
Dual Analysis for Proving Safety and Finding Bugs

Corneliu Popeeaa, Wei-Ngan Chinb

aMax Planck Institute for Software Systems (MPI-SWS)
bNational University of Singapore

Abstract

Program bugs remain a major challenge for software developers and various tools have
been proposed to help with their localization and elimination. Most present-day tools
are based either on over-approximating techniques that can prove safety but may report
false positives, or on under-approximating techniques that can find real bugs but with
possible false negatives. In this paper, we propose a dual static analysis that is based
only on over-approximation. Its main novelty is to concurrently derive conditions that
lead to either success or failure outcomes and thus we provide a comprehensive solution
for both proving safety and finding real program bugs. We have proven the soundness
of our approach and have implemented a prototype system that is validated by a set of
experiments.

1. Introduction

Program errors are notoriously difficult to find and eliminate. Traditionally, program
testing and model checking [1, 2] have been applied to detect the presence of real bugs.
However, one shortcoming of the testing process is that it is unable to prove the absence
of bugs, compromising on program safety. In contrast, static analysis uses abstraction on
program states and can be used to prove program safety [3, 4]. It achieves this by showing
that bad error states are not reachable via an exhaustive interpretation in the abstract
domain. Due to approximation, static analysis may report false positives that are bugs
that do not exist in practice. High incidence of false positives can make static analysis
tools impractical to use for finding and eliminating bugs. As reported in the ASTRÉE
project [5, 6], manual inspection of alarms (possible bugs) can be a very time-consuming
process and may take several days even for simple alarms.

Researchers have proposed to combine different techniques in order to automatically
(in)validate alarms raised from static analysis. Software model checkers like Slam [7] or
BLAST [8] are based on the counter-example guided abstraction refinement paradigm
(CEGAR) [9]. One component of these tools computes state abstraction and is aimed
at proving program safety. If a safety proof cannot be found, then a second component
analyzes symbolically a counterexample generated by the state abstraction and, if suc-
cessful, may be able to confirm the presence of a real bug. More recently, there have been
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some proposals that advocate for over-approximation techniques (based on static analysis)
to be synergistically combined with under-approximation techniques (based on concrete
execution or program testing) [10, 11]. One main goal of this combination is to search
simultaneously for bugs and proofs, and use the information obtained from one search in
the other search [10]. While such a proposal can exploit the complementary strengths
of its constituent techniques, it is also more complex to construct due to the need to
combine different techniques. It is often useful to explore what can be achieved within a
single methodology as an alternative to synergistic combinations of different techniques.

In this paper, we shall propose a dual static analysis that is able to compute safety
proofs and also find bugs using a single methodology. Our dual static analysis is different
from past approaches as both its components are based on over-approximation. Our
approach is modular as it computes for each method trigger conditions for each bug
expressed symbolically in terms of the method’s parameters. Specifically, we compute
three conditions for bugs, called must-bug, may-bug and never-bug, respectively. To
illustrate the three different kinds of bug conditions, consider the following example.

int foo(int x, int y) {

if (x <= y) then { if (x > 10) then l1: error else 1 }

else { if complexTest(x,y) then l2: error }

else { if x >= y then 2 else l3: error }

}

}

The bugs in our programs shall be flagged explicitly using a special error construct. We
can translate the more conventional (assert c) command for bug detection as follows
(if c then () else error). The method complexTest(x, y) denotes a predicate whose
outcome cannot be precisely modelled by the static analysis. For example modelling the
predicate x3 + y3 ≥ 0 is beyond the capability of linear arithmetic solvers. According to
our analysis, the error at location l1 is a must-bug under the condition (x ≤ y ∧ x > 10)
that must lead to the error. In contrast, the error at location l2 is a may-bug as its
occurrence is dependent on the second conditional with a statically unknown test. Our
analysis determines in this case a trigger condition that may lead to this error, namely
(x > y). Lastly, the error at location l3 is a never-bug as our analysis determines a
trigger condition (x > y ∧ x < y) that can never happen, namely false. In general, our
classification of bugs is dependent on the precision of the abstract domain used by our
dual static analysis. A more precise abstract domain can classify more of the may-bugs
as either must-bugs or never-bugs.

To describe how our approach computes bug conditions, we start from some basic
observations on program execution. A machine configuration is represented by a tuple
〈s, e〉 where s denotes the current stack/heap and e denotes the expression to evaluate.
The stack s is a mapping from each variable in dom(s) to its corresponding value. A
machine configuration 〈s, e〉 is said to be closed if all free variables in e are present in s, i.e.,
closed(〈s, e〉) , vars(e) ⊆ dom(s). This definition assumes the absence of global variables.
Each reduction step of a closed configuration is formalised using a small-step relation
of the form: 〈s, e〉↪→〈s1, e1〉. The transitive reflexive closure of the reduction relation
is denoted by ↪→∗. Given a closed configuration 〈s, e〉, we expect one of three possible
outcomes for execution: (i) ok(〈s, e〉) to denote a successful execution 〈s, e〉↪→∗〈s1, k〉 that
results in a final value k, (ii) err(〈s, e〉) to denote a failed execution 〈s, e〉↪→∗〈s1,⊥〉 that
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results in an error denoted by ⊥, and (iii) loop(〈s, e〉) for an execution that does not
terminate, denoted by 〈s, e〉6↪→∗.

Our strategy is to compute two input conditions OKmn and ERRmn for each method
mn, which over-approximate all executions that may lead to (i) ok outcomes, and (ii) err
outcomes, respectively. In the definitions of these two input conditions, we shall use a
relation between program states and symbolic formulae. The consistency relation s |= φ
holds when vars(φ) ⊆ dom(s) and the values of the variables from the stack/heap s satisfy
the formula φ, i.e., substituting each free variable v of φ with s(v) gives s(φ) ≡ true.

Definition 1. (All Successful Outcomes) A condition OKmn on the inputs V of a
method mn with body e leads to all possible ok outcomes if ∀s.((vars(e)⊆V⊆dom(s)) ∧
ok(〈s, e〉)→ (s |= OKmn)).

In other words, every successful execution for a method mn starts from an initial state
that is consistent with the formula OKmn. Besides inputs that lead to ok outcomes, the
condition OKmn may also include some inputs that lead to err and loop outcomes.

Definition 2. (All Failure Outcomes) A condition ERRmn on the inputs V of a
method mn with body e leads to all possible err outcomes if ∀s.((vars(e)⊆V⊆dom(s)) ∧
err(〈s, e〉)→ (s |= ERRmn)).

Every failed execution for a method mn starts from an initial state that is consistent
with the formula ERRmn. Besides inputs that lead to err outcomes, the condition ERRmn
may also include some inputs that lead to ok and loop outcomes.

For example, consider the earlier foo example with two input parameters, x and y.
Using our static analysis, we compute two conditions that cover all the ok outcomes and
all the err outcomes as follows.

OKfoo ≡ (x ≤ y ∧ x ≤ 10) ∨ (x > y)
ERRfoo ≡ (x ≤ y ∧ x > 10) ∨ (x > y)

Based on the two over-approximation results OK and ERR, we determine the conditions
for never-bug, must-bug and may-bug for each given method according to the following
definitions.

Definition 3. (Never-Bug Condition) A condition on the inputs V of a method
mn with body e is a never-bug condition if each of its inputs leads to either the ok or
loop outcomes, but never the err outcome. This condition, denoted by NEVER BUGmn,
can be computed using OKmn ∧ ¬ERRmn where ¬ERRmn ensures that none of the err

outcomes are possible. Formally: ∀s.((vars(e)⊆V⊆dom(s)) ∧ (s |= NEVER BUGmn) →
(ok(〈s, e〉) ∨ loop(〈s, e〉))).

Definition 4. (Must-Bug Condition) A condition on the inputs V of a method mn
with body e is a must-bug condition if each of its inputs leads to either the err or loop

outcomes, but never the ok outcome. This condition, denoted by MUST BUGmn, can be
computed using ERRmn ∧ ¬OKmn where ¬OKmn ensures that none of the ok outcomes
are possible. Formally: ∀s.((vars(e)⊆V⊆dom(s)) ∧ (s |= MUST BUGmn) → (err(〈s, e〉) ∨
loop(〈s, e〉))).
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Definition 5. (May-Bug Condition) A condition on the inputs V of a method mn is
a may-bug condition if each of its inputs leads to either ok, err or loop outcomes. This
condition, denoted by MAY BUGmn, arises from imprecision of the analysis and can be
computed using OKmn ∧ ERRmn which covers an overlap where all three outcomes are
possible.

A graphical illustration of the input conditions computed by our analysis is shown in
Figure 1. The two circles denote program inputs consistent with the conditions OK and ERR,
while the three areas being partitioned by the two circles are the conditions for never-bug,

OK

never
bug

ERR

must
bug

may
bug

Figure 1: Classifying bugs.

may-bug and must-bug. At one extreme, all possible inputs
could be classified under the may-bug category (may-
bugs represent false positives in the terminology of static
analyzers). Naturally it is preferable to minimise the
overlap between the OK and ERR outcomes by using a more
precise static analysis. At the other extreme, the dual
analysis is considered precise when OK∧ ERR ≡ false. This
scenario is desirable as it provides disjoint conditions for
proving safety and finding bugs.

Due to our use of over-approximation, our analysis can only guarantee that a bug will
occur, assuming the absence of non-termination outcome. This situation is related to
partial correctness proofs, since we may sometimes report a must-bug when the outcome is
actually a loop. Nevertheless, we will show how to identify precisely some non-termination
outcomes in Section 4.2. Intuitively, even though loop outcomes may appear in each area
partitioned by the two circles, the condition ¬(OK∨ERR) is expected to capture exclusively
loop outcomes.

Going back to the foo example, we may now compute this method’s conditions for
never-bug, must-bug and may-bug as follows.

NEVER BUGfoo , OKfoo ∧ ¬ERRfoo
≡ ((x ≤ y ∧ x ≤ 10) ∨ x > y) ∧ ¬((x ≤ y ∧ x > 10) ∨ x > y)
≡ x ≤ y ∧ x ≤ 10

MUST BUGfoo , ¬OKfoo ∧ ERRfoo
≡ ¬((x ≤ y ∧ x ≤ 10) ∨ x > y) ∧ ((x ≤ y ∧ x > 10) ∨ x > y)
≡ x ≤ y ∧ x > 10

MAY BUGfoo , OKfoo ∧ ERRfoo
≡ ((x ≤ y ∧ x ≤ 10) ∨ x > y) ∧ ((x ≤ y ∧ x > 10) ∨ x > y)
≡ x > y

Thus, to analyse for must, may and never-bugs, we only need to determine the
condition for possible successful executions OK and the condition for possible program
errors ERR.

To summarize, our paper makes the following contributions.

• We propose a new dual static analysis to support either bug finding or a proof of
the absence of bugs, where possible. Our work captures never, must and may bugs
under a single static analysis, rather than using a host of special techniques. We
achieve this using only over-approximating analysis by tracking concurrently both
success and failure outcomes. To the best of our knowledge, this idea has never
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been used in mainstream work on static analyses for simultaneously proving safety
and finding bugs.

• We propose a technique to classify a sub-class of definite non-terminations as bugs.
Our technique catches this class of non-termination bugs by explicitly identifying
unreachable states during fixed point analysis.

• We prove the correctness of our technique and conduct a set of experiments to
validate the feasibility of our proposal.

