no variables are specified, the entailment system reduces
to forward verification without inference capability.
• We allow second-order variables, in the form of uninterpreted relations, to support
inference of pure properties for pre/post specifications.
• We then collect a set of constraints βc of the form φ1 =⇒ φ2, to provide interpreta-
tions for these second-order variables. This approach is critical for capturing inductive
definitions that can be refined via fix-point analyses.

We first highlight key principles employed by pure bi-abduction with examples.
Later in Sec. 5, we shall present the formalization for our proposed technique.

4.1 Selective Inference

Our first principle is based on the notion that pure bi-abduction is best done selectively.
Consider three entailments below with x�→node〈 , q〉 as a consequent:

[n] llN〈x, n〉 � x �→node〈 , q〉� (n>0, llN〈q, n−1〉, ∅)
[x] llN〈x, n〉 � x �→node〈 , q〉� (x �=null, llN〈q, n−1〉, ∅)
[n, x] llN〈x, n〉 � x �→node〈 , q〉� (n>0∨x �=null, llN〈q, n−1〉, ∅)

Predicate llN〈x, n〉 by itself does not entail a non-empty node. For the entailment prov-
ing to succeed, the current state would have to be strengthened with either x�=null or
n>0. Our procedure can decide on which pre-condition to return, depending on the set
of variables for which pre-conditions are built from. The selectivity is important since
we only consider a subset of variables (e.g. a, b, r), which are introduced to capture pure
properties of data structures. Note that this selectivity does not affect the automation of
pure bi-abduction technique, since the variables of interest can be generated automati-
cally right after applying predicate extension mechanism in Sec. 7.

4.2 Never Inferring false

Another principle that we strive in our selective inference is that we never infer any cu-
mulative precondition that is equivalent to false , since such a precondition would not
be provable for any satisfiable program state. As an example, consider [x] true � x>x.
Though we could have inferred x>x, we refrain from doing so, since it is only provable
under dead code scenarios.

4.3 Antecedent Contradiction

The problem of traditional abduction is to find an explanatory hypothesis such that
it is satisfiable with the antecedent. Our purpose here is different in the sense that
we aim to find a sufficient precondition that would allow an entailment to succeed.
Considering [v∗] Δ1 � Δ2, if a contradiction is detected between Δ1 and Δ2, the
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only precondition (over variables v∗) that would allow such an entailment to suc-
ceed is one that contradicts the antecedent Δ1. Although we disallow false to be
inferred, we allow above precondition if it is not equivalent to false . For example,
with [n] x=null∧n=0 � x�=null, we have a contradiction between x=null∧n=0 and
x�=null. To allow this entailment to succeed, we infer n�=0 as its precondition over just
the selected variable [n].

4.4 Uninterpreted Relations

Our inference deals with uninterpreted relations that may appear in either preconditions
or postconditions. We refer to the former as pre-relations and the latter as post-relations.
Pre-relations should be as weak as possible, while post-relations should be as strong as
possible. Our inference mechanism respects this principle, and would use it to derive
the weakest pre-relations and strongest post-relations, where possible.

To provide definitions for these uninterpreted relations, such as R(v∗), we infer two
kinds of relational constraints. The first kind, called relational obligation, is of the form
π∧R(v∗)→ c, where the consequent c is a known constraint and unknown R(v∗) is
present in the antecedent. The second kind, called relational definition, is of the form
π→R(v∗), where the unknown relation is in the consequent instead.

Relational Obligations. They are useful in two ways. For pre-relations, they act as
initial preconditions for (recursive) methods. For post-relations, they denote proof obli-
gations that post-relations must also satisfy. We will check these obligations after we
have synthesized post-relations.

As an example, consider the entailment extracted from the motivating example:
[P] a≥1∧b=0∧P(a, b) � b�=0. We infer P(a, b)→a≤0∨b�=0, which will denote an ini-
tial precondition for P. More generally, with [P] α1∧P(v∗) � α2 where α1 and α2

denote known constraints, we first selectively infer precondition φ over selected vari-
ables v∗ and then collect P(v∗)→ φ as our relational obligation. To obtain succinct
pre-conditions, we filter out constraints that contradict the current program state.

