
Dual Analysis for Proving Safety and Finding Bugs

Corneliu Popeea
Max Planck Institute

for Software Systems (MPI-SWS)
cpopeea@mpi-sws.org

Wei-Ngan Chin
Department of Computer Science
National University of Singapore
chinwn@comp.nus.edu.sg

ABSTRACT
Program bugs remain a major challenge for software devel-
opers and various tools have been proposed to help with
their localization and elimination. Most present-day tools
are based either on over-approximating techniques that can
prove safety but may report false positives, or on under-
approximating techniques that can find real bugs but with
possible false negatives. In this paper, we propose a dual
static analysis that is based on only over-approximation. Its
main novelty is to concurrently derive conditions that lead
to either success or failure outcomes and thus we provide a
comprehensive solution for both proving safety and finding
real program bugs. We have proven the soundness of our
approach and have implemented a prototype system that is
validated by a set of experiments.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs; F.3.2
[Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages—program analysis

General Terms
Languages, Reliability, Verification

Keywords
Static analysis, Numerical domains

1. INTRODUCTION
Program errors are notoriously difficult to find and elim-

inate. Traditionally, program testing and model checking
[6, 7] have been applied to detect the presence of real bugs.
However, one shortcoming of the testing process is that it
is unable to prove the absence of bugs, compromising on
program safety. In contrast, static analysis which uses ab-
straction on program states can be used to prove program

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

safety [4, 20]. It achieves this by showing that bad error
states are not reachable via an exhaustive interpretation in
the abstract domain. Due to approximation, static analysis
may report false positives that are possible bugs that do not
exist in practice. High incidents of false positives can make
static analysis tools impractical to use for finding and elim-
inating bugs. As reported in the ASTRÉE project [2, 19],
manual inspection of alarms (possible bugs) can be a very
time-consuming process and may take several days even for
simple alarms.

Recently, there have been some proposals [15, 8] that ad-
vocate for over-approximation techniques (based on static
analysis) to be synergistically combined with under-approxi-
mation techniques (based on concrete execution or program
testing). One main goal of this combination, as advocated
in [8], is to leverage on the strengths of the two techniques so
that program bugs or their absence can be discovered more
accurately and effectively. While such a proposal can exploit
the complementary strengths of its constituent techniques,
it is also more complex to construct due to the need to com-
bine different techniques and to consider potential interplays
between them. Furthermore, it is often useful to explore
what can be achieved within a single methodology before
considering synergistic combinations of different techniques,
to allow the strengths of each technique to be exploited.

In this paper, we shall propose a dual static analysis that
is different from past approaches as both its components are
based primarily on over-approximation. Our approach is
also modular and computes (on a per method basis) trigger
conditions for each bug expressed symbolically in terms of
the method’s parameters. Specifically, we support the con-
current discovery of three conditions for bugs, called must-
bug, may-bug and never-bug, respectively. To illustrate the
three different kinds of bugs, consider a simple example :

int foo(int x, int y)
{ if (x≤y) then { if (x>10) then `1:error else 1 }

else { if complexTest(x, y) then `2:error
else { if x≥y then 2 else `3:error }

} }

The bugs in our programs shall be flagged using a special
error construct. This approach is simple but general as we
can translate the more conventional (assert c) command
for bug detection, directly to (if c then skip else error).
The method complexTest denotes a predicate whose out-
come cannot be precisely modelled by the underlying static
analyser. For example modelling the predicate x3+y3≥0 is
beyond the capability of linear arithmetic solvers. Accord-

ing to our analysis, the error at location `1 is a must-bug
under the condition x≤y ∧ x>10 that must lead to the er-
ror. In contrast, the error at location `2 is a may-bug as our
analysis can only determine a trigger condition x>y that
may lead to this error, since its occurrence is still dependent
on the second conditional with a statically unknown test.
Lastly, the error at location `3 is a never-bug as our analysis
can determine a trigger condition x>y∧x<y that can never
happen, namely false.

To describe our approach, we start from some basic ob-
servations on program execution. A machine configuration
can be represented by 〈s, e〉 where s denotes the current
stack/heap and e denotes the expression to evaluate. This
configuration is said to be closed if vars(e) ⊆ dom(s), that
is all the free variables in e are present in s. Each reduc-
tion step of a closed configuration can be formalised using a
small-step transition rule of the form: 〈s, e〉↪→〈s1, e1〉. Tran-
sitive application of the reduction steps are denoted by ↪→∗.
The reduction rules are standard and are omitted for brevity.

For each given complete execution for a closed configura-
tion, we expect one of three possible outcomes : (i) ok(〈s, e〉)
to denote a successful execution 〈s, e〉↪→∗〈s1, k〉 that results
in a final value k, (ii) err(〈s, e〉) to denote a failed execution
〈s, e〉↪→∗〈s1,⊥〉 that results in an error denoted by ⊥, and
(iii) loop(〈s, e〉) for an execution that does not terminate,
denoted by 〈s, e〉6↪→∗. The consistency relation s |= φ holds
when the values of the variables from the stack/heap s agree
with the abstract formula φ.