The current paper is a journal version of our previous work [12]. We have made
formal the presentation of the analysis and operators on sets of outcomes (Section 3), and
introduced conditions for individual bug classification (Section 4.1). We have also proven
the correctness of our approach (Section 5), and provided details of dynamic semantics
and proofs (in the Appendix). Lastly, we have provided a more extensive discussion on
related work (Section 7).

2. A Core Language with Method Summaries

In this section, we introduce a simple sequential imperative language used to formalize
our dual analysis. The syntax of this language is shown in Figure 2. This language retains
only few constructs from the better-known C language and its purpose is to make the
dual static analysis easier to formulate. A program P written in this language consists of
a set of methods, either user-defined or primitive methods. All methods have a return
type and a list of parameters. Each parameter has an optional ref keyword, a type and
a name. The ref keyword indicates the passing mechanism of the parameter: if ref
appears in the parameter declaration, then the parameter is passed-by-reference (any
change in its value is visible to the caller); if the ref keyword is missing, the parameter is
passed-by-value and any change to its value in the callee is not reflected to the caller.

Types represented by t can be either basic types or array type. User-defined method
declarations include a method body represented by an expression e. The language is
expression-oriented and uses a normalised form for expressions: only variables are allowed
as arguments to a method call or a conditional test. The normalized form is obtained with
the help of a simple pre-processor and, for brevity, we will use examples in a form that is
not always normalized. Expression forms include local variable declaration, assignment,
error construct, sequence of expressions, conditional and method call. This core language
does not directly support global variables. Global variables can be translated to our core
language by making each such global variable appear explicitly as a pass-by-reference
parameter. A preprocessor transforms loops into tail-recursive methods and inserts unique
labels for each method call and error location.

In our language, both primitive and user-defined method definitions include a method
summary Φ. For a user-defined method, the summary is initially not computed and Φ
is only a placeholder of the form {OK : mnOK(X), ERR : mnERR(Y )}. This placeholder is
derived syntactically by a preprocessor, with X and Y as two sets of logical variables: X
includes both inputs and outputs of the method, Y includes only inputs of the method.
The static analysis shall compute and replace this placeholder with a proper summary.
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P ::= prim∗ meth∗ (program)
prim ::= t mn (([ref] t v)∗) where Φ (primitive method)
meth ::= t mn (([ref] t v)∗) where Φ { e } (user-defined method)
t ::= boolean | int | void | t[] (type)
e ::= v | k | t v; e | v:=e | ` : error | e1; e2 (expression)

| if v then e1 else e2 | ` : mn(v∗)
k ::= true | false | kint | () (constant)
Φ ::= {OK : φ1, ERR : φ2} (method summary)
φ ::= i | φ1 ∧ φ2 | φ1 ∨ φ2 | ∃v.φ | ¬φ | q(v∗) (formula)
i ::= kintv1+ · · ·+kintvn ≤ kint (linear inequality)

Q ::= {(q(v∗) rec
= φ)∗} (set of constraint abstractions)

Figure 2: A core imperative language and a language of constraint abstractions.

In addition to user-defined methods, our language includes primitive method dec-
larations that lack a method body, but are instead given a symbolic description (sum-
mary) Φ. Primitive methods can be used to encode various operators for integer values
(plus, minus, multiply, divide), for boolean values (or, and, not) or calls to (external)
library methods for which the analysis does not have access to the code that implements
the library. Potentially unsafe operators that handle array values are encoded as calls
to primitive methods. For example, an array access a[i] is viewed as sub(a, i), while an
array update a[i]:=v is converted to the primitive call update(a, i, v). The array update
operation succeeds only if the index i is within the bounds of a non-null array. The
corresponding primitive method declaration is represented as follows.

void update(int[] a, int i, int v) where
{OK : a 6= null ∧ 0 ≤ i < a.len, ERR : a = null ∨ i < 0 ∨ i ≥ a.len}

In this declaration, the ERR outcome captures the null dereferencing, low bound and
high bound errors. In general, we expect the outcomes of a primitive to represent
non-overlapping conditions that completely characterize the inputs of the primitive.

The syntax of a formula φ is based on the first order theory of linear arithmetic with
support for recursive constraint abstractions. The choice of the domain is influenced by the
numerical properties that we want to capture. Other theories may also be used, provided
they are amenable to the fixed-point analysis described in Section 3.2. While not explicit
in the syntax of φ, an equality constraint (k1v1+ · · ·+knvn = k) can be represented as a
conjunction of two inequality constraints: (k1v1+ · · ·+knvn ≤ k ∧ k1v1+ · · ·+knvn ≥ k).
A strict inequality (k1v1+ · · ·+knvn < k) can also be represented using an axiom from
integer arithmetic: (k1v1+ · · ·+knvn+1 ≤ k). We use the syntactic shorthands true ,
i ∨ ¬i and false , i ∧ ¬i for some predicate i. The existential quantifier ∃v.φ is used for
eliminating intermediate variables.

For simplifying (via ≡ operator) and checking satisfiability/validity of the non-recursive
integer constraints, we use a complete decision procedure for the theory of linear arith-
metic implemented in the Omega Test [13]. The Omega Test is an extension of the
Fourier-Motzkin variable elimination algorithm to integer arithmetic. Despite its doubly-

6



exponential worst case complexity, the Omega Test has been shown to be efficient in
practice [14, 15].

Using an integer domain, null may be modelled by the value 0, while nonnull may
be modelled by a value ≥1. Due to the use of the integer domain to encode array
lengths (a.len > 0), boolean values (false ≡ 0, true ≡ 1) or nullness (null ≡ 0, nonnull ≡
≥1), we ensure that derived formulae always satisfy a type-invariant. For example,
using the type invariant of a boolean variable b, we have the following equivalence:
¬(b=0 ∨ b=1) ≡ false. We make use of the negation ¬ operator that can be provided
precisely for Presburger arithmetic. Nevertheless, our analysis can soundly accept an
under-approximating negation operator for an abstract domain where a precise negation
operator cannot be provided.

To motivate the presence of recursive constraints in the language of formulae φ, we
give a high-level view of our static analysis. The input program is first analysed to obtain
a call graph. Each node from the call graph represents a user-defined method, while each
directed edge links a caller method to the corresponding callee method. Consequently, a
group of mutually-recursive methods corresponds to a strongly connected component in
the graph. Our analysis is modular [16]: it traverses the call graph in reverse topological
order (bottom up) and each method (or group of methods) is analysed individually
assuming unknown initial values. Specific to our analysis, each method is passed to a
forward reasoning process (see Section 3.1) and an intermediate constraint representation
is derived in the form of a constraint abstraction [17]. If the method is non-recursive,
then the constraint abstraction is also non-recursive and a method summary can be
immediately derived. If the method is recursive, then the constraint abstraction is passed
on to a fixed-point approximation process parameterized by an abstract domain (see
Section 3.2). In the case of mutually-recursive methods, the fixed-point process is done
simultaneously for the corresponding constraint abstractions.

In the next section, we formalize the static analysis that computes method summaries
based on forward reasoning and fixed-point analysis.

3. Formalization

The aim of our analysis is to compute for each user-defined method an abstraction
for all the executions that may lead to success outcomes and a second abstraction for
all the executions that may lead to failure outcomes. Similar to primitive methods, we
label the former with OK, the latter with ERR and group them in a method summary
of the following form: Φmn = {OK : φ1, ERR : φ2}. The successful outcome φ1 includes
a postcondition that tracks the relation between inputs and outputs. A special logical
variable res is used to identify the result of a method (or expression). State updates are
modeled in a symbolic manner through transition formulae using two symbolic values
per program variable. Given a program variable v, the prime notation v′ denotes the
new value, while v itself denotes the old value of the program variable. Two transition
formulae may be composed using a composition operator ◦V with updating effects on
a set of variables V = {v1, . . . , vn}, as follows: φ1 ◦V φ2 , ∃ r1, . . . , rn.ρ1 φ1 ∧ ρ2 φ2

where r1, . . . , rn are fresh variables and ρ1 = [v′i 7→ri]ni=1 and ρ2 = [vi 7→ri]ni=1. With this
notation, a summary of the method foo introduced in Section 1 can be represented as
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[VAR]

Φ1 = (Φ ∧ res=v′)

` {Φ} v {Φ1}

[CONST]

Φ1 = (Φ ∧ res=k)

` {Φ} k {Φ1}

[BLK]

fresh x ρ = [v 7→x]
` {Φ ∧ default(t, x′)} ρe {Φ1}
` {Φ} t v; e {∃x′.Φ1}

[ASSIGN]

` {Φ} e {Φ1}
Φ2 = ∃res.(Φ1◦{v}v′=res)

` {Φ} v:=e {Φ2}

[ERROR]

Φ1 = {OK : false, ERR : true}
Φ2 = Φ ◦∅ Φ1

` {Φ} ` : error {Φ2}

[SEQ]

` {Φ} e1 {Φ1}
` {∃res.Φ1} e2 {Φ2}
` {Φ} e1; e2 {Φ2}

[IF]

` {Φ ∧ v′=1} e1 {Φ1}
` {Φ ∧ v′=0} e2 {Φ2}

` {Φ} if v then e1 else e2 {Φ1 ∨ Φ2}

[CALL]

t0 mn((ref ti wi)
m−1
i=1 , (ti wi)

n
i=m) where Φmn {...}

W={wi}m−1
i=1 distinct(ρW ) ρ = [wi 7→vi]ni=1 + [w′i 7→v′i]

m−1
i=1

` {Φ} ` : mn(v1, . . . , vn) {Φ ◦ρW ρΦmn}

Figure 3: Forward reasoning rules

follows.
Φfoo = {OK : (x ≤ y ∧ x ≤ 10 ∧ res = 1) ∨ (x > y ∧ res = 2),

ERR : (x ≤ y ∧ x > 10) ∨ (x > y)}

3.1. Forward Reasoning Rules

The first step towards computing method summaries uses forward reasoning to collect
from each method body a constraint abstraction. This process is built around a static
judgement of form, ` {Φ1} e {Φ2}, with roots in Hoare logic [18]. Given the OK outcome
from Φ1 (a transition from the beginning of the current method to the prestate before e’s
evaluation), the judgement derives Φ2. The first outcome from Φ2 is an OK transition from
the beginning of the current method to the poststate after e’s evaluation. The second
outcome is an ERR condition, in part from errors captured by Φ1 and also from errors
possible during e’s evaluation.

Figure 3 shows rules corresponding to each kind of expression from the core language.
These rules use logical operators with sets of outcomes as arguments: ∃V.Φ, Φ1 ∨ Φ1 and
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Φ1 ◦ Φ2. These logical operators are distributed to the components of Φ as follows.

∃V.{OK : φ1, ERR : φ2} , {OK : ∃V.φ1, ERR : ∃V.φ2}
{OK : φ1, ERR : φ2} ∨ {OK : φA, ERR : φB}

, {OK : φ1∨φA, ERR : φ2∨φB}
{OK : φ1, ERR : φ2} ◦V {OK : φA, ERR : φB}

, {OK : φ1◦V φA, ERR : φ2∨(φ1◦V φB)}

The rule that involves the composition operator ◦ is more complex. The ERR outcome
of the result (the condition φ2∨(φ1◦φB)) indicates either failure from the first argument
(the condition φ2), or from the success of the first argument followed by the failure of the
second argument (the condition φ1◦φB). The ◦ operator is not commutative as there is
an implied order in the execution of the two sets of outcomes. For brevity, a singleton set
can also be expressed as: φ , {OK : φ, ERR : false}. In that case, the operator Φ ∧ φ is a
shorthand for: Φ ◦∅ {OK : φ, ERR : false}.