Relational Definitions. They are typically used to form definitions for fixpoint analy-
ses. For post-relations, we should infer the strongest definitions. After gathering the re-
lational definitions (both base and inductive cases), we would apply a least fixpoint pro-
cedure [17] to discover suitable closed-form definitions for post-relations. For
pre-relations, while it may be possible to compute a greatest fixpoint to discover the
weakest pre-relations that can satisfy all relational constraints, we have designed two
simpler techniques for inferring pre-relations. After finding the interpretations for post-
relations, we attempt to extract conditions on input variables from them. If the extracted
conditions can satisfy all relational constraints for pre-relations, we simply use them as
the approximations for our pre-relations. If not, we proceed with a second technique to
first construct a recursive invariant which relates the parameters of an arbitrary call (e.g.
RECa, RECb) to those of the first one (e.g. a, b) using top-down fixpoint [18]. For example,
a recursive invariant rec inv for zip method is RECa≥0∧a≥1+RECa∧RECa+b=RECb+a.
Next, since parameters of an arbitrary call must also satisfy relevant relational obli-
gations, the precondition pre rec is then ∀RECa, RECb· rec inv→pre fst(RECa, RECb),
where pre fst(a, b)=a≤0∨b�=0 is the initial condition. Finally, the precondition for all
method invocations is pre fst∧pre rec∧a≥0∧b≥0=0≤a≤b. This approach allows us
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to avoid greatest fix-point analyses, whose important operators (i.e. narrowing) are sup-
ported in restricted domains, and is sufficient for all practical examples evaluated.

5 Formalization of Pure Bi-Abduction

Recall that our bi-abductive entailment proving procedure has the following form:

[v∗] Δ1 � Δ2 � (φ3, Δ3, β3).

This new entailment procedure serves two key roles:
• For our forward verification, its goal is to reduce the entailment between separation
formulas to the entailment between pure formulas by successively matching up aliased
heap nodes between the antecedent and the consequent through folding, unfolding and
matching [13]. When this happens, the heap formula in the antecedent is soundly ap-
proximated by returning a pure approximation of the form

∨
(∃v∗·π)∗ for each given

heap formula κ (using XPure function as in [13]).
• For our inference, its goal is to infer a precondition φ3 and gather a set of constraints
β3 over specified uninterpreted relations. Along with the inferred frame Δ3, we should
be able to finally construct relevant preconditions and postconditions for each method.

The focus of the current work is on the second category. From this perspective, the
scenario of interest is when both the antecedent and the consequent are heap free, and
the rules in Figure 2 can in turn apply. Take note that these rules are applied in a top-
down and left-to-right order.

[INF−[AND]]
[v∗] π1 � π2 � (φ2,Δ2, β2) [v∗] π1 � π3 � (φ3,Δ3, β3)

[v∗] π1 � π2∧π3 � (φ2∧φ3, Δ2∧Δ3, β2∪β3)

[INF−[UNSAT]]
UNSAT(α1)

[v∗] α1 � α2 � (true , false , ∅)

[INF−[VALID]]
α1 ⇒ α2

[v∗] α1 � α2 � (true , α1, ∅)
[INF−[LHS−CONTRA]]

φ = ∀(FV(α1)−v∗) · ¬α1

UNSAT(α1∧α2) φ �=false

[v∗] α1 � α2 � (φ, false , ∅)

[INF−[PRE−DERIVE]]
φ=∀(FV(α1, α2)−v∗) · (¬α1∨α2)

φ �=false

[v∗] α1 � α2 � (φ,α1∧φ, ∅)
[INF−[REL−DEFN]]

[v∗, vrel] π � vrel(u
∗) � (true , true , {π→vrel(u

∗)})
[INF−[REL−OBLG]]