Our strategy is to track two input conditions, denoted by
OK and ERR, that over-approximate all executions that may
lead to (i) ok outcomes, and (ii) err outcomes, respectively.

Definition 1. (Entire Success Outcomes)
Given a method with body e, we can capture a condition OK

on the method’s inputs ~v that leads to all possible ok out-
comes. This condition is an over-approximation that may
include some err and loop outcomes. Formally:
∀s · dom(s)=v ∧ closed(〈s, e〉) ∧ ok(〈s, e〉) =⇒ (s |= OK)

Definition 2. (Entire Failure Outcomes)
Given a method with body e, we can capture a condition
ERR on the method’s inputs ~v that leads to all possible err

outcomes. This condition is an over-approximation that may
include some ok and loop outcomes. Formally:
∀s · dom(s)=v ∧ closed(〈s, e〉) ∧ err(〈s, e〉) =⇒ (s |= ERR)

For example, consider the earlier foo example with two
input parameters, x and y. Using our static analysis, we
may compute two conditions that cover all the ok outcomes
and all the err outcomes, respectively:
OK = (x≤y ∧ x≤10) ∨ x>y.
ERR = (x≤y ∧ x>10) ∨ x>y.

Based on the two over-approximation results OK and ERR,
we can determine the conditions for must-bug, may-bug and
never-bug for each given method:

Definition 3. (Never-Bug Condition)
A condition c on the inputs ~v of a method with body e is
a never-bug condition if each of its configuration leads to
either the ok or loop outcomes, but never the err outcome.
This condition c can be computed using OK ∧ ¬ERR where
¬ERR ensures that none of the err outcomes are possible.
Formally:
∀s·dom(s)=v∧closed(〈s, e〉)∧(s |= OK∧¬ERR) =⇒ ok(〈s, e〉)∨
loop(〈s, e〉)

Definition 4. (Must-Bug Condition)
A condition c on the inputs ~v of a method with body e is a
must-bug condition if each of its inputs leads to either the err

or loop outcomes, but never the ok outcome. This condition
c can be computed using ERR ∧ ¬OK where ¬OK ensures that
none of the ok outcomes are possible. Formally:
∀s·dom(s)=v∧closed(〈s, e〉)∧(s |= ERR∧¬OK) =⇒ err(〈s, e〉)∨
loop(〈s, e〉)

Definition 5. (May-Bug Condition)
A condition c (on the inputs) of a method is a may-bug
condition if each of its inputs leads to either ok, err or loop

outcomes. This condition c arises from imprecision of the
analysis and can be computed using OK ∧ ERR which covers
an overlap where all three outcomes are possible.

A graphical illustration of these three categories of bug
conditions is shown in Fig 1. The two circles denote the
conditions for OK and ERR, while the three areas being par-
titioned by the two circles are the conditions for never-bug,
may-bug and must-bug. At the extreme, all possible inputs
could be classified under the may-bug category (may-bugs
are sometimes denoted as false positives in the terminology
of static analyzers). Our remedy is to minimise the overlap

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

may
bug

must
bug

OK ERR
never

bug

Figure 1: Classifying bugs

between the OK and
ERR outcomes by using
a more precise anal-
ysis based on a dis-
junctive numerical do-
main [20, 16], where
needed. The dual
analysis is considered
precise when OK∧ERR =
false. This scenario is desirable as it provides disjoint con-
ditions for proving safety and finding bugs.

Due to our use of over-approximation, our analysis can
only guarantee that a bug will occur, assuming the absence
of non-termination outcome. This situation is related to
partial correctness proofs, since we may sometimes report a
must-bug when the outcome is actually a loop. Nevertheless,
we will discuss how to discover some non-termination out-
comes in Sec 3. Intuitively, even though loop outcomes may
appear everywhere, the condition ¬(OK∨ERR) is expected to
capture exclusively loop outcomes.

Going back to the foo example, we may now compute this
method’s conditions for must-bug, may-bug and never-bug :

MUST BUG = ¬(OK) ∧ ERR

= ¬(x≤y∧x≤10 ∨ x>y) ∧ (x≤y∧x>10 ∨ x>y)
= x≤y ∧ x>10

MAY BUG = OK ∧ ERR

= (x≤y∧x≤10 ∨ x>y) ∧ (x≤y∧x>10 ∨ x>y)
= x>y

NEVER BUG = OK ∧ ¬(ERR)
= (x≤y∧x≤10 ∨ x>y) ∧ ¬(x≤y∧x>10 ∨ x>y)
= x≤y ∧ x≤10

Thus, to analyse for must, may and never-bugs, we only
need to determine the condition for possible successful ex-
ecution OK and the condition for possible program errors
ERR. Analysing both these outcomes concurrently is the main
novelty behind our approach for capturing both must and
may analyses under a dual static analysis. To the best of
our knowledge, this approach has never been used in main-
stream work on static analyses for simultaneously proving

P ::= meth∗

meth ::= t mn (([ref] t v)∗) [where Φ] [{e}]
t ::= bool | int | int[] | void
e ::= v | k | v:=e | e1; e2 | ` : mn(v∗) | t v ; e

| if v then e1 else e2 | ` : error
k ::= true | false | kint | ()
Φ ::= {OK : φ1, ERR : φ2}
φ ::= a1=a2 |a1≤a2 |¬φ |φ1∧φ2 |φ1∨φ2 |∃v·φ |q(v∗)
a ::= kint | v | v′ | kint ∗ a | a1 + a2 | · · ·

Figure 2: A simple imperative language

safety and finding bugs. In this paper, we formalise the
methodology and conduct a set of experiments to validate
the approach taken.