For the [BLK] rule, constraints provide default values depending on the type of the
local variable being defined. According to the language semantics, a possible set of
defaults could be given as follows: default(int, v) , v=0, default(int[], v) , v=null and
default(boolean, v) , true. Note that true may be used, if there are no defaults. The
[ERROR] rule provides Φ1 which unconditionally leads to a failure outcome. The [IF] rule
encodes boolean values in the integer domain, as explained earlier, by using 0 for false,
and 1 for true. For the [CALL] rule, the substitution ρ maps the formal arguments to
the actual arguments from the method call. The premise distinct(ρW ) ensures that the
actual arguments passed by reference are distinct and then the resulting outcomes are
obtained by composing Φ with the summary of the callee ρΦmn.

The last rule in our reasoning process uses an inference judgement P⇒ P[meth′/meth]
to process each method declaration meth from the program P and updates the program
with the inference result meth′. The inference rule is formulated as follows.

meth = t0 mn((ref ti vi)
m−1
i=1 , (ti vi)

n
i=m) where Φmn{e}

Φmn={OK : mnOK(X), ERR : mnERR(Y )} X={v1, . . . , vn, res, v′1, . . . , v
′
m−1} Y={vi}ni=1

` {{OK : nochange(Y )}} e {{OK : φ1, ERR : φ2}}
V={v′m, . . . , v′n} R={res, v′1, . . . , v

′
n} Q={mnOK(X)

rec
= ∃V.φ1, mnERR(Y )

rec
= ∃R.φ2}

Φ′mn = fix(Q) meth′ = meth[Φ′mn/Φmn]

P⇒ P[meth′/meth]

The first premises of the inference rule state the expected placeholder Φmn = {OK :
mnOK(X), ERR : mnERR(Y )} for the summary not yet computed. X and Y are two sets
of logical variables such that X includes both inputs and outputs of the method, while Y
includes only inputs of the method. Next, the expression judgement is used to traverse
the method body e, using as initial condition nochange({v1, . . . , vn}) ,

∧n
i=1 vi=v

′
i. The

results of the expression judgement, φ1 and φ2, are used to construct a set of constraint
abstractions Q. The analysis invokes an iterative fixed-point analysis fix(Q) to compute
closed-form formulas for each of the constraint abstractions. This fixed-point analysis will
be described in more detail in Section 3.2. Lastly, the inference rule updates the program
P with meth′ that includes the newly computed summary.

Our reasoning rules resemble those from strongest postcondition/weakest precondition
calculi [19, 20] with two important distinctions. Firstly, we use a set of outcomes to
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compute simultaneously two over-approximations. Secondly, our integrated approach is
entirely forward. Discovering both true bugs and proving safety is made possible by this
combination.

Example. Let us illustrate the forward reasoning process using a simple example, a
method g that assigns the value 0 to those elements from the array a that are in the
range i to 1.

void g(int[] a, ref int i)
{ if (i≤0) then ()

else { update(a, i, 0); i:=i−1; g(a, i) } }

We use the forward rules to derive formulae at the intermediate points from the
method g. To improve readability, formulae are simplified and we omit tracking the
nullness of the array variable a. The analysis of the else branch starts with the condition
Φ0 = {OK : i′ = i ∧ i′ > 0, ERR : false}.

From the judgement ` {Φ0} update(a, i, 0) {Φ1}, the rule [CALL] derives:
Φ1 ≡ {OK : i′=i ∧ i′>0 ∧ i′<a.len, ERR : i>0 ∧ i≥a.len}

From the judgement ` {Φ1} i:=i−1 {Φ2}, the rule [ASSIGN] derives:
Φ2 ≡ {OK : i′=i−1 ∧ i>0 ∧ i<a.len, ERR : i>0 ∧ i≥a.len}

From the judgement ` {Φ2} g(a, i) {Φ3}, the rule [CALL] derives:
Φ3 ≡ Φ2 ◦{i} {OK : gOK(a, i1, i

′), ERR : gERR(a, i1)}
For the conditional expression, the rule [IF] derives:
{OK : φOK4, ERR : φERR4} ≡ {OK : i′=i ∧ i′≤0, ERR : false} ∨ Φ3

Finally, the following set of constraint abstractions is computed:

Q = {gOK(a, i, i′)
rec
= φOK4, gERR(a, i)

rec
= ∃i′.φERR4}

After further simplifications, Q reduces to the following constraint abstractions, one for
the OK outcome, the other for the ERR outcome.

gOK(a, i, i′)
rec
= (i ≤ 0 ∧ i′ = i) ∨

(i > 0 ∧ 0 ≤ i < a.len ∧ ∃i1. i1 = i−1 ∧ gOK(a, i1, i
′))

gERR(a, i)
rec
= (i > 0 ∧ i ≥ a.len) ∨

(0 < i < a.len ∧ ∃i1. (i1 = i−1 ∧ gERR(a, i1)))

For this example, the two constraint abstractions are independent, since the analyzed
method g is tail-recursive. For general recursion, the composition operator from the
[CALL] rule makes the mnERR abstraction depend on the mnOK abstraction. Note however
that, even for non-recursive methods, the integrated formulation of our dual analysis
leads to sharing of the computation results. One crucial advantage of our integrated
analysis is that it is more economical when compared to two analyses computing the
over-approximations OK and ERR independently.

3.2. Fixed-Point Analysis

Once constraint abstractions are built for the OK and ERR outcomes, we apply fixed-
point analysis [3] to derive a closed-form formula for each recursive constraint abstraction.
The constraint abstractions can be interpreted over various abstract domains. In this
presentation, we fix the abstract domain to the disjunctive completion of the polyhedron
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abstract domain [4, 21]. This abstract domain is essentially based on the polyhedron
abstract domain [3], but is more fine-grained by allowing disjunctions of linear inequalities
to be captured.

We briefly review the Kleene’s fixed-point iteration applied to the disjunctive poly-
hedron abstract domain. This domain is denoted by (P,v), where unions of polyhedra
are partially ordered by set inclusion. We write ⊥ for the least element (in P , the empty
polyhedron or its representation, the formula false), and > for the greatest element (in P ,
the entire n-dimensional space or its representation, the formula true). The join operation
in the disjunctive polyhedron domain is the selective polyhedral hull [21]. A function
f that is a self-map of a complete lattice is monotone if xvy implies f(x)vf(y). In
particular, the constraint abstraction functions are monotone self-maps of the disjunctive
polyhedron domain. This can be shown trivially as all the operators used to construct
the constraint abstractions (see Figure 3) are monotone.

The least fixed-point of a monotone function f can be obtained by computing the
ascending chain f0 = ⊥, fn+1 = f(fn), with n≥0. If the chain becomes stationary
(i.e., if fm = fm+1 for some m), then fm is the least fixed-point of f . In the case of a
lattice infinite in height (as the lattice of polyhedra), an ascending chain may be infinite,
and a widening operator must be used to ensure convergence. The widening ∇ is a
binary operator to ensure that the iteration sequence f0 = ⊥, fk+1 = f(fk) followed
by fn+1 = fn∇f(fn), with n > k, converges. In this case, the limit of the sequence is
known as a post fixed-point of f . A post fixed-point is a sound approximation of the least
fixed-point, and the criterion to verify that x is a post fixed-point for f is that f(x) v x.
We denote by fix(f) the post fixed-point computed using the previous sequence.

The join and the widening operators that we use are based on the notion of affinity to
characterize how closely related is a pair of disjuncts. Finding related elements in the
conjunctive (base) domain improves the precision of hull and widening operators as they
have been lifted to the disjunctive (powerset extension of the base) domain. For further
details on these abstract operators, we refer the reader to our previous work [21].

We illustrate the fixed-point analysis by applying it to the constraint abstraction gOK.

Example. The fixed-point iteration starts with gOK0 initialized to the least element of the
abstract domain, the formula false. After a number of iterations, we obtain a formula
gOK4(a, i, i

′) as follows.

gOK0(a, i, i
′) = false

gOK1(a, i, i
′) ≡ (i≤0 ∧ i′=i) ∨ (i>0 ∧ 0≤i<a.len ∧ ∃i1. i1=i−1 ∧ gOK0(a, i1, i

′))
≡ (i≤0 ∧ i′=i)

gOK2(a, i, i′) ≡ (i≤0 ∧ i′=i) ∨ (i>0 ∧ 0≤i<a.len ∧ ∃i1. i1=i−1 ∧ gOK1(a, i1, i
′))

≡ (i≤0 ∧ i′=i) ∨ (i=1 ∧ i′=0 ∧ 2≤a.len)
gOK3(a, i, i′) ≡ (i≤0 ∧ i′=i) ∨ (i>0 ∧ 0≤i<a.len ∧ ∃i1. i1=i−1 ∧ gOK2(a, i1, i

′))
≡ (i≤0 ∧ i′=i) ∨ (i=1 ∧ i′=0 ∧ 2≤a.len) ∨ (i=2 ∧ i′=0 ∧ 3≤a.len)
≡ (i≤0 ∧ i′=i) ∨ (1≤i≤a.len−1 ∧ i≤2 ∧ i′=0)

gOK4(a, i, i′) ≡ (i≤0 ∧ i′=i) ∨ (i>0 ∧ 0≤i<a.len ∧ ∃i1. i1=i−1 ∧ gOK3(a, i1, i
′))

≡ (i≤0 ∧ i′=i) ∨ (1≤i≤a.len−1 ∧ i≤3 ∧ i′=0)
≡W (i≤0 ∧ i′=i) ∨ (1≤i≤a.len−1 ∧ i′=0)

gOK5(a, i, i′) ≡ (i≤0 ∧ i′=i) ∨ (i>0 ∧ 0≤i<a.len ∧ ∃i1. i1=i−1 ∧ gOK4(a, i1, i
′))

≡ (i≤0 ∧ i′=i) ∨ (1≤i≤a.len−1 ∧ i′=0)
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At the last step, the post fixed-point criterion is satisfied, since we obtained gOK(gOK4) v
gOK4 where gOK5 = gOK(gOK4). The operator ≡W denotes a widening step [21], where the
constraint i ≤ 3 is dropped to ensure convergence of analysis.

By a similar analysis, we derive a closed-form formula for the ERR outcome.

gERR(a, i) ≡ (i > 0 ∧ i ≥ a.len)

The summary of the method g consists of the two results from fixed-point analysis.

Φg = fix({gOK, gERR}) = {OK : (i ≤ 0 ∧ i′ = i) ∨ (1 ≤ i ≤ a.len−1 ∧ i′ = 0),
ERR : (i > 0 ∧ i ≥ a.len)}

The input conditions corresponding to the two over-approximations, ∃i′.gOK(a, i, i′)
and gERR(a, i), do not overlap. Thus, we have a precise analysis result for every method
input (either never-bug or must-bug).