[u∗] α1 � α2 � (φ1,Δ1, ∅) [v∗] α1 � α2 � (φ2, Δ2, ∅)
[v∗, vrel] α1∧vrel(u∗) � α2 � (φ2,Δ1∧Δ2, {vrel(u∗)→φ1})

Fig. 2. Pure Bi-Abduction Rules

• Rule [INF−[AND]] breaks the conjunctive consequent into smaller components.
• Rules [INF−[UNSAT]] and [INF−[VALID]] infer true precondition whenever the
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entailment already succeeds. Specifically, rule [INF−[UNSAT]] applies when the an-
tecedent α1 of the entailment is unsatisfiable, whereas rule [INF−[VALID]] is used if
[INF−[UNSAT]] cannot be applied, meaning that the antecedent is satisfiable.
• The pure precondition inference is captured by two rules [INF−[LHS−CONTRA]]

and [INF−[PRE−DERIVE]]. While the first rule handles antecedent contradiction, the
second one infers the missing information from the antecedent required for proving the
consequent. Specifically, whenever a contradiction is detected between the antecedent
α1 and the consequent α2, then rule [INF−[LHS−CONTRA]] applies and the precon-
dition ∀(FV(α1)−v∗) · ¬α1 contradicting the antecedent is being inferred. Note that
FV(·) returns the set of free variables from its argument(s), while v∗ is a shorthand
notation for v1, .., vn

1. On the other hand, if no contradiction is detected, then rule
[INF−[PRE−DERIVE]] infers a sufficient precondition to prove the consequent. In or-
der to not contradict the principle stated in Sec. 4.2, both aforementioned rules check
that the inferred precondition is not equivalent to false .
• The last two rules [INF−[REL−DEFN]] and [INF−[REL−OBLG]] are used to gather
definitions and obligations respectively, for the uninterpreted relation vrel(u

∗). For sim-
plicity, in rule [INF−[REL−OBLG]], we just formalize the case when there is only one
uninterpreted relation in the antecedent.

6 Inference via Hoare-Style Rules

Code verification is typically formulated as a Hoare triple of the form: � {Δ1} c {Δ2},
with a precondition Δ1 and a postcondition Δ2. This verification could either be con-
ducted forwards or backwards for the specified properties to be successfully verified, in
accordance with the rules of Hoare logic. In separation logic, the predominant mode of
verification is forward. Specifically, given an initial state Δ1 and a program code c, such
a Hoare-style verification rule is expected to compute a best possible postcondition Δ2

satisfying the inference rules of Hoare logic. If the best possible postcondition cannot be
calculated, it is always sound and often sufficient to compute a suitable approximation.

To support pure bi-abduction, we extend this Hoare-style forward rule to the form:
[v∗] � {Δ1} c {φ2, Δ2, β2} with three additional features (i) a set of variables [v∗] (ii)
an extra precondition φ2 that must be added (iii) a set of definitions and obligations β2

on the specified uninterpreted relations. The selectivity criterion will help ensure that φ2

and β2 come from only the specified set of variables, namely {v∗}. If this set is empty,
our new rule is simply the case that performs verification, without any inference.

Figure 3 captures a set of our Hoare rules with pure bi-abduction. Rule [INF−[SEQ]]
shows how sequential composition e1; e2 is handled. The two inferred preconditions are
conjunctively combined as φ2 ∧ φ3. Rule [INF−[IF]] deals with conditional expression.
Our core language allows only boolean variables (e.g. w) in each conditional test. We
use a primed notation whereby w denotes the old value, and w′ denotes the latest value
of each variable w. The conditions w′ and ¬w′ are asserted for each of the two con-
ditional branches. Since the two preconditions φ2, φ3 come from two branches, both
of them must hold for soundness; thus they are combined conjunctively in a conser-
vative manner. Rule [INF−[ASSIGN]] handles assignment statement. We first define a