2. FORMALIZATION
A simple imperative language used to formalize our dual

analysis is shown in Fig 2. We use meth for method dec-
laration, t for type, and e for expression. This language is
expression-oriented and uses a normalised form for which
only variables are allowed as arguments to a method call or
a conditional test. A preprocessor can transform loops into
tail-recursive methods and handle arbitrarily nested argu-
ments as well as insert unique labels for each method call
and error location. Pass-by-reference parameters are marked
in each method via the ref keyword, while the other param-
eters from v∗ are passed-by-value.

The results of our analysis are encoded as summaries Φ
computed for each method body using a modular static anal-
ysis approach [3]. Summaries are inferred bottom-up, start-
ing with the methods lowest in the calling hierarchy. A
method summary Φ = {OK : φ1, ERR : φ2} combines all the
traces that may lead to success outcomes under the OK label
as φ1 and all the traces that may lead to failure outcomes
under the ERR label as φ2. Our analysis captures each suc-
cessful OK outcome with a postcondition that tracks the re-
lation between inputs and output. The output of a method
(or expression) is identified by a special res variable.

The syntactic form of φ is currently based on the first or-
der theory of linear arithmetic. (Other theories may also be
used provided they are amenable to fix-point analysis, as de-
scribed in Sec 2.2.) State changes are modeled in a symbolic
manner through transition formulae using two symbolic val-
ues per program variable. Given a program variable v, the
prime notation v′ denotes the new value, while v itself de-
notes the old value of the program variable. Two transition
formulae may be composed in a natural way using a com-
position operator ◦V with updating effects on a set of vari-
ables V , as follows: φ1 ◦V φ2 =df ∃ r1..rn · ρ1 φ1 ∧ ρ2 φ2

where r1, . . . , rn are fresh variables and ρ1 = [v′i 7→ri]
n
i=1

and ρ2 = [vi 7→ri]
n
i=1.

2.1 Forward Reasoning Rules
To compute method summaries, we shall now propose a

set of forward rules shown in Fig 3. These rules resem-
ble those from weakest precondition/strongest postcondi-
tion calculi with two important distinctions. Firstly, our
integrated approach is entirely forward as it attempts to
derive only strongest necessary conditions. Secondly, we
use a set of outcomes to compute simultaneously two over-
approximations. Discovering both true bugs and proving

safety is made possible by this combination.
The rules are written in Hoare-style form using the judge-

ment `{Φ1} e {Φ2}. Given the OK outcome from Φ1 (a
transition from the beginning of the current method to the
prestate before e’s evaluation), the judgement derives Φ2:
firstly, a transition from the beginning of the current method
to the poststate after e’s evaluation; secondly, an ERR con-
dition, in part from Φ1 and also from possible errors hap-
pening during e’s evaluation. Our rules use logical operators
with set of outcomes as arguments: ∃V ·Φ, Φ ∨ Φ and Φ ◦ Φ.
These logical operators are distributed to the components of
Φ as follows:

∃V ·{OK : φ1, ERR : φ2} ≡ {OK : ∃V ·φ1, ERR : ∃V ·φ2}
{OK : φ1, ERR : φ2} ∨ {OK : φA, ERR : φB}

≡ {OK : φ1∨φA, ERR : φ2∨φB}
{OK : φ1, ERR : φ2} ◦V {OK : φA, ERR : φB}

≡ {OK : φ1◦V φA, ERR : φ2∨(φ1◦V φB)}
The rule that involves ◦ is more complex. The ERR outcome
of the result (condition: φ2∨(φ1◦φB)) indicates either failure
from the first argument (condition: φ2), or from the success
of the first argument followed by the failure of the second
argument (condition: φ1◦φB).

For the [BLK] rule, constraints provide default values de-
pending on the respective types. According to the lan-
guage semantics, a possible set of defaults could be given as
follows: default(int, v)≡v=0, default(int[], v)≡v=null and
default(void, v)≡true. Note that true may be used if there
are no defaults. For the [CALL] rule, Φ is composed with the
summary of the callee Φmn. In the case of boolean values,
we encode them in the integer domain by using 0 for false,
and 1 for true, as can be seen in the [IF] rule.