NEVER BUGg ≡ i ≤ 0 ∨ 1 ≤ i ≤ a.len− 1
MUST BUGg ≡ i > 0 ∧ i ≥ a.len
MAY BUGg ≡ false

We use the same fixed-point analysis for imperative loops. It is folklore that loops
can be viewed as tail-recursive functions. Pass-by-reference parameters are used to model
variables that may be updated across loop iterations. For example, consider the following
loop where only the variables r and i are updated.

while (i<n) do { r:=r + 2; i:=i + 1 }

To model the effect of this loop, our system transforms it automatically to the following
tail-recursive method.

void mn tail(ref int r, ref int i, int n) {
if (i<n) then { r:=r + 2; i: = i + 1; mn tail(r, i, n) }
else () }

Using the fixed-point analysis described above, the following summary is computed for
mn tail: {OK : (i ≥ n ∧ r′ = r ∧ i′ = i) ∨ (i < n ∧ i′ = n ∧ r′ = r + 2(n− i)), ERR : false}.

We have found the idea of using tail-recursion for loop analysis helpful towards the
construction of a smaller core language for our analysis. The same technique has been
used in program analysis, e.g., summary-based aliasing analysis [22].

4. Extensions

In this section, we introduce two techniques to further improve our static analysis.
First, we show how to identify the origin of each detected bug. Second, our analysis can
capture a sub-class of definite non-termination as bugs.
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4.1. Individual Bug Classification

Our analysis may pinpoint the precise location of a discovered error by the notation
{ERR.` : e} where ` is a sequence of program locations that corresponds to the method call
chain leading to the specified error. As an example, consider the following two method
definitions.

void foo3(int x) {
l1 : foo4(x, x + 1);
l2 : foo4(x, 3); }

void foo4(int x, int y) {
if x=y then l3 : error
else () }

The error in foo4 will only be flagged during execution if x=y. Our analysis computes
the summary of foo4 as {OK : x 6= y, ERR.l3 : x = y}. This ERR.l3 error is impossible
when invoked from the context l1:foo4(x, x+1), but can occur when it is invoked from
l2:foo4(x, 3). The summary for the foo3 method is therefore {OK : x 6= 3, ERR.l1.l3 :
false, ERR.l2.l3 : x = 3}. A false condition at ERR.l1.l3 indicates that the bug at l1

can never occur. We omit this unreachable error outcome from the summary of foo3:
{OK : x 6= 3, ERR.l2.l3 : x = 3}. In contrast, the bug at call l2 can occur under the input
condition x = 3. The label l2.l3 is used to indicate the call chain leading to the bug at
final destination l3. Each label and trigger condition characterize a must or a may bug
that violates safety.

To provide precise reporting of errors, we only need to change two rules from those
shown in Figure 3. The modified rules are shown below.

[ERROR]

Φ1=Φ ◦∅ {OK : false, ERR.` : true}
` {Φ} ` : error {Φ1}

[CALL]

t0 mn((ref ti wi)
m−1
i=1 , (ti wi)

n
i=m) where Φmn {...}

W={wi}m−1
i=1 distinct(ρW ) ρ = [wi 7→vi]ni=1 + [w′i 7→v′i]

m−1
i=1

` {Φ} ` : mn(v1, . . . , vn) {Φ ◦ρW add(ρΦmn, `)}
The label ` is used to trace the calling hierarchy of each error. The add command prepends
the label ` to the label sequence from the summary argument.

add({OK : φ, (ERR.`i : φi)
∗}, `) , {OK : φ, (ERR.`.`i : φi)

∗}

In the case of recursive methods, all bugs that originate from the same location in
the recursive method are grouped under the same error outcome. This ensures that the
label sequences are always finite, and shall be bounded by the static height of the method
call hierarchy. Note that all elements in a set of mutual-recursive methods have the
same height in the call hierarchy. Using this representation for method summaries, we
introduce a definition to classify each individual bug as follows.

Definition 6. (Individual Bug Classification) Consider a method with the summary:
{OK : φ0, ERR.`1 : φ1, . . . , ERR.`n : φn}.

• A bug ERR.`i is said to be a never-bug if φi ≡ false.
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• A bug ERR.`i is said to be a must-bug if (φi∧φ0 ≡ false) and φi∧(
∨
j∈{1..n}−{i} φj)) ≡

false (and φi 6≡ false).

• A bug ERR.`i is said to be a may-bug otherwise.

Two bugs ERR.`a and ERR.`b are said to be closely-related if either φa → φb or φb → φa.
As closely-related bugs may be indistinguishable from each other, we shall group them
together in the must-bug category, if the condition (φa ∨ φb) ∧ φ0 is unsatisfiable. This
amalgamation of closely-related must-bugs allows us to report when a bug from the
amalgamated set will definitely be triggered as a must-bug, even if we are unable to
pinpoint the exact bug from this set.

4.2. Non-Termination as Bugs

Non-terminating program executions represent another source of bugs that can be
detected statically by specialized analyses [23]. Our computation of both OK and ERR

outcomes has the side-effect of being able to detect a sub-class of non-termination bugs.
These non-termination bugs are due to recursive methods and may be discovered by
fixed-point analysis. With both OK and ERR outcomes conservatively over-approximated,
any input state left unreachable after analysis corresponds to some non-terminating
execution.

LOOP

OK ERR

never
bug

must
bug

must
loop

may
bug

Figure 4: Classifying bugs.

For example, consider a recursive method whose sum-
mary has been inferred to be {OK : φ1, ERR : φ2}. As these
two outcomes cover all executions that either succeed or
fail, whatever is left in the complement ¬(∃R.φ1∨φ2) can
only correspond to executions leading to non-terminating
loop, where R denotes the set of output variables (including
res) from φ1. This characterization is done on the assump-
tion that all errors have been modelled and captured under
the ERR outcome. It leads to the following total summary:
{OK : φ1, ERR : φ2, ERR.fn.LOOP : ¬(∃R.φ1 ∨ φ2)}. In this
case, fn denotes the name of the recursive method that is
causing the non-termination bug.

To illustrate how non-termination bugs can be captured, consider the following
recursive method.

int foo5(int i) { if i=10 then 1 else 2 + foo5(i+1) }

From fixed-point analysis, we obtain the following summary: {OK : i ≤ 10 ∧ res =
2(10−i)+1}. Since the ERR condition is false, we derive ¬(∃res.i ≤ 10∧res = 2(10−i)+1) ≡
(i > 10), the condition corresponding to a non-termination must-bug. The resulting total
summary is the following :

Φfoo5 ≡ {OK : i ≤ 10 ∧ res = 2(10−i)+1, ERR.foo5.LOOP : i > 10} .

Once a non-termination bug has been detected for a given recursive method, it is
treated like any other bug where it could be propagated, downgraded to a may bug or
proven safe, depending on the context of its callers. Note that we can only catch a subset
of the non-termination bugs and cannot guarantee that all non-termination bugs are
captured.
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5. Correctness

In this section, we shall outline the proofs that our analysis is sound in proving safety
and finding bugs. While the concrete state is captured by the stack s ∈ S, the abstract
state that we infer is captured by a transition formula φ ∈ D between the unprimed
and primed variables. We shall use the following operators: an abstraction operator
α : S → D, a prestate operator PreSt(φ) to capture the relation between unprimed
variables of φ and a poststate operator PostSt(φ) to capture the relation between primed
variables of φ. Consistency relations between the concrete and abstract domains are
defined to agree either with a state, s |= φ, or with a pair of both pre- and post-state,
(s1, s2) |= φ. Using the previous notations, Theorem 1 states that the summary outcomes
that are inferred are a conservative approximation of the program state expected from
the evaluation of the program.

Theorem 1 (Soundness of Summary Outcomes). For every e1, s1 and P1 such
that (s1, s1) |= P1 and ` {P1} e1 {{OK : O1, ERR : E1}},

1. if 〈s1, e1〉↪→∗〈sn, k〉 then (s1, [res7→k]+sn) |= O1 (the success outcome O1 is sound).

2. if 〈s1, e1〉↪→∗〈sn,⊥〉 then s1 |= E1 (the error outcome E1 is sound).

Proof sketch: This result can be shown using induction on the length of the reduction
sequence. The main part of the proof is based on a subject reduction lemma that proves
the induction step corresponding to an arbitrary reduction step: 〈si, ei〉↪→〈si+1, ei+1〉.
In particular, the lemma proves that the success outcome for ei+1 is stronger than the
one inferred from ei: Oi+1 → Oi (similarly Ei+1 → Ei). By repeated applications, we
can conclude that the success and the error outcomes obtained from the inference of the
original expression e1 are sound. 2

The full proof of Theorem 1 is included in Appendix B and is formulated in the style
of correctness proofs from the program analysis textbook authored by Nielson, Nielson
and Hankin [24]. The proof relies on the definition of the dynamic semantics of the core
language given in Appendix A.

We shall now state four results that are corollaries of the main theorem. The first
corollary confirms that we have a true error from the must-bug condition; secondly, we
can guarantee a safe execution from the never-bug condition. Thirdly, we have a diverging
execution from the loop condition. The fourth corollary applies when neither of the
previous three cases holds: for inputs that satisfy the may-bug condition, it is possible to
have either a safe execution, a true error or a diverging execution.

Corollary 2 (Definite Error from Must-Bug). For every e1, s1 and P1 such that
(s1, s1) |= P1, ` {P1} e1 {{OK : O1, ERR : E1}} and s1 6|= PreSt(O1), then either the
evaluation is failed 〈s1, e1〉↪→∗〈sn,⊥〉 or 〈s1, e1〉6↪→∗ does not terminate.

Proof: Theorem 1 confirms that if the execution is successful then the consistency
relation s1 |= PreSt(O1) holds. Consequently, if the consistency relation does not hold,
then the execution cannot be successful; it either fails or diverges. 2

Corollary 3 (Definite Safety from Never-Bug). For every e1, s1 and P1 such that
(s1, s1) |= P1, ` {P1} e1 {{OK : O1, ERR : E1}} and s1 6|= PreSt(E1), then either the
evaluation is successful 〈s1, e1〉↪→∗〈sn, k〉 or 〈s1, e1〉6↪→∗ does not terminate.

15



Proof: Theorem 1 confirms that if the execution fails then the consistency relation
s1|=PreSt(E1) holds. Consequently, if the consistency relation does not hold, then the
execution cannot fail; it is either successful or it diverges. 2

Corollary 4 (Definite Non-termination from Loop Condition). For every e1, s1

and P1 such that (s1, s1) |= P1, ` {P1} e1 {{OK : O1, ERR : E1}}, s1 6|= PreSt(O1) and
s1 6|= PreSt(E1), then 〈s1, e1〉6↪→∗ does not terminate.

Proof: Using the previous two corollaries, we denote by s1 a state that does not satisfy
neither of the following consistency relations s1 6|= PreSt(O1) and s1 6|= PreSt(E1). Then
the execution is neither successful nor failed. The only possible alternative is that
〈s1, e1〉6↪→∗ does not terminate. 2

Corollary 5 (Indefinite Execution Outcome from May-Bug). For every e1 , s1

and P1 such that (s1, s1) |= P1, ` {P1} e1 {{OK : O1, ERR : E1}} and s1 |= PreSt(O1) ∧
PreSt(E1), then all the three evaluation alternatives are possible: 〈s1, e1〉↪→∗〈sn, k〉,
〈s1, e1〉↪→∗〈sn,⊥〉 or 〈s1, e1〉6↪→∗ does not terminate.