1 If there is no ambiguity, we can use v∗ instead of {v∗}.
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composition with update operator. Given a state Δ1, a state change Δ2, and a set of
variables to be updated X= {x1, . . . , xn}, the composition operator opX is defined as:

Δ1 opX Δ2
def
= ∃ r1..rn · (ρ1Δ1) op (ρ2Δ2), where r1, . . . , rn are fresh variables and

ρ1 = [ri/x
′
i]
n
i=1, ρ2 = [ri/xi]

n
i=1. Note that ρ1 and ρ2 are substitutions that link each

latest value of x′
i in Δ1 with the corresponding initial value xi in Δ2 via a fresh vari-

able ri. The binary operator op is either ∧ or ∗. Instances of this operator will be used in
the inference rules [INF−[ASSIGN]] and [INF−[CALL]]. As illustrated in [INF−[CALL]],
for each method call, we must ensure that its precondition is satisfied, and then add the
expected postcondition into its residual state. Here, (ti vi)

m−1
i=1 are pass-by-reference pa-

rameters, that are marked with ref, while the pass-by-value parameters V are equated
to their initial values through the nochange function, as their updated values are not
visible to the method’s callers. Note that inference may occur during the entailment
proving for the method’s precondition.

[INF−[SEQ]]
[v∗] � {Δ} e1 {φ2,Δ2, β2} [v∗] � {Δ2} e2 {φ3,Δ3, β3}

[v∗] � {Δ} e1; e2 {φ2∧φ3,Δ3, β2∪β3}

[INF−[IF]]
[v∗] � {Δ∧w′} e1 {φ2,Δ2, β2} [v∗] � {Δ∧¬w′} e2 {φ3,Δ3, β3}

[v∗] � {Δ} if w then e1 else e2 {φ2∧φ3,Δ2∨Δ3, β2∪β3}
[INF−[ASSIGN]]

[v∗] � {Δ} e {φ2,Δ2, β2} Δ3=∃res · (Δ2 ∧u u′=res)

[v∗] � {Δ} u:=e {φ2,Δ3, β2}
[INF−[CALL]]

t0 mn (ref (ti vi)
m−1
i=1 , (tj vj)

n
j=m) Φpr Φpo {c} ∈ Prog

ρ=[v′k/vk]
n
k=1 Φ′

pr = ρ(Φpr) W={v1, . . . , vm−1} V={vm, . . . , vn}
[v∗] Δ �Φ′

pr � (φ2,Δ2, β2) Δ3=(Δ2 ∧ nochange(V )) ∗V ∪W Φpo

[v∗] � {Δ} mn(v1, . . . , vm−1, vm, ...vn) {φ2,Δ3, β2}
[INF−[METH]]

[v∗, v∗rel] � {Φpr∧
∧
(u′=u)∗} c {φ2,Δ2, β2} [v∗, v∗rel] Δ2 �Φpo � (φ3,Δ3, β3)

ρ1 = infer pre(β2∪β3) ρ2 = infer post(β2∪β3)
Φn

pr = ρ1(Φpr∧φ2∧φ3) Φn
po = ρ2(Φpo∗Δ3)

� t0 mn ((t u)∗) infer [v∗, v∗rel] Φpr Φpo {c}� Φn
pr Φ

n
po

Fig. 3. Hoare Rules with Pure Bi-Abduction

Lastly, we discuss the rule [INF−[METH]] for handling each method declaration. At
the program level, our inference rules will be applied to each set of mutually recursive
methods in a bottom-up order in accordance with the call hierarchy. This allows us to
gather the entire set β of definitions and obligations for each uninterpreted relation.
From this set β we infer the pre- and post-relations via two techniques described below.
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defpo(β) = {πk
i →vreli(v