The most important rule in our reasoning process, [METH]

handles method declarations. This rule uses as initial prestate
nochange({v1..vn}) ≡

∧n
i=1 vi=v′i. The first line of the rule

uses the expression judgement to traverse the method body
e, using the set of logical variables W to represent the in-
puts of the current method. For a recursive method mn, the
rule [CALL] uses the following placeholder for its summary to
be computed: Φmn={OK : mnOK(X), ERR : mnERR(W)}. For
this recursive case, the rules will derive a set of constraint
abstractions, one for each outcome of the method. The
third line of the rule [METH] collects in Q the constraint ab-
stractions and then invokes an iterative fixed point analysis
to compute the summary Φ′mn = fix(Q). This fixed point
analysis will be described in more detail in Sec 2.2.

While the summary of each user-defined method can be
inferred, some methods are primitives in that they lack a
method body and are provided instead with a summary for-
mula. As an example, consider the following two primitives
that may incur divide-by-zero and some array-related errors,
respectively.

int div(int x, int y) where{OK : y6=0∧res=x/y, ERR : y=0}
void update(int[] a, int i, int v) where

{OK : a 6=null∧0≤i<a.len, ERR : a=null∨i<0∨i≥a.len}
Note that null may be modelled by the value 0, while

nonnull may be modelled by a value ≥1. In the imple-
mentation, we rely exclusively on an arithmetic constraint
form as our abstraction domain and solver. Due to the use
of the integer domain to encode array lengths (a.len > 0),
boolean values (false ≡ 0, true ≡ 1) or nullness (null ≡
0, nonnull ≡ ≥1), we ensure that derived formulae always

[CONST]

Φ1 = (Φ ∧ res=k)

`{Φ} k {Φ1}

[BLK]

`{Φ ∧ default(t, v′)} e {Φ1}
` {Φ} t v; e {∃v′·Φ1}

[VAR]

Φ1 = (Φ∧res=v′)

`{Φ} v {Φ1}

[ASSIGN]

`{Φ} e {Φ1}
Φ2 = ∃res·(Φ1◦{v}v

′=res)

`{Φ} v:=e {Φ2}

[IF]

`{Φ ∧ v′=1} e1 {Φ1}
` {Φ ∧ v′=0} e2 {Φ2}

` {Φ} if v then e1 else e2 {Φ1 ∨Φ2}

[SEQ]

`{Φ} e1 {Φ1}
` {∃res·Φ1} e2 {Φ2}
` {Φ} e1; e2 {Φ2}

[ERROR]

Φ1 = Φ ◦∅ Φe

Φe = {OK : false, ERR : true}
` {Φ} ` : error {Φ1}

[CALL]

V={vi}m−1
i=1 distinct(V)

t0 mn((ref ti vi)
m−1
i=1 , (ti vi)

n
i=m) where Φmn {...}

` {Φ} ` : mn(v1..vn) {Φ ◦V Φmn}

[METH]

W={vi}n
i=1 `{{OK : nochange(W)}} e {{OK : φ1, ERR : φ2}}

X={v1, .., vn, res, v′1, .., v
′
m−1} V ={v′i}n

i=m R={res, v′1, .., v′n}
Q={mnOK(X)≡∃V ·φ1, mnERR(W)≡∃R·φ2} Φ′mn = fix(Q)

` t0 mn((ref ti vi)
m−1
i=1 , (ti vi)n

i=m) where Φmn{e} ⇒ Φ′mn

Figure 3: Forward reasoning rules

satisfy a type-invariant. This improves completeness by
strengthening the underlying formulae. For example, given
a variable of boolean sort b, we can add its type invariant
to obtain: ¬(b=0 ∨ b=1) ≡ false.

Example: Let us illustrate the forward reasoning process
using a simple example, a method that assigns 0 to those
elements in the array a from the range i to 1.

void g(int[] a, ref int i)
{ if (i≤0) then ()

else { update(a, i, 0); i:=i−1; g(a, i) } }
We will use the forward rules to derive formulae at inter-
mediate points from the method g. To improve readability,
formulae are simplified and we omit the tracking on nullness
of array variables:

For update(a, i, 0), [CALL] rule is applied:
Φ1 ≡ {OK : i′=i ∧ i′>0 ∧ i′<a.len, ERR : i>0 ∧ i≥a.len}

For i:=i−1, [ASSIGN] rule is applied:
Φ2 ≡ {OK : i′=i−1 ∧ i>0 ∧ i<a.len, ERR : i>0 ∧ i≥a.len}

For g(a, i), [CALL] rule is applied:
Φ3 ≡ Φ2 ◦{i} {OK : gOK(a, i1, i

′), ERR : gERR(a, i1)}
For the conditional expression, the [IF] rule is applied:
{OK : φOK4, ERR : φERR4} ≡ {OK : i′=i ∧ i′≤0, ERR : false} ∨ Φ3

For the method’s body, the [METH] rule is applied:
Q = {gOK(a, i, i′) ≡ φOK4, gERR(a, i) ≡ ∃i′·φERR4}

After simplifications, Q reduces to two independent con-
straint abstractions, one for the OK outcome, the other for
the ERR outcome:
gOK(a, i, i′) ≡ (i≤0 ∧ i′=i) ∨ (i>0∧0≤i<a.len∧

∃i1· i1=i−1 ∧ gOK(a, i1, i
′))

gERR(a, i) ≡ ((i>0 ∧ i≥a.len) ∨
0<i<a.len ∧ ∃i1· (i1=i−1 ∧ gERR(a, i1)))

2.2 Fixed-Point Analysis
Our approach to analyzing recursive methods is to build

two constraint abstractions for OK and ERR outcomes. Once
built, we can apply traditional fixed point analysis [4] to
derive a closed-form formula for each recursive constraint
abstraction. The constraint abstractions can be interpreted

over various abstract domains. We will fix the abstract do-
main to the disjunctive completion of the polyhedron ab-
stract domain [20, 16]. This abstract domain is essentially
based on the polyhedron abstract domain [4], but is more
fine-grained by allowing disjunctions of linear inequalities to
be captured.