Proof: This corollary is vacuously true, since the three alternatives are the only possible
outcomes for program execution. 2

6. Experimental Results

We have implemented the proposed inference mechanisms in a tool named Dualyzer
(from Dual analyzer). The implementation uses the CIL infrastructure [25] and performs
a further translation to our smaller CoreC language (e.g., loops and other intraprocedural
control-flow are translated away). The prototype system was built using the Haskell
language and the Glasgow Haskell compiler [26]. We used the Omega library [14] to solve
constraints in the Presburger arithmetic domain. Our test platform was a Pentium 3.0
GHz system with 2GBytes main memory, running Fedora 4.

The first objective of Dualyzer is to prove the absence of bugs, whenever possible.
For this purpose, we tested our system on a set of small programs (up to 1 KLOC) with
challenging recursion and intricate numerical computations [27]. This set of programs
includes Fast Fourier Transform, LU decomposition, Successive Over-Relaxation (from
SciMark suite [28]) and routines from the Linpack library [29]. Figure 5 summarizes the
results obtained for each program. To quantify the analysis complexity of the benchmark
programs, we counted the total number of static array accesses in the original programs
(column 2). Our system presently does not track the actual contents of the array, since
this may require pointer analysis that is not supported by our system. We have thus only
modelled indexes for arrays as integer values that must be bounded by the lower and
upper bounds of each array that is being accessed. An array access operation is captured
using a primitive method with an OK outcome (when the index is within the bounds of
the array) and an ERR outcome (when the index is out-of-bounds).

We used the set of programs shown in Figure 5 to make a comparison with the
BLAST software verification system [8, 30]. 1 With a similar goal to Dualyzer, the

1 We tested the 2.4 version of BLAST, available from http://mtc.epfl.ch/software-tools/blast/.
The running times reported for BLAST correspond to several runs of abstraction refinement as we invoked
BLAST with the default set of arguments.
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Benchmark Source Rec. Static BLAST Dualyzer
Programs (lines) constr. checks Result (secs) Result (secs)
binary search 31 1 2 × 0.06

√
3.16

bubble sort 39 2 12 × 0.10
√

0.82
init array 11 1 2

√
1.15

√
0.26

merge sort 58 3 24 × 0.12
√

4.63
queens 39 2 8

√
3.45

√
1.47

quick sort 43 2 20
√

28.82
√

1.50
sentinel 17 1 4 × 1.31 × 0.12
FFT 336 9 62 × 0.57

√
13.50

LU 191 10 82
√

7.26
√

14.34
SOR 84 5 32

√
2.14

√
3.50

Linpack 903 25 166 × 408.1
√

38.91

Figure 5: Analysis of programs without bugs. A tick
√

indicates that the tool verifies the safety of the
checks from a program, while × is used when the tool reports a false bug.

BLAST system aims at statically proving safety or finding true bugs otherwise. Com-
pared to our prototype, BLAST performed as well in proving safety for init array,
queens, quick sort, LU and SOR. However, BLAST was not able to prove the safety
of binary search, merge sort and FFT for which it reported (false) bugs due to divi-
sion being treated as an uninterpreted function. BLAST also reported a false bug for
bubble sort; for Linpack the analysis ended prematurely with an exception (raised in
the Simplify prover). Though an intended goal of BLAST is to report true bugs where
possible, the representation of program states by symbolic constraints ultimately leads
to some approximation (e.g., via uninterpreted functions) that could lead unwittingly
to false alarms. This scenario does not occur for Dualyzer since the dual analysis
helps to distinguish program safety from must-bug, but can revert to may-bug reporting
whenever there is uncertainty or loss of precision. Dualyzer decides that a program is
verified when both must-bug and may-bug conditions of the “main” method are false. The
binary search example can indeed be proven correct using an abstract domain based on
linear arithmetic. Dualyzer handles division by a constant, for example, mid = a/2 is
modelled by 2∗mid ≤ a ≤ 2∗mid+1. The sentinel example illustrates a pattern that
cannot be verified by our tool, as it makes use of a sentinel/guard value against reading
past the end of the array. This example is thus reported as one that has a may bug.

In our previous work [27], we proposed a system for proving program safety based on
a combination of forward and backward analysis. Comparatively, Dualyzer was simpler
to design and implement (being based only on forward analysis). It is also considerably
faster since it avoids the expensive backward analysis. Another difference is the capability
of Dualyzer to confirm must-bugs which is illustrated by the next set of experiments.

6.1. Examples from the Synergy Paper

The Synergy system [10] complements the capabilities of predicate abstraction
refinement (as in BLAST) with DART-style testing [2] to prove safety and also find
true bugs. To test Dualyzer’s capabilities, we used the illustrative programs that were
highlighted as figures in the Synergy paper [10]. See Figure 6 for results. Our analysis
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took less than a second on each of these programs. Compared to Synergy, we performed
equally well in finding real bugs in ex fig1, ex fig4, ex fig7, and also proving safety
for ex fig3, ex fig6, ex fig8.

Benchmark Synergy Dualyzer
Programs

ex fig1 BUG BUG
ex fig3 SAFE SAFE
ex fig4 BUG BUG
ex fig6 SAFE SAFE
ex fig7 BUG BUG
ex fig8 SAFE SAFE
ex fig9 ABORT BUG-LOOP

Figure 6: Examples from the SYNERGY paper [10]

While able to prove safety and also find bugs, the Synergy system may fail to
terminate due to abstraction refinement. The last example, ex fig9, illustrates a case
for which Synergy fails to terminate as it generates longer and longer test sequences as
(y<0), (y+x<0), (y+2x<0), and so on. The code ex fig9 is reproduced below.

void ex fig9() { int x, y; x := 0; y := 0;
l5 :while (y≥0) { y := y + x; }
l6 :error; }

If restricted to fixed-point analysis with one disjunct, our system is only able to
report a must-bug at l6. We denote results from such conjunctive fixed-point analysis
by subscript (m=1), where m indicates the number of disjuncts. The loop summary is
computed as follows.

loop(m=1) ≡ {OK : (x′=x ∧ y′≤y ∧ y′<0)}

This conjunctive formula is unable to capture the non-termination property of the loop.
Combined with the information prior to the loop (x=0 ∧ y=0), the summary of the
method can only confirm the presence of a must-bug at l6 (if the program terminates).

ex fig9(m=1) ≡ {OK : false, ERR.l6 : true}

Using disjunctive fixed-point analysis (with m=2 number of allowable disjuncts per
formula), we can capture non-termination in the summary of the while loop and prove
that the error at l6 is unreachable.

loop(m=2) ≡ {OK : (x′=x ∧ y′=y ∧ y′<0) ∨ (x′=x ∧ x≤y′≤x+y ∧ y′<0),
ERR.LOOP : (x≥0 ∧ y≥0)}

ex fig9(m=2)≡ {OK : false, ERR.l5.LOOP : true, ERR.l6 : false}

Thus, with increased precision, our analysis is able to re-classify a must-bug more
accurately and indicate a source of non-terminating executions.
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6.2. Finding Bugs in the Verisec Benchmark

We have also analyzed several buffer overflow vulnerabilities from the CVE database
as grouped in the Verisec benchmark suite [31]. 2 This suite contains testcases with the
actual vulnerabilities as well as corrected versions of these testcases. We were surprised
that Dualyzer found two must-bugs in the corrected versions of the testcases, bugs that
were later confirmed and patched by the authors of the Verisec benchmark. The first
must-bug was detected in a testcase extracted from the Samba implementation of the
SMB networking protocol (CVE-2007-0453). It corresponds to a buffer access with an
off-by-one error in the r strncpy function. The second testcase is from the SpamAssassin
open-source email filter and the must-bug corresponds to a non-termination bug. An
excerpt from the corresponding C code is shown below.

#define BASE SZ 2 // from constants.h
#define BUFSZ BASE SZ+2

// from loop ok.c file
void message write (char ∗ msg, int len) {
char buffer[BUFSZ];
int limit = BUFSZ− 4;
for (int i=0; i<len; ){
for (int j=0; i<len && j<limit; ){
...
buffer[j] = msg[i];
j++;
i++;
...

}}}
This example contains a nested loop structure, where the terminating condition of the
inner loop depends on the values of the variables j, i, len and limit. Both j and i are
incremented on every loop iteration, while len and limit are kept unchanged. However,
the variable limit is (unwittingly) initialized by the programmer to 0. Since both the
variables limit and j are initially 0 and the value of j is increased through the inner-loop,
the loop condition (j<limit) cannot be satisfied causing a non-terminating execution.

7. Related Work

Most program analyses working towards the goal of bug-free programs can be divided
broadly depending on their immediate objective: proving safety of programs, finding bugs
or approaches trying to prove safety and, at the same time, find bugs where possible. We
summarize some representative approaches from these three categories in Figure 7. The
second column from the figure lists the direction in which the program is traversed, either
forward (FW), backward (BW) or a combination of the two. The presented approaches can
also be classified depending on the approximation done: either over-approximating, under-
approximating, exact symbolic execution or a combination. Note that the effectiveness

2We tested the version 0.1 of the Verisec suite, made available by the authors from
http://se.cs.toronto.edu/index.php/Verisec_Suite.
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Analysis Direction Approximation Modularity Goal
Suzuki et al.[32] BW under no safety

ASTRÉE [5] FW over no safety
VeriSoft [1] FW under no bugs

DART [2], EXE [36] FW under+sym no bugs
Saturn [37] FW over+under yes bugs(1)

Slam [7], BLAST [8] FW+BW over+sym yes safety+bugs
Rival[6] FW+BW over+under no safety+bugs(2)

Smash [11] FW+BW over+under+sym yes safety+bugs
Dualyzer (this paper) FW over yes safety+bugs(2)

Figure 7: Prominent features of various analyses for proving safety and finding bugs

of the symbolic execution is inherently limited by the constraint solver or the theorem
prover that is used. Column 4 shows whether the analysis is designed to be modular,
where each method is analysed in isolation to derive a summary. The method summary
would further be used instead of reanalyzing the method at each of its call sites. Finally,
column 5 shows what is the general goal of the analysis: safety, bugs or a combination
of the two. The alarms reported by the analysis can be classified as bugs(1) (an alarm
that is either a true bug or a false positive), bugs(2) (an alarm that is a true bug, if the
program terminates), or bugs (an alarm that is unconditionally a true bug).

Proving safety. The first camp is concerned with proving safety of programs and its
proponents are shown in the top lines of the Figure 7. In this case, an analysis needs to
find a way to abstract all the possible concrete executions into a statically computable
form. The abstraction may represent an over-approximation of the state at some program
point computed using a forward traversal of the program as in the seminal paper of Cousot
and Halbwachs [3]. Alternatively, the statically computed abstraction may represent an
under-approximation of the state leading to a program error derived using a backward
traversal of the program. This second approach computes loop invariants using the
induction-iteration method pioneered by Suzuki and Ishihata [32]. Various trade-offs
between precision of the underlying abstraction and efficiency of the safety analysis have
been explored: the interval domain [33], the polyhedron domain [3] and the octagon
domain [34] are just a few of the proposed abstractions. In fact, safety analyzers that
scale to large critical programs like ASTRÉE [5] or C Global Surveyor [35] use elaborate
combinations of abstract domains to achieve maximum efficiency while maintaining an
acceptable level of precision. As a summary for all these analyses, when they cannot
prove safety, alarms that may include false positives will be signaled. The user of the
analyzer is left with the job of manually distinguishing false alarms from real bugs.