∗
i ) | (πk

i →vreli@po(v∗i )) ∈ β}
oblpo(β) = {vreli(v∗i )→αj | (vreli@po(v∗i )→αj) ∈ β}
defpr(β) = {πk

i →vreli(v
∗
i ) | (πk

i →vreli@pr(v∗i )) ∈ β}
oblpr(β) = {vreli(v∗i )→αj | (vreli@pr(v∗i )→αj) ∈ β}

Take note that, given the entire set β, we retrieve the set of definitions and obligations
for post-relations through functions defpo and oblpo respectively, while we use functions
defpr and oblpr for pre-relations.
• For post-relations, function infer post applies a least fixed point analysis to the set
of collected relational definitions defpo(β). To compute the least fixed point over two
domains used to instantiate the current framework, namely the numerical domain and
the set/bag domain, we utilize FIXCALC [17] and FIXBAG [15], respectively. The call to
the fixed point analysis is denoted as LFP(defpo(β)). It takes as inputs the set of relational
definitions, while returning a set of closed form constraints of the form αi→vreli(v

∗
i ),

where each constraint corresponds to uninterpreted relation vreli(v
∗
i ). Given that our aim

is to infer the strongest post-relations, we further consider each post-relation vreli(v
∗
i ) to

be equal to αi. Finally, infer post returns a set of substitutions, whereby each unknown
relation is substituted by the inferred formula, provided that this formula satisfies all the
corresponding relational obligations from oblpo(β).

infer post(β)={αi/vreli(v
∗
i ) | (αi→vreli(v

∗
i ))∈LFP(defpo(β))

∧ ∀(vreli(v∗i )→αj)∈oblpo(β)·αi⇒αj}
• For pre-relations, we initially infer two kinds of precondition: one for base cases, the
other for recursive calls. For base cases, we calculate the conjunction of all its obliga-
tions from oblpr(β) to obtain sufficient precondition pre basei for each uninterpreted
relation vreli(v

∗
i ). For recursive calls, we first derive the recursive invariant rec invi to

relate the parameters of an arbitrary call to those of the first one. This can be achieved
via a top-down fixed point analysis [18]. Because the parameters of an arbitrary call
must also satisfy relevant relational obligations (e.g. pre basei), we will then be able
to construct a precondition pre reci for each relation. An acceptable approximation
αi for each relation vreli(v

∗
i ) must satisfy simultaneously the precondition for base

calls (pre basei), for an arbitrary recursive call (pre reci) and the invariant INV (e.g.
a≥0∧b≥0 as in Sec. 4.4). The last step is to check the quality of candidate substitutions
to keep the ones that satisfy not only the obligations but also definitions of each relation.

pre basei = {∧jαj | (vreli(v∗i )→αj)∈oblpr(β)}
rec invi = TDFP(defpr(β))

pre reci = ∀(FV(rec invi)−v∗i ) · (¬rec invi ∨ pre basei)
αi = pre basei ∧ pre reci ∧ INV

infer pre(β) = sanity checking({αi/vreli(v
∗
i )}, oblpr(β), defpr(β))

With the help of functions infer pre and infer post, we can finally define the rule for
deriving the pre- and postconditions, Φn

pr and Φn
po, of a method mn. Note that v∗rel de-

notes the set of uninterpreted relations to be inferred, while ρ1 and ρ2 represent the
substitutions obtained for pre- and post-relations, respectively.

Soundness. Soundness of inference is given in the extended version of this paper [22].
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7 Enhancing Predicates with Pure Properties

Since the user may encounter various kinds of inductive spatial predicates (from a shape
analysis step), such as linked lists, doubly-linked lists, trees, etc. and there may be
different pure properties to enrich shape predicates such as size, height, sum, head,
min/max, set of values/addresses (and their combinations), we need to use a predicate
extension mechanism to systematically incorporate pure properties into heap predicates.