We briefly review the Kleene’s fixed point iteration ap-
plied to the disjunctive polyhedron abstract domain. This
domain is denoted by (P,v), where unions of polyhedra are
partially ordered by set inclusion. We write ⊥ for the least
element (in P, the empty polyhedron or its representation,
the formula false), and > for the greatest element (in P, the
entire n-dimensional space or its representation, the formula
true). The join operation in the disjunctive polyhedron do-
main is the selective polyhedral hull [16]. A function f that
is a self-map of a complete lattice is monotone if xvy implies
f(x)vf(y). In particular, the constraint abstraction func-
tions are monotone self-maps of the disjunctive polyhedron
domain. This can be shown trivially as all the operators
used to construct the constraint abstractions (in Fig. 3) are
monotone.

The least fixed point of a monotone function f can be ob-
tained by computing the ascending chain f0 = ⊥, fn+1 =
f(fn), with n≥0. If the chain becomes stationary, i.e., if
fm = fm+1 for some m, then fm is the least fixed point
of f . In the case of a lattice infinite in height (as the
lattice of polyhedra), an ascending chain may be infinite,
and a widening operator must be used to ensure conver-
gence. The widening ∇ is a binary operator to ensure that
the iteration sequence f0 = ⊥, fk+1 = f(fk) followed by
fn+1 = fn∇f(fn), with n > k, converges. In this case, the
limit of the sequence is known as a post fixed point of f . A
post fixed point is a sound approximation of the least fixed
point, and the criterion to verify that x is a post fixed point
for f is that f(x) v x.

Example: We apply least fixed point analysis to the con-
straint gOK obtained previously. The fixed point iteration
starts with the least element of the abstract domain repre-
sented by gOK0(a, i, i

′)≡false. After few iterations, we can

obtain a post fixed point gOK4(a, i, i
′) as follows:

gOK1(a, i, i
′) ≡(i≤0 ∧ i′=i) ∨ (i>0∧0≤i<a.len

∧∃i1· i1=i−1 ∧ gOK0(a, i1, i
′))≡ i≤0 ∧ i′=i

gOK2(a, i, i
′) ≡ (i≤0∧i′=i) ∨ (i=1∧i′=0∧2≤a.len)

gOK3(a, i, i
′) ≡ (i≤0∧i′=i) ∨ (1≤i≤a.len−1∧i≤2∧i′=0)

gOK4(a, i, i
′) ≡W (i≤0∧i′=i) ∨ (1≤i≤a.len−1∧i′=0)

Note that ≡W denotes a widening step [4], where the con-
straint i≤2 is dropped to ensure convergence of analysis.
By a similar analysis, we derive the following closed-form
formula: gERR(a, i) ≡ i>0 ∧ i≥a.len. The conditions cor-
responding to the two over-approximations ∃i′ · gOK(a, i, i′)
and gERR(a, i) do not overlap and thus we have a precise
result (either never-bug or must-bug):

NEVER BUG = i≤0 ∨ 1≤i≤a.len− 1

MUST BUG = i>0 ∧ i≥a.len
MAY BUG = false

We use the same fixed-point technique to analyze imper-
ative loops. This is achieved by transforming loops to tail-
recursive methods that use pass-by-reference parameters for
variables that are updated in the loop.

3. NON-TERMINATION AS BUGS
Non-termination can be considered another source of bugs

that is difficult to detect, since static analyses are typically
formalised for safety property rather than liveness property.
Nevertheless, our computation of both OK and ERR outcomes
has the side-effect of being able to detect a sub-class of non-
termination bugs. These non-termination bugs are due to
recursive methods and may be discovered by fixed point
analysis: with both OK and ERR outcomes exhaustively cov-
ered, any state left unreachable after analysis would have to
belong to the non-termination outcome.

For example, consider a recursive method whose summary
has been inferred to be {OK : φ1, ERR : φ2}. As these two
outcomes cover all executions that either succeed or fail,
whatever is left in the complement ¬(∃R·φ1 ∨ φ2) can only
be executions leading to non-terminating loop, where R de-
notes the set of output variables including res from φ1. This
is on the assumption that all errors have been modelled
and captured under the ERR outcome. For a precise clas-
sification of this class of non-termination bugs, we can use
{OK : φ1, ERR : φ2, ERR.fn.LOOP :¬(∃R·φ1 ∨ φ2)}. In this case,
fn denotes the name of the recursive method that is causing
the non-termination bug.