Finding bugs. The second camp is primarily concerned with finding bugs in software, so
that faulty programs could be quickly remedied. Traditionally, program testing has been
used for detecting incorrect programs. More recently, systematic testing or concrete state
space exploration has been implemented in model checkers like VeriSoft [1]. It attempts to
search through all the feasible paths of the program, uncovering real bugs (with no false
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positives). Systematic testing cannot achieve full path coverage, so its results represent
an under-approximation of all the concrete executions of the program. As search may
not terminate in a reasonable amount of time, an upper limit is set in practice on the
number of paths that are covered. As an improvement, DART [2] attempts to find more
errors in a systematic fashion by keeping a stack of conditional tests encountered during
execution. The gathered conditionals are used to generate new test cases that would
allow deeper branches to be explored. It also combines concrete with symbolic execution
in order to alleviate the limitations of the constraint solver used in symbolic execution.
Whenever the constraint solver does not know how to resolve a conditional test, DART
simplifies this constraint using the concrete values of the inputs involved in the test. EXE
[36] even used symbolic execution to explore conditional branches exhaustively. Symbolic
solvers are typically restricted in scope and may be inefficient, but EXE provided some
solutions to this difficulty. To reduce the complexity of the automated testing approach,
an extension of DART named SMART [38] generates the tests compositionally on a per
method basis. Another effort towards making testing more directed is Check ’n’ Crash
[39] which uses error reports from static checking (possible false positives) to generate
test cases. It solves the constraints from an ESC/Java [40] error report to find concrete
inputs, which are then confirmed to be true bugs by testing. Because this approach has
only an intra-procedural view of a single method, the inputs that crash the analyzed
method may not in fact be used by the caller.

Closer in spirit to over-approximating static analyses, bug-finding tools like FindBugs
[41] or Saturn [37] take some unsound (under-approximating) decisions in order to
minimize the number of false positives and achieve scalability. For example, Saturn
only considers some aliasing possibilities between the parameters of a method and only
analyzes a bounded number of iterations through a loop. FindBugs uses an approach
based on code templates to search for common program bugs in Java programs. While
this approach may be heuristic in nature, FindBugs has been shown to be quite useful in
practice as it is capable of detecting subtle bugs with less than 50% false positive rate.
Due to this combination of heuristic over- and under-approximations, these tools aim to
find bugs more precisely and in a scalable fashion, but neither guarantee program safety,
nor to report all possible bugs.

Proving safety + Finding bugs. Synergistic approaches for both proving safety and finding
bugs usually rely on a combination of over and under approximation. Model checking
based on abstraction refinement is often referred as CEGAR (counter-example guided
abstraction refinement) and tools like Slam [7] or BLAST [8] are based on this paradigm.
In a first step, Slam and BLAST perform a forward-directed over-approximating search
for possible bugs. If no bugs are found, then the safety of the program has been proven.
Otherwise, a counter-example trace is analyzed backwards via symbolic reasoning to
derive its weakest liberal precondition. If the derived precondition is satisfiable, then
the counter-example is deemed to be feasible and a bug is reported. If instead the
counter-example is shown to be infeasible, then the abstraction is refined and the search
process is iterated.

In another attempt to find real bugs or prove safety where possible, Synergy [10]
combines predicate abstraction with DART-style program testing. Initially, Synergy
tries to prove safety by using an over-approximating analysis. If this attempt fails, directed
testing is used either to prove the abstract error trace as feasible (true bug) or help
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in the abstraction refinement process. The obstacle that Slam-like tools encounter in
refining the abstraction for programs with long deterministic loops is thus overcome using
directed testing. Synergy uses a fairly complex integration of two distinct techniques for
intra-procedural analysis and can only report at most one real bug at a time. Furthermore,
it may sometimes fail to find a bug and also fail to prove safety, as DART-style testing
remains incomplete. Developed concurrently with our work [42], Smash [11] generalizes
the algorithm proposed in the Synergy paper to an inter-procedural analysis based on
method summaries. Smash computes total may-summaries using predicate abstraction
and partial must-summaries using directed testing. Impressive experimental results show
that the alternating may-must analysis implemented in Smash is able to scale to a
large codebase of Windows 7 device drivers. While Dualyzer is based on a different
combination of dual analyses, it also benefits from the compositionality of summary-based
analysis.

In order to investigate the origin of the alarms raised by the static analyzer ASTRÉE
[5], Rival used iterated forward-backward over-approximating analysis [43] to prove safety
of assertions [6, 44]. Despite an elaborate combination of abstractions, some alarms
cannot be resolved by over-approximation alone. Understanding if an alarm is a true bug
is facilitated by under-approximating techniques such as input selection or restriction
to an execution pattern. The input selection process is not currently automated, but
made easier by semantic slicing techniques. The process of restriction to an execution
pattern and guiding the analysis towards true bugs is in general incomplete and may not
converge. In practice, Rival reports that all the considered alarms from the studied set
of benchmarks could be classified by these techniques [6]. The classification of alarms is
similar to ours in that an alarm indicates either a true bug or a non-terminating program.

Another closely related work by Dillig et al [45] aims for a sound, scalable and complete
path-sensitive analysis. The authors developed may/must analyses that are complete for
programs with finitary states, as they use satisfiability- and validity-preserving formulae
transformations. May-analysis captures an over-approximation for strongest necessary
condition, while must-analysis captures an under-approximation for weakest sufficient
condition. Comparatively, we have used a dual over-approximating analysis rather than
a pair of over- and under-approximating analyses. This gives us a uniform mechanism
that has avoided the need for constraint specialization and backward analysis. Secondly,
our approach has been designed to identify a sub-class of non-termination bugs, where
possible.

As an alternative to fixed-point computation, another approach to proving program
safety and finding bugs uses constraint-based invariant generation and exploits recent
advances in SAT solving [46]. This work uses an expressive domain containing disjunctions
and conjunctions of linear inequalities. Currently their experimental results are limited
to small programs, since the constraint system that arises from disjunctive template
invariants is quite large. While we do not have access to the binary of the VS3 tool [46],
we borrow from their examples the two that took VS3 longest to verify. The first example
is based on the McCarthy 91 function instrumented with a safety property (72 seconds of
analysis time reported in [46]) and the second example is an array merge procedure (80
seconds of analysis time reported in [46]). While it is unfair to compare running times on
different machines, we report that Dualyzer took less than 3 seconds to analyze each of
these examples, and obtained a safety proof for the first example and a sufficient safety
precondition weaker than the one determined by VS3.
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Finally, in a different context, Marriott and Søndergaard develop a dataflow analysis
that over-approximates both the success and the failure sets of a logic program [47]. Two
interesting applications illustrated in this paper are highlighting errors in a logic program
and program specialization. Their formulation uses many-valued logics, which could be a
convenient formal framework for our approach too.

8. Conclusion

In this paper, we advocate for a dual static analyser that is aimed at proving safety or
discovering true bugs. To achieve both goals, a key innovation is the simultaneous capture
of successful outcomes and error outcomes using only over-approximating analysis. This
approach has allowed us to develop a single machinery for distinguishing must from may
bugs, or prove safety in their absence. We have proven the correctness of our approach
and the main results confirm that a program never fails from an input of never-bug
condition, never succeeds from an input of must-bug condition, and diverges from an
input of loop condition.

We have also conducted some initial experiments on small programs to validate the
potential for our proposed system for discovering true bugs and for proving program
safety. Future work should consider techniques that would allow our approach to scale
to larger programs. We would need to incorporate suitable alias analysis solutions for
pointer-based programs, and also engineer suitable mechanisms that would support a
good trade-off between precision and scalability through the use of bounded disjunctive
formulae. Another avenue for future work is to study the applicability of our dual
static analysis to verify numerical properties of domain-specific languages [48, 49] where
expressivity is more of a concern than scalability to large codebases.

Acknowledgement. We thank the anonymous reviewers for pointers to closely related
work and insightful comments that strengthened our paper.
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Appendix A. Dynamic Semantics

In this section, we shall define a small-step dynamic semantics for the core imperative
language from Figure 2. A machine configuration is represented as a tuple 〈s, e〉 such
that s denotes the current stack and e denotes the current program code.

Stack : s ∈ Stack = V ar →fin V alue
V alues : δ ∈ V alue = Int ]Boolean ] V oid

A reduction step is formalised as a small-step transition of the form 〈s, e〉↪→〈s1, e1〉.
The rules are standard and presented in Figure A.8. As an example, a conditional
expression is evaluated depending on the test value. If the value is a boolean constant,
then either the rule [D−IF−1] (if the constant is true) or the rule [D−IF−2] apply. If the
value is not of boolean type, then in principle the execution would be stuck with a type
error. We rely on the fact that the source program is well-typed and such errors cannot
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[D−VAR]

〈s, v〉↪→〈s, s(v)〉

[D−BLK]

δ = default(t) fresh x ρ = [v 7→x]

〈s, t v; e〉↪→〈[x 7→δ]+s, ret(x, ρe)〉

[D−ERROR]

〈s, l : error〉↪→〈s,⊥〉

[D−PRIM]

mn ∈ Primitives
〈s′, δ〉 = exec〈s, l : mn(v1, ..vn)〉
〈s, l : mn(v1, ..vn)〉↪→〈s′, δ〉

[D−CALL]

t0 mn((ref ti wi)
m−1
i=1 , (ti wi)

n
i=m){e}

s′ = [wi 7→ s(vi)]
n
i=m+s

〈s, l : mn(v1, ..vn)〉↪→〈s′, ret({wi}ni=m, [vi/wi]
m−1
i=1 e)〉

[D−IF−1]

s(v) = true

〈s, if v then e1 else e2〉↪→〈s, e1〉

[D−IF−2]

s(v) = false

〈s, if vthen e1else e2〉↪→〈s, e2〉

[D−ASSIGN−1]

〈s, v := δ〉↪→〈s[v 7→ δ], ()〉

[D−SEQ−1]

〈s, δ; e2〉↪→〈s, e2〉

[D−RET−1]

〈s, ret(v∗, δ)〉↪→〈s−{v∗}, δ〉

[D−ASSIGN−2]

〈s, e〉↪→〈s′, e′〉
〈s, v := e〉↪→〈s′, v := e′〉

[D−SEQ−2]

〈s, e1〉↪→〈s′, e′1〉
〈s, e1; e2〉↪→〈s′, e′1; e2〉

[D−RET−2]

〈s, e〉↪→〈s′, e′〉
〈s, ret(v∗, e)〉↪→〈s′, ret(v∗, e′)〉

[D−ASSIGN−3]

〈s, e〉↪→〈s′,⊥〉
〈s, v := e〉↪→〈s′,⊥〉

[D−SEQ−3]

〈s, e1〉↪→〈s′,⊥〉
〈s, e1; e2〉↪→〈s′,⊥〉

[D−RET−3]

〈s, e〉↪→〈s′,⊥〉
〈s, ret(v∗, e)〉↪→〈s′,⊥〉

Figure A.8: Operational Semantics
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occur. For any given complete execution, we expect one of three possible outcomes:
〈s, e〉↪→∗〈s1, δ〉 for success, 〈s, e〉↪→∗〈s1,⊥〉 for failure, or 〈s, e〉6↪→∗ for non-termination.