Our mechanism is generic in the sense that each specified property can be applied
to a broad range of recursive data structures, whose underlying structures can be quite
different (see [22]). We can define these pure properties of data structures in the form
of parameterized inductive definitions such as:

prop defn HEAD[@V]〈v〉 ≡ v=V
prop defn SIZE[@R]〈n〉 ≡ n=0 ∨ SIZE〈R, m〉∧n=1+m

prop defn HEIGHT[@R]〈n〉 ≡ n=0 ∨ HEIGHT〈R, m〉∧n=1+max(m)
prop defn SUM[@V,@R]〈s〉 ≡ s=0 ∨ SUM〈R, r〉∧s=V+r
prop defn SET[@V,@R]〈S〉 ≡ S={} ∨ SET〈R, S2〉∧S={V}�S2
prop defn SETADDR[@R]〈S〉 ≡ S={} ∨ SETADDR〈R, S2〉∧S={root}�S2
prop defn MINP[@V,@R]〈mi〉 ≡ mi=min(V) ∨ MINP〈R, mi2〉∧mi=min(V, mi2)
prop defn MAXP[@V,@R]〈mx〉 ≡ mx=max(V) ∨ MAXP〈R, mx2〉∧mx=max(V, mx2),

where V, R are values extracted from parameters @V,@R resp. For example, to determine
if n is the size of some data structure whose recursive pointer is annotated as @REC,
SIZE[@REC]〈n〉 would check the satisfiability of the base case (e.g. n=0) and the induc-
tive case (via recursive pointer REC).

Using such definition, one can use the following command to incorporate size prop-
erty directly to a linked-list predicate definition. Below, the annotations @VAL,@REC are
hardwired to two fields of the underlying heap structure node:

pred llN〈root, n〉= extend ll〈root〉 with SIZE[@REC]〈n〉
data node {int val@VAL; node next@REC; }

Based on these commands and the definitions of pure properties, our system first con-
structs an entry (in a dictionary) for each targeting predicate. For example, there is one
entry (llN〈root, n〉, (F1, F2, BC, IC)), where list of all value field annotations F1=[ ], list
of all recursive pointer annotations F2=[@REC], base case BC=\[ ] → n=0 and induc-
tive case IC=\[mREC ] → n=mREC+1 (mREC is the size property of corresponding recursive
pointer REC of the linked-list). Using the dictionary, we can transform the base case and
inductive case of original spatial predicate ll as follows:

root=null #Dict�root=null∧n=0

∃q·(root �→node〈 , q〉∗ll〈q〉) #Dict�∃q, m·(root�→node〈 , q〉∗llN〈q, m〉∧n=m+1)

Finally, we can synthesize llN predicate as previously shown in Sec. 2.
In short, the technique we present in this section aims at a systematic way to enrich

spatial predicates with interesting pure properties. For space reasons, more complicated
cases (i.e. when handling data structures with multiple links such as tree) can be found
in [22]. While property extensions are user customizable, their use within our pure in-
ference sub-system can be completely automated, as we can automatically construct
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predicate derivation commands and systematically apply them after shape analysis. We
then replace each heap predicate with its derived counterpart, followed by the introduc-
tion of uninterpreted pre- and post-relations before applying Hoare-style verification
rules with pure bi-abductive inference.

8 Experimental Results

We have implemented our pure bi-abduction technique into an automated program ver-
ification system for separation logic, giving us a new version with inference capability,
called SPECINFER. We then have conducted three case studies in order to examine (i)
the quality of inferred specifications, (ii) the feasibility of our technique in dealing with
a variety of data structures and pure properties to be inferred, and (iii) the applicability
of our tool in real programs.