To illustrate how non-termination bugs can be captured,
consider the following recursive method:

int foo5(int i) { if i=10 then 1 else 2 + foo5(i+1) }
From fixed point analysis, we can obtain: {OK : i≤10 ∧
res=2(10−i)+1}}. Since the ERR condition is false, we can
determine ¬(∃res ·i≤10∧res=2(10−i)+1) which simplifies
to (i>10) that is clearly a non-termination must-bug. Our
summary can now be modified to the following :
{OK : i≤10 ∧ res=2(10−i)+1, ERR.foo5.LOOP : i>10}}
Once a non-termination bug has been detected for a given

recursive method, it can be treated like any other bug where
it could be propagated, downgraded to a may bug or proven
safe, depending on the context of its callers. Lastly, we cau-
tion that we can only catch a subset of the non-termination
bugs and cannot guarantee that all non-termination bugs
are captured.

Benchmark Static BLAST Dualyzer
Programs checks Result (secs) Result (secs)

binary search 2 * 0.06
√

3.16
bubble sort 12 * 0.10

√
0.82

init array 2
√

1.15
√

0.26
merge sort 24 * 0.12

√
4.63

queens 8
√

3.45
√

1.47
quick sort 20

√
28.82

√
1.50

sentinel 4 * 1.31 * 0.12
FFT 62 * 0.57

√
13.50

LU 82
√

7.26
√

14.34
SOR 32

√
2.14

√
3.50

Linpack 166 *(exc) 408.1
√

38.91

Figure 4: Analysis of array-based programs without
bugs. A tick

√
indicates the tool verifies a program,

while * is used when the tool reports a false bug.

4. EXPERIMENTAL RESULTS
We have implemented the proposed inference mechanisms

in a tool named Dualyzer (from Dual analyzer). The im-
plementation uses the CIL infrastructure [13] and performs
a further translation to our smaller CoreC language (e.g.
loops and other intraprocedural control-flow are translated
away). The prototype system was built using the Haskell
language and the Glasgow Haskell compiler. We used the
Omega library [18] to solve constraints in the Presburger
arithmetic domain. Our test platform was a Pentium 3.0
GHz system with 2GBytes main memory, running Fedora 4.

The first objective of Dualyzer is to prove the absence
of bugs, whenever possible. For this purpose, we tested our
system on a set of small programs (up to 1 KLOC) with
challenging recursion and intricate numerical computations.
This set of programs, taken from [17], includes Fast Fourier
Transform, LU decomposition, Successive Over-Relaxation
(from SciMark suite [14]) and Linpack [5]. Fig. 4 summa-
rizes the results obtained for each program. To quantify the
analysis complexity of the benchmark programs, we counted
the total number of static array accesses in the original pro-
grams (column 2). An array access operation is captured
using a primitive method with an OK outcome (when the in-
dex is within the bounds of the array) and an ERR outcome
(when the index is out-of-bounds).

We used the set of programs shown in Fig. 4 to make
a comparison with the Blast software verification system
[10].1 With a similar goal to Dualyzer, the Blast sys-
tem aims at statically proving safety or finding true bugs
otherwise. Compared to our prototype, Blast performed
as well in proving safety for init-array, queens, quicksort,
LU and SOR. However, Blast was not able to prove the
safety of binary-search, merge-sort and FFT for which it
reported (false) bugs due to division being treated as an un-
interpreted function. Blast also reported a false bug for
bubble sort; for Linpack the analysis ended prematurely
with an exception (raised in the Simplify prover). Though
an intended goal of Blast is to report true bugs where pos-
sible, the representation of program states by symbolic con-

1We tested the 2.4 version of Blast, available from
http://mtc.epfl.ch/software-tools/blast/. The running
times reported for Blast correspond to several runs of ab-
straction refinement as we invoked Blast with the default
set of arguments.

straints ultimately leads to some approximation (for e.g. via
uninterpreted functions) that could lead unwittingly to false
alarms. This scenario does not occur for Dualyzer since the
dual analysis helps distinguish program safety from must-
bug, but can revert to may-bug reporting whenever there is
uncertainty or loss of precision. Dualyzer decides that a
program is verified when both must-bug and may-bug con-
ditions of the “main” method are false. The binary-search
example can indeed be proven correct using an abstract do-
main based on linear arithmetic. Dualyzer handles di-
vision by a constant, for e.g. mid = a/2 is modelled by
2∗mid<=a<=2∗mid+1. The sentinel example illustrates a
pattern that cannot be verified by our tool, as it makes use
of a sentinel/guard against reading past the end of the array.

In our previous work [17], we proposed a system for prov-
ing program safety based on a combination of forward and
backward analysis. Comparatively, Dualyzer was simpler
to design and implement (being based only on forward anal-
ysis). It is also considerably faster since it avoids the expen-
sive backward analysis. Another difference is the capability
of Dualyzer to confirm must-bugs which is illustrated by
the next set of experiments.