The source language is extended with a new construct representing the intermediate
result of a method call: the evaluation of the expression ret(v∗, e) starts with evaluating
the method’s body e (rule [D−RET−2]) and, after its reduction to a value, the parameters
passed by value v∗ are removed from the current stack (rule [D−RET−1]). If the evaluation
of the body reaches an error, then the rule [D−RET−3] will return the error back to the
caller. The static semantics includes the following rule for the ret construct:

[RET]

` {Φ} e {Φ1}
` {Φ} ret(v∗, e) {∃(v, v′)∗.Φ1}

Appendix A.1. Consistency between Concrete and Abstract Elements

While a concrete state is captured by the stack s ∈ S, an abstract state is represented
by a relational constraint φ ∈ D between the program variables. When used with both
unprimed and primed variables, φ ∈ D ×D denotes a transition between abstract states.
We use V(φ) to denote the set of unprimed variables from φ except res, while V ′(φ) is the
set containing res and the primed variables from φ. The following definition introduces
two operators to distinguish the initial and the final abstract states given a transition
formula.

Definition 7 (Prestate and Poststate). Given a transition φ ∈ D×D, its prestate
PreSt(φ) captures the relation between unprimed variables of φ, while its poststate PostSt(φ)
captures the relation between primed variables of φ :

PreSt(φ) = ∃X.φ, where X = V ′(φ)
PostSt(φ) = ρ(∃X.φ), where X = V(φ) and ρ = [x′ 7→ x | x ∈ V(φ)]

To formalise the relation between the concrete and the abstract domain, we introduce
an abstraction operator: α(s) =

∧
{v = δ | [v 7→ δ] ∈ s}. If the stack contains two or

more variables with the same name, only the leftmost variable is considered. For example,
α([x 7→ 1, y 7→ 1, x 7→ 0]) = (x=1 ∧ y=1).

Two consistency relations between the concrete and abstract domains are defined to
either agree in the current state, or in a pair formed from a pre-state and a post-state.
These consistency relations rely on the logical implication operator:

α(s)→ φ

s |= φ

α(s1) ∧ ρα(s2)→ φ ρ = [x 7→ x′ | x ∈ V(α(s2))]

(s1, s2) |= φ

In general, (s1, s2) |= φ implies s1 |= PreSt(φ) ∧ s2 |= PostSt(φ), but the implication does
not hold in the other direction (e.g., for constraints relating both primed and unprimed
variables).

Appendix B. Proof of the Main Theorem

In this section, we shall prove that the results obtained by the static semantics correctly
reflect what happens during execution, as predicted by the dynamic semantics. The
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dynamic semantics is formulated in small-step style and the proof proceeds by showing
that some property is preserved by each step of (dynamic) evaluation:

〈s1, e1〉 ↪→ 〈s2, e2〉 ↪→ . . . ↪→ 〈sn, en〉xy
xy

xy
` {P1} e1 {O1, E1} ` {P2} e2 {O2, E2} ` {Pn} en {On, En}

Thus, we will proceed by induction on the length of the (dynamic semantics) reduction
sequence:

• base case: prove the property for 〈s1, e1〉.

• induction step: assume the property holds for 〈si, ei〉 and prove it for 〈si+1, ei+1〉.

To prove the property for a configuration 〈si, ei〉, the proof proceeds by induction on the
height of the (dynamic semantics) reduction tree:

• base case: prove the property for those reduction rules without premises.

• induction step: assume the property holds for the premises and prove it for the
concluding reduction rule.

The proof is completed when all the reduction rules are shown to preserve the required
property. More details on the induction principle and proof examples for various program
analyses can be found in the “Principles of Program Analysis” book [24, Sec 2.2, Sec 3.2,
Sec 4.5.2, Sec 5.2, Appendix B].

We formalize the notion of a sound method summary meaning that the summary is
an over-approximation of the outcomes collected from the method’s body. A summary is
checked to be sound using a static rule [CHECK−METH] for a method declaration.

[CHECK−METH]

W={vi}ni=1 V={v′i}ni=m R={res, v′1, .., v
′
n}

` {nochange(W )} e {{OK : φ1, ERR : φ2}}
∃V.φ1 → Omn ∃R.φ2 → Emn

` t0 mn((ref ti vi)
m−1
i=1 , (ti vi)ni=m) where {OK : Omn, ERR : Emn}{e}

Using this soundness notion for method summaries, we can split the main proof in two
parts. For the first part, the proof is done assuming a program where all methods are
given sound summaries. For the second part, we show that our fixed-point analysis always
infers sound method summaries.

Appendix B.1. Soundness of Summary Outcomes

Proof of Theorem 1: The result stated by Theorem 1 can be shown using induction
on the length of the reduction sequence. We consider an arbitrary reduction step
〈si, ei〉↪→〈si+1, ei+1〉 and inference judgements such that the prestate is consistent with
dynamic state: Pi = P1 ◦ ρα(si).

Success outcome is sound: (s1, [res7→δ]+sn) |= O1
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The base case proves the property for the last expression in a successful reduction
sequence. When en is a constant expression δ, we can infer using the rule [CONST]:
` {Pn} δ {{OK: On, ERR: En}} such that On = Pn∧(res=δ) = (P1 ◦ ρα(sn))∧ (res=δ). As
a consequence, the following consistency relation holds: (s1, [res7→δ]+sn) |= On.

The main part of the proof is based on a subject reduction lemma. This lemma proves
the induction step corresponding to an arbitrary reduction step: 〈si, ei〉↪→〈si+1, ei+1〉.
In particular, the lemma proves that the success outcome for ei+1 is stronger than the
one inferred from ei: Oi+1 → Oi. By repeated applications, we can conclude that
the success outcome obtained from the inference of the original expression e1 is sound:
(s1, [res7→δ]+sn) |= O1. 2

Failure outcome is sound: s1|=E1

The base case proves the property for the last expression in a failed reduction sequence.
When en is an error expression then from the rule [ERROR] we can deduce ` {{OK :
Pn, ERR : false}} l : error {{OK : On, ERR : En}} such that En = Pn ∧ {OK : false, ERR :
true} = Pn. From the definition of Pn we can conclude that s1 |= En.

The subject reduction lemma is used to prove the induction step. As a direct
consequence of the lemma, the failure outcome for ei+1 is more precise than the one
inferred from ei: Ei+1 → Ei. From the base case and the induction step, we can conclude
that the failure outcome is sound: s1 |= E1. 2

The proof of Theorem 1 is based on induction over the length of reduction sequence
and uses a subject reduction lemma as induction step. This lemma states the properties
that are satisfied by an arbitrary reduction step.

Lemma 6 (Subject reduction). Consider an execution started from the state s1 and
an arbitrary reduction step of this execution: 〈s1, e1〉↪→ . . . ↪→〈si, ei〉↪→〈si+1, ei+1〉↪→ . . ..
Further, consider a transition formula Pi consistent with the execution states: (s1, si) |= Pi
and an inference ` {Pi} ei {{OK : Oi, ERR : Ei}}.

Then there exists Pi+1 consistent with the execution states (s1, si+1) |= Pi+1 and
the results of the inference ` {Pi+1} ei+1 {{OK : Oi+1, ERR : Ei+1}} satisfy the following
relations:

• Oi+1 → Oi. We also have PreSt(Oi+1)→PreSt(Oi) and PostSt(Oi+1)→PostSt(Oi).

• Ei+1 → Ei. We also have Ei ≡ PreSt(Ei).

Proof: We will prove that there is a relation between the inference result for ei and the
inference result for ei+1 by induction on the height of the (dynamic semantics) reduction
tree. The induction hypothesis assumes that this relation holds for the reduction steps
for the subexpressions of ei. Various cases are denoted by the name of the evaluation
rule that applies in the conclusion.

• Case [D−VAR]: With si+1 = si, si(v) = δ, we have the following reduction step:

〈si, v〉 ↪→ 〈si+1, si(v)〉xy xy
` {Pi} v {Pi ∧ res = v} ` {Pi+1} δ {Pi+1 ∧ res = δ}

Let us choose Pi+1 = Pi.
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– We can prove Pi+1 is consistent with the execution states (s1, si+1) since Pi is
consistent with (s1, si) and si+1 = si.

– Oi+1 → Oi since Oi+1 = (Pi+1 ∧ res=δ) and Oi = (Pi ∧ res=v).

– Ei+1 → Ei since Ei+1 = Ei = false.

• Case [D−ASSIGN−1]:

〈si, v := δ〉 ↪→ 〈si[v 7→ δ], ()〉xy xy
` {Pi} v := δ {Pi ◦{v} v′=δ} ` {Pi+1} () {Pi+1}

Let us choose Pi+1 = Pi ◦{v} v′=δ.

– By definition of the consistency relation, (s1, si[v 7→δ]) |= Pi+1 reduces to
α(s1) ∧ ρα(si[v 7→δ])→ Pi ◦{v} v′=δ. To prove this implication, we rely on the
hypothesis that Pi is consistent: α(s1) ∧ ρα(si)→ Pi.

– Oi+1 → Oi since Oi+1 = Oi.

– Ei+1 → Ei since Ei+1 = Ei = false.

• Case [D−ASSIGN−2]:

〈si, v := e〉 ↪→ 〈si+1, v := e′〉xy xy
` {Pi} e {Φ}

` {Pi} v := e {Φ ◦{v} v′=res}
` {P ′i} e′ {Φ′}

` {Pi+1} v := e′ {Φ′ ◦{v} v′=res}

We use the induction hypotheses corresponding to the reduction step 〈si, e〉↪→〈si+1, e
′〉.

By these hypotheses, there exists P ′i that satisfies the consistency relation: (s1, si+1) |=
P ′i . Also, the results of the inference judgements ` {Pi} e {Φ} and ` {P ′i} e′ {Φ′}
satisfy the relation Φ′ → Φ.

Let us choose Pi+1=P ′i , where P ′i is the prestate constructed using the induction
hypothesis.

– (s1, si+1) |= Pi+1 from the induction hypothesis (s1, si+1) |= P ′i
– From the induction hypothesis Φ′ → Φ, we can deduce that (Φ′ ◦{v} v′=res)→

(Φ ◦{v} v′=res). This fact implies that Oi+1 → Oi .

– From the induction hypothesis Φ′ → Φ, we can deduce that (Φ′ ◦{v} v′=res)→
(Φ ◦{v} v′=res). This fact implies that Ei+1 → Ei.

• Case [D−SEQ−1]: We have si+1 = si:

〈si, δ; e2〉 ↪→ 〈si+1, e2〉xy xy
` {∃res.(Pi ∧ res=δ)} e2 {Φ}

` {Pi} δ; e2 {Φ} ` {Pi+1} e2 {Φ′}
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Let us choose Pi+1 = Pi.

– We can prove Pi+1 is consistent with the execution states (s1, si+1) since Pi is
consistent with (s1, si) and si+1 = si.

– From the construction, Pi does not refer to the variable res. Consequently,
Pi+1 = Pi = ∃res.(Pi ∧ res=δ). Two inference judgements starting with
equivalent prestates will have equivalent summary outcomes: Φ′ = Φ. This
implies that Oi+1 → Oi.

– Φ′ = Φ implies that Ei+1 → Ei.

• Case [D−PRIM]: Since the code for primitive methods is not available for analysis,
we assume that the summaries of primitives methods are sound with respect to the
operational semantics of the primitive’s implementation.

〈si,mn(v1, .., vn)〉 ↪→ 〈si+1, δ〉xy xy
` {Pi}mn(v1, .., vn) {Pi ◦V(Φmn) Φmn} ` {Pi+1} δ {Pi+1 ∧ res=δ}

The soundness of the primitive summaries can be formalized with the following
condition: (si, [res7→δ]+si+1) |= Φmn∧nochange(X), where X = V(si)− V(Φmn).