Ex. 2. A method where the content of its
data structure is helpful to ensure its
functional correctness

1 node del_val(node x,int a)
{

2 if (x == null) return x;
3 else if (x.val == a) {
4 node tmp = x.next;
5 free(x);
6 return tmp; }
7 else {
8 x.next =
9 del_val(x.next, a);

10 return x; } }

Small Examples. To highlight the qual-
ity of inferred specifications, we summa-
rize sufficient specifications that our tool
can infer for some well-known recursive
examples. Details can be found in the ex-
tended version of this paper [22]. Though
codes for these examples are not too com-
plicated, they illustrate the treatment of re-
cursion (thus, the inter-procedural aspect).
Therefore, the preconditions and postcon-
ditions derived can be quite intricate and
would require considerable human efforts if
they were constructed manually.2

One interesting thing to note is that each
example may require different pure proper-
ties for its correctness to be captured and
verified. Using our pure bi-abduction technique, we can derive more expressive spec-
ifications, which can help ensure a higher-level correctness of programs. For instance,
the size property is not enough to capture the functional correctness of del val method,
whose source code is given in Ex. 2. Method del val deletes the first node with value
a from the linked-list pointed by x. Since the behavior of this method depends on the
content of its list, SPECINFER needs to derive llNB predicate that also captures a bag B

of values stored in the list:

pred llNB〈root, n, B〉 ≡ (root=null ∧ n=0 ∧ B={}) ∨
∃ s, q, m, B0 · (root�→node〈s, q〉 ∗ llNB〈q, m, B0〉 ∧ n=m+1 ∧ B=B0�{s}).

Finally, our tool infers the following specification that guarantees the functional cor-
rectness of del val method:

requires llNB〈x, n, B1〉
ensures llNB〈res, m, B2〉 ∧ ((a/∈B1 ∧ B2=B1) ∨ B1=B2�{a});

where res denotes the method’s result.
2 The source code of all examples can be found in our website [22].
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Medium Examples. We tested our tool on a set of challenging programs that use a
variety of data structures. The results are shown in Table 1 (the first eight rows), where
the first column contains tested program sets: LList (singly-linked list), SoLList (sorted
singly-linked list), DLList (doubly-linked list), CBTree (complete binary tree), Heaps
(priority queue), AVLTree (AVL tree), BSTree (binary search tree) and RBTree (red-black
tree). The second and third columns denote the number of lines of code (LOC) and the
number of procedures (P#) respectively.

For each test, we start with shape specifications that are obtained from the prior shape
analysis step. The number of procedures with valid specifications (valid Hoare triples)
is reported in the V# column while the percentage of these over all analyzed procedures
is in the % column. In the next two phases, we incrementally add new pure properties
(to be inferred) to the existing specifications. These additional properties are listed in
the Add.Properties columns. While phase 2 only focuses on quantitative properties
such as size (number of nodes) and height (for trees), phase 3 aims at other functional
properties. We also measure the time (in seconds) taken for verification with inference,
in the Time column.

In addition to illustrating the applicability of SPECINFER in dealing with different
data structures and pure properties, Table 1 reaffirms the need of pure properties for
capturing program correctness. Specifically, for procedures that SPECINFER cannot in-
fer any valid specifications, we do construct the specifications manually. However due
to the restriction of properties the resulting specification can capture, we fail to do so
for these procedures. For illustration, we cannot construct any valid specification for
about 18% of procedures in phase 1 (using shape domain only). Even in phase 2, there
is still one example, delete max method in Heaps test, for which we cannot obtain any
valid specification. This method is used to delete the root of a heap tree, thus it requires
the information of the maximum element.

Table 1. Specification Inference with Pure Properties for a Variety of Data Structures

Shape Shape + Quan Shape + Quan + Func
Program LOC P# V# % Add.Properties V# % Time Add.Properties V# % Time
LList 287 29 23 79 Size 29 100 1.53 Bag of values 29 100 3.09
SoLList 237 28 22 79 Size 28 100 0.93 Sortedness 28 100 1.62
DLList 313 29 23 79 Size 29 100 1.69 Bag of values 29 100 4.19
Heaps 179 5 2 40 Size 4 80 2.14 Max. element 5 100 6.63
CBTree 115 7 7 100 Size & Height 7 100 2.76 Bag of values 7 100 98.81
AVLTree 313 11 9 82 Size & Height 11 100 8.85 Balance factor 11 100 10.66
BSTree 177 9 9 100 Size & Height 9 100 1.76 Sortedness 9 100 2.75
RBTree 407 19 18 95 Size & Height 19 100 5.97 Color 19 100 6.01

schedule 512 18 13 72 Size 18 100 6.86
schedule2 474 16 5 31 Size 16 100 10.58
pcidriver 1036 29 29 100 Size 29 100 17.72