4.1 Examples from the SYNERGY Paper
The Synergy system [8] complements the capabilities of

predicate abstraction refinement (as in Blast) with Dart-
style testing [7] to prove safety and also find true bugs. To
test the Dualyzer capability, we used the set of all illustra-
tive programs that were highlighted as figures in [8]. Our
analysis took less than a second on each of these programs.
Compared to Synergy, we performed equally well in find-
ing real bugs in ex fig1, ex fig4, ex fig7, and also prov-
ing safety for ex fig3, ex fig6, ex fig8.

While able to prove safety and also find bugs, the Syn-
ergy system may fail to terminate due to abstraction refine-
ment. The last example from [8] illustrates a case when Syn-
ergy fails to terminate as it generates longer and longer test
sequences as (y<0), (y+x<0), (y+2x<0), and so on. The
code ex fig9 is reproduced below:

void ex fig9() { int x, y; x := 0; y := 0;
`5 : while (y≥0) { y := y + x; }
`6 : error; }

Using disjunctive fixed point analysis (with m = 2 number
of allowable disjuncts per formula), we can capture non-
termination in the outcome of the while loop and prove
that the error at `6 is unreachable:

loop(m=2) = {OK : (x′=x ∧ y′=y ∧ y′<0)
∨ (x′=x ∧ x≤y′≤x+y ∧ y′<0), ERR.LOOP : (x≥0 ∧ y≥0)}

ex fig9(m=2) = {OK : false, ERR.`5.LOOP : true, ERR.`6 : false}

4.2 Finding Bugs in the Verisec Benchmark
We have also analyzed several buffer overflow vulnera-

bilities from the CVE database as grouped in the Verisec
benchmark suite [11]. This suite contains testcases with the
actual vulnerabilities as well as corrected versions of these
testcases. We were surprised that Dualyzer found two
must-bugs in the corrected versions of the testcases, bugs
that were later confirmed and patched by the authors of
the Verisec benchmark. The first must-bug was detected in
a testcase extracted from the Samba implementation of the
SMB networking protocol (CVE-2007-0453). It corresponds

to a buffer access with an off-by-one error in the r strncpy

function. The second testcase is from the SpamAssassin

open-source email filter and the must-bug corresponds to a
non-termination bug. An excerpt from the corresponding C
code is shown below:

#define BASE SZ 2 // from header file
#define BUFSZ BASE SZ+2

void message write (char ∗ msg, int len) {
char buffer[BUFSZ]; // from loop ok.c file
int limit = BUFSZ− 4;
for (int i=0; i<len;){
for (int j=0; i<len && j<limit;){

...
buffer[j] = msg[i];
j++;
...

}}}
Since both the local variables limit and j are initialized
to 0 and the value of j is increased through the inner-loop,
the loop condition (j<limit) cannot be satisfied causing a
non-terminating execution.

5. RELATED WORK
Most program analyses working towards the goal of bug-

free programs can be divided broadly depending on their
overall goal: proving safety of programs, finding bugs or
approaches trying to prove safety and, at the same time,
find bugs where possible.
Proving safety: The first camp is concerned with prov-
ing safety of programs. It needs to find a way to abstract all
the possible concrete executions into a statically computable
form. The abstraction may represent an over-approximation
of the state at some program point computed using a forward
traversal of the program as in the seminal paper of Cousot
and Halbwachs [4]. Alternatively, the statically computed
abstraction may represent an under-approximation of the
state leading to a program error derived using a backward
traversal of the program [21]. Various trade-offs between
precision of the underlying abstraction and efficiency of the
safety analysis have been explored: the interval domain, the
polyhedron domain and the octagon domain are just a few
of the proposed abstractions. In fact, safety analyzers that
scale to large critical programs like ASTRÉE [2] use elabo-
rate combinations of abstract domains to achieve maximum
efficiency. As a summary for all these analyses, when they
cannot prove safety, alarms that may include false positives
will be signaled. The user of the analyzer is left with the job
of manually distinguishing false alarms from real bugs.
Finding bugs: The second camp is primarily concerned
with finding bugs in software, so that faulty programs could
be quickly remedied. Traditionally, program testing has
been used for detecting incorrect programs. More recently,
systematic testing or concrete state space exploration has
been implemented in model checkers like VeriSoft [6] or
DART [7]. It attempts to search through all the feasible
paths of the program, uncovering real bugs (with no false
positives). Systematic testing cannot achieve full path cov-
erage, so its results represent an under-approximation of all
the concrete executions of the program. As search may not
terminate in a reasonable amount of time, an upper limit is
set in practice on the number of paths that are covered.

Proving safety + Finding bugs: Synergistic approaches
for both proving safety and finding bugs usually rely on
a combination of over and under approximation. In con-
trast, our proposal uses only forward over-approximations.
Model checking based on abstraction refinement is often re-
ferred as CEGAR (counter-example guided automated re-
finement) and tools like Slam [1] or Blast [10] are based
on this paradigm. In a first step, Slam and Blast perform
a forward-directed over-approximating search for possible
bugs. If no bugs are found, then the safety of the program
has been proven. Otherwise, a counter-example trace is ana-
lyzed backward via symbolic reasoning to derive its weakest
liberal precondition. If the counter-example is shown to be
feasible, then a true bug is reported. If the counter-example
is shown to be infeasible, the abstraction is refined and the
search process is iterated.