Let us choose Pi+1 = Pi ◦V(Φmn) Φmn.

– From (s1, si) |= Pi and (si, si+1) |= Φmn ∧ nochange(X) we can prove that
(s1, si+1) |= Pi ◦V(Φmn) Φmn.

– Using the chosen Pi+1, we can derive trivially Oi+1 → Oi.

– Using the chosen Pi+1, we can derive trivially Ei+1 → Ei.

• Case [D−CALL]: For this reduction step, we assume that each method is annotated
with a sound summary. Using the soundness of the method summary, we can
successfully apply the rule [CHECK−METH] to the method declaration mn:

t0 mn((ref ti wi)
m−1
i=1 , (ti wi)

n
i=m) where Φmn{e}.

Consequently, the result of the judgement ` {nochange(W )} e {{OK : φ1, ERR : φ2}}
is more precise than Φmn as follows: ∃V.φ1 → Omn and ∃R.φ2 → Emn.

The reduction step corresponding to a method call follows:

〈si,mn(v1, .., vn)〉 ↪→ 〈[wi 7→si(vi)]ni=m+si, ret({wi}ni=m, e′〉xy xy
` {Pi}mn(v1, .., vn) {Pi ◦ρW ρΦmn}

` {Pi+1} e′ {Φ′}
` {Pi+1} ret({wi}ni=m, e′) {∃(wi, w′i)∗.Φ′}

where e′ = [vi/wi]
m−1
i=1 e, W = {vi}ni=1 and ρ = [vi/wi]

n
i=1 + [v′i/w

′
i]
m−1
i=1 .

Let us choose Pi+1 = Pi ∧
∧n
i=m(wi=vi).
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– From the induction hypothesis (s1, si) |= Pi, we can prove that the following
holds: (s1, [wi 7→si(vi)]ni=m+si) |= Pi ∧

∧n
i=m(wi=vi).

– We can prove a pre-transition lemma that allows us to use a given judgement
` {nochange(W )} e {Φ}. This in turn let us deduce a related judgement where
a transition formula Φpre is used to translate both the prestate and the
poststate: ` {Φpre ◦W nochange(W )} e {Φpre ◦W Φ}. Note that the formula
(Φpre ◦W nochange(W )) can be simplified to Φpre.

Using this lemma with Φpre=ρ
−1Pi, the judgement ` {nochange(W )} e {{OK :

φ1, ERR : φ2}} can be transformed to the following: ` {ρ−1Pi} e {ρ−1Pi◦W {OK :
φ1, ERR : φ2}}. After proper renamings, this last judgement is equivalent with
` {Pi} ρe {Pi ◦ρW ρ{OK : φ1, ERR : φ2}}, which we denote as (JUDG-1).

The judgement from the induction hypothesis ` {Pi+1} e′ {Φ′} can be used
together with (JUDG-1) to conclude that Φ′ ≡ Pi ◦ρW ρ{OK : φ1, ERR : φ2}.
Since we know that {OK : φ1, ERR : φ2} → Φmn, we can finally conclude
that Φ′ → Pi ◦ρW ρΦmn. From this implication, we can directly derive that
Oi+1 → Oi.

– From the above proof, we can also conclude that Ei+1 → Ei.

• Case [D−BLK]:

〈si, t v; e〉 ↪→ 〈[x 7→δ]+s, ret(x, ρe)〉xy xy
` {Pi ∧ default(t, x′)} ρe {Φ}
` {Pi} t v; e {∃x′.Φ}

` {Pi+1} ρe {Φ′}
` {Pi+1} ret(x, ρe) {∃(x, x′).Φ′}

Let us choose Pi+1 = Pi ∧ default(t, x′).

– From the induction hypothesis (s1, si) |= Pi and δ=default(t), we can prove
that (s1, [x 7→δ] + s1) |= (Pi ∧ default(t, x′)).

– From the induction hypothesis Φ′ → Φ and the fact that x does not appear in
the formulae Φ and Φ′, we can conclude that ∃(x, x′).Φ′ → ∃x′.Φ. Consequently,
we have Oi+1 → Oi.

– By a similar reasoning as above, we can conclude that Ei+1 → Ei.

• Case [D−RET−1]:

〈si, ret(v∗, δ)〉 ↪→ 〈si−{v∗}, δ〉xy xy
` {Pi} δ {Pi ∧ res=δ}

` {Pi} ret(v∗, δ) {∃(v, v′)∗.(Pi ∧ res=δ)} ` {Pi+1} δ {Pi+1 ∧ res=δ}

Let us choose Pi+1 = ∃(v, v′)∗.Pi.
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– From the induction hypothesis (s1, si) |= Pi, we can prove that (s1, si−{v∗}) |=
∃(v, v′)∗.Pi.

– We have Oi = ∃(v, v′)∗.(Pi ∧ res=δ) and Oi+1 = (∃(v, v′)∗.Pi) ∧ res=δ, where
v∗ are either local variables or parameters passed by value. We can conclude
that Oi+1 → Oi.

– We can conclude that Ei+1 → Ei from Ei+1 = Ei = false.

• Case [D−ERROR]: We have si+1 = si:

〈si, l : error〉 ↪→ 〈si,⊥〉xy xy
` {Pi} l : error {{OK : false, ERR : true}} ` {Pi}⊥{{OK : false, ERR : true}}

Let us choose Pi+1 = Pi.

– (s1, si+1) |= Pi+1 since (s1, si) |= Pi.

– We have Oi+1 = Oi = false.

– We have Ei+1 = Ei = true.

• Case [D−IF−1]: We have si+1 = si:

〈si, if v then e1 else e2〉 ↪→ 〈si+1, e1〉xy xy
` {Pi ∧ v′=1} e1 {Φ} ` {false} e2 {false}
` {Pi} if v then e1 else e2 {Φ ∨ false}

` {Pi+1} e1 {Φ′}

Let us choose Pi+1 = Pi.

– We can prove Pi+1 is consistent with the execution states (s1, si+1) since Pi is
consistent with (s1, si) and si+1 = si.

– The reduction step assumes that si(v) = true. Since Pi is consistent with the
execution state si, we can conclude that the prestate Pi∧v′=0 simplifies to the
false formula. Consequently, two inference judgements for e2 with equivalent
prestates Pi and Pi+1 will have equivalent poststates: Φ and Φ′. This implies
that Oi+1 → Oi.

– Φ′ = Φ implies that Ei+1 → Ei

• Case [D−IF−2]: We have si+1 = si:

〈si, if v then e1 else e2〉 ↪→ 〈si+1, e2〉xy xy
` {false} e1 {false} ` {Pi ∧ v′=0} e2 {Φ}
` {Pi} if v then e1 else e2 {Φ ∨ false}

` {Pi+1} e2 {Φ′}

Let us choose Pi+1 = Pi.
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– We can prove Pi+1 is consistent with the execution states (s1, si+1) since Pi is
consistent with (s1, si) and si+1 = si.

– The reduction step assumes that si(v) = false. Since Pi is consistent with the
execution state si, we can conclude that the prestate Pi∧v′=1 simplifies to the
false formula. Consequently, two inference judgements for e1 with equivalent
prestates Pi and Pi+1 will have equivalent poststates: Φ and Φ′. This implies
that Oi+1 → Oi.

– Φ′ = Φ implies that Ei+1 → Ei

• Case [D−SEQ−2]: by induction hypothesis (similar to [D−ASSIGN−2]).

• Case [D−RET−2]: by induction hypothesis (similar to [D−ASSIGN−2]).

Appendix B.2. Soundness of the Fixed-Point Analysis

To complement the proof of Theorem 1, we will show that our fixed-point analysis
always infers sound method summaries.

Theorem 7 (Soundness of the Fixed-Point Analysis). Given a method declaration,
we can show that the fixed-point inference applied to the constraint abstraction (obtained
via the forward reasoning rules) would result in a sound summary Φmn.

Proof: The proof is done using induction on the height of the call graph dominated by
the method mn. The base case where mn does not call methods other than itself, can
be proven as a special case of the induction step. For the induction step, the induction
hypothesis assumes that the inference of methods called by mn has computed sound
summaries. Using this hypothesis, we aim to prove that the fixed-point analysis computes
a sound summary for the method mn.

The first step in the inference process is to derive constraint abstractions from a
given method declaration using the forward reasoning rules. These rules are applied
recursively on sub-expressions of the method body and, with one exception, derive
constraints equivalent to the respective sub-expression. The exception is the rule [CALL],
where, rather than equivalent, the constraint that is derived is an over-approximation of
the method call since the callee has a sound summary (from the induction hypothesis).
Consequently, we can show that the constraint abstractions mnOK and mnERR are
consistent with the method declaration from which they are derived using the forward
reasoning rules. Furthermore the constraint abstractions are monotonic functions defined
on the abstract domain (e.g., disjunctive polyhedron domain) with values in the same
domain. The domain contains elements that are formulae over a fixed set of variables
{v1, .., vn, v

′
1, .., v

′
m−1}, where v1, .., vm−1 are parameters passed by reference and vm, .., vn

are parameters passed by value.
The fixed-point analysis computes iteratively a sequence starting with the least element

of the domain (the formula false). Being applied to a monotonic function, this computation
will result in an ascending sequence. To ensure convergence of this sequence, a widening
operator is used. The result is then guaranteed to be an upper approximation of the least
fixed point for the constraint abstractions mnOK and mnERR.

Given that the results of the fixed-point analysisOmn and Emn are over-approximations
of the least fixed points (lfp) of mnOK and mnERR abstractions, we can apply the
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judgement for the method body e and prove that the implications required by the checking
rule [CHECK−METH] hold as follows:

` {nochange(W )} e {{OK : φ1, ERR : φ2}}
∃V.φ1 → Omn ∃R.φ2 → Emn

` t0 mn((ref ti vi)
m−1
i=1 , (ti vi)

n
i=m) where {OK : Omn, ERR : Emn}{e}

The formulae φ1 and φ2 correspond to the constraint abstraction functions mnOK and
mnERR where the recursive calls are replaced by Omn and Emn. Since Omn and Emn
are over approximations of the lfp, they are reductive points of these functions [24, Sec 4.2,
Appendix A.4]. As a consequence, the results from the judgement are more precise
formulae and the following implications hold: ∃V.φ1 → Omn and ∃R.φ2 → Emn. Thus
the premises of the checking rule are satisfied and Φmn is shown to be a sound summary
for its corresponding method declaration. 2

The current proof can immediately be extended to handle mutual recursive functions.
In this case, fixed points are computed simultaneously for all the mutually recursive
constraint abstraction functions.

We further argue that our fixed-point analysis always terminates. Forward analysis
comprises of two main parts (i) to build two constraint abstractions per method, (ii)
fixed point analysis for each recursive abstraction. The forward reasoning traverses each
program via a well-founded recursion over the expression and is therefore guaranteed
to terminate for programs of finite code size. The termination property of fixed point
analysis is dependent on the abstraction domain and techniques used for approximation
and widening. For linear arithmetic domain, we can use the result of [50] whereby hulling
and widening are used to ensure that constraints encountered during conjunctive fixed-
point have at most finite variations. This result extends also to k-bounded disjunctive
formulae [4].
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