Larger Examples. The last three rows from Table 1 demonstrate the applicability
of SPECINFER on larger programs. The first two programs used to perform process
scheduling are adopted from the Siemens test suite [8] while the last one is pci driver.c
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file from Linux Device Driver. Note that for this case study we enrich shape specifica-
tions with size property only. For Linux file, although it is sufficient to use only shape
property to prove memory safety, size property is still useful for proving termination.

9 Related Works

Specification inference makes program verification more practical by minimizing on
the need for manual provision of specifications. It can also be used to support formal
software documentation.

One research direction in the area of specification inference is concerned with in-
ferring shapes of data structures. SLAyer [2] is an automatic program analysis tool
designed to prove the absence of memory safety errors such as dangling pointer deref-
erences, double frees, and memory leaks. The footprint analysis described in [4] infers
descriptions of data structures without requiring a given precondition. Furthermore, in
[3], Calcagno et al. propose a compositional shape analysis. Both aforementioned anal-
yses use an abstract domain based on a limited fragment of separation logic, centered
on some common heap predicates. Abductor [3] is a tool implementing a composi-
tional shape analysis based on bi-abduction, which was used to check memory safety
of large open source codebases [5]. A recent work [23] attempts to infer partial anno-
tations required in a separation-logic based verifier, called Verifast. It can infer annota-
tions related to unfold/fold steps, and also shape analysis when pre-condition is given.
Our current proposal is complementary to the aforesaid works, as it is focused on in-
ferring the more varied pure properties. We support it with a set of fundamental pure
bi-abduction techniques, together with a general predicate extension mechanism. Our
aim is to provide systematic machinery for deriving formal specifications with more
precise correctness properties.

A closely related research direction to ours concerns the inference of both shape and
numerical properties. In [11], the authors combine shape analysis based on separation
logic with an external numeric-based program analysis in order to verify properties such
as memory safety and absence of memory leaks. Their method was tested on a number
of programs where memory safety depends on relationships between the lengths of the
lists involved. In the same category, Thor [12] is a tool for reasoning about a combi-
nation of list reasoning and arithmetic by using two separate analyses. The arithmetic
support added by Thor includes stack-based integers, integers in the heap and lengths of
lists. However, these current works are limited to handling list segments together with
its length as property, and does not cover other pure properties, such as min/max or set.
In addition, they require two separate analysis, as opposed to our integrated analysis (or
entailment procedure) that can handle both heap and pure properties simultaneously.
A recent work [19] focuses on refining partial specifications, using a semi-automatic
approach whereby predicate definitions are manually provided. This work did not take
advantage of prior shape analysis, nor did it focus on the fundamental mechanisms for
bi-abduction with pure properties. Our paper addresses these issues by designing a new
pure bi-abduction entailment procedure, together with the handling of uninterpreted
functions and relations. To utilize shape analyses’ results, we also propose a predicate
extension mechanism for systematically enhancing predicates with new pure properties.
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Another recent work [7] aims to automatically construct verification tools that imple-
ment various input proof rules for reachability and termination properties in the form
of Horn(-like) clauses. Also, on the type system side, the authors of [21,9,10] require
templates in order to infer dependent types precise enough to prove a variety of safety
properties such as the safety of array accesses. However, in both of these works, mu-
table data structures are not supported. Compared to above works, our proposal can be
considered fundamental, as we seek to incorporate pure property inference directly into
the entailment proving process for the underlying logics, as opposed to building more
complex analyses techniques.

Acknowledgements. We would like to thank Duc-Hiep Chu for his useful comments.
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