In order to investigate the origin of the alarms raised by
the static analyzer ASTRÉE [2], Rival used iterated forward-
backward over-approximating analysis to prove safety of as-
sertions [19]. Despite elaborate combination of abstractions,
some alarms cannot be resolved by over-approximation alone.
Understanding if an alarm is a true bug is facilitated by
under-approximating techniques such as input selection or
restriction to an execution pattern. The input selection pro-
cess is not currently automated, but made easier by semantic
slicing techniques. The process of restriction to an execu-
tion pattern and guiding the analysis towards true bugs is
in general incomplete and may not converge. However, [19]
reports that in practice all considered alarms from their set
of benchmarks could be classified by their techniques. The
classification of alarms is similar to ours in that an alarm in-
dicates either a true bug or a non-terminating program. As
an alternative to fixed-point computation, another approach
to proving program safety and finding bugs uses constraint
solving and exploits recent advances in SAT/SMT solving
[9]. The novelty of this work is their use of an expressive
domain containing disjunctions and conjunctions of linear
inequalities. Currently their methodology is limited to small
programs, since the constraint system that arises from dis-
junctive template invariants is quite large.

In a different context, [12] develops a dataflow analysis
which over-approximates both the success and the failure
sets of a logic program. There is no counterpart to the must
results computed by our approach : the must-bug and never-
bug conditions.

6. CONCLUSION
We advocate for a dual static analyser that is aimed at

proving safety or discovering true bugs. To achieve both
goals, a key innovation is the simultaneous capture of error
outcomes and successful outcomes. A novelty of our formu-
lation is the use of dual over-approximating analysis. This
approach has allowed us to develop a single machinery for
distinguishing must from may bugs, or prove safety in their
absence. We have proven the correctness of our approach
but for lack of space we omit the proof from the current
paper. The main results confirm that a program never fails
from an input of never-bug condition, never succeeds from
an input of must-bug condition, and diverges from an input
of loop condition.

Acknowledgements: We are grateful to Florin Craciun,
Cristina David, David Lo and Alex Stefan for many useful
comments on a previous version of this paper. This work was

supported by A*STAR-funded project R-252-000-233-305.

7. REFERENCES
[1] T. Ball and S.K. Rajamani. Automatically validating

temporal safety properties of interfaces. In SPIN
Workshop, pages 103–122, 2001.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In
PLDI, 2003.

[3] P. Cousot and R. Cousot. Modular static program
analysis. In CC, 2002.

[4] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
ACM POPL, pages 84–96, 1978.

[5] J.J. Dongarra, P. Luszczek, and A. Petitet. The
LINPACK benchmark: Past, present, and future.
Concurrency and Computation: Practice and
Experience, 15:1–18, 2003.

[6] P. Godefroid. Model checking for programming
languages using VeriSoft. In ACM POPL, 1997.

[7] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In PLDI, 2005.

[8] B.S. Gulavani, T.A. Henzinger, Y. Kannan, A.V. Nori,
and S.K. Rajamani. SYNERGY: A new algorithm for
property checking. In ACM FSE, 2006.

[9] S. Gulwani, S. Srivastava, and R. Venkatesan.
Program analysis as constraint solving. In ACM
PLDI, pages 281–292, 2008.

[10] T.A. Henzinger, R. Jhala, R. Majumdar, and
G. Sutre. Lazy abstraction. In ACM POPL, 2002.

[11] K. Ku, T. E. Hart, M. Chechik, and D. Lie. A buffer
overflow benchmark for software model checkers. In
ASE, 2007.

[12] K. Marriott and H. Søndergaard. Bottom-up dataflow
analysis of normal logic programs. J. Log. Program.,
13(2&3), 1992.

[13] G.C. Necula, S. McPeak, S.P. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and
transformation of C programs. In CC, 2002.

[14] National Institute of Standards and Technology. Java
SciMark benchmark for scientific computing.
http://math.nist.gov/scimark2/.

[15] C.S. Pasareanu, R. Pelánek, and W. Visser. Concrete
model checking with abstract matching and
refinement. In CAV, pages 52–66, 2005.

[16] C. Popeea and W.N. Chin. Inferring disjunctive
postconditions. In ASIAN CS Conference, 2006.

[17] C. Popeea, D.N. Xu, and W.N. Chin. A practical and
precise inference and specializer for array bound
checks elimination. In ACM SIGPLAN PEPM, 2008.

[18] W. Pugh. The Omega Test: A fast practical integer
programming algorithm for dependence analysis.
Communications of the ACM, 8:102–114, 1992.

[19] X. Rival. Understanding the origin of alarms in

ASTRÉE. In SAS, 2005.

[20] S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and
A. Gupta. Static analysis in disjunctive numerical
domains. In SAS, 2006.

[21] N. Suzuki and K. Ishihata. Implementation of an array
bound checker. In ACM POPL, pages 132–143, 1977.

