
Verifying Heap-Manipulating Programs with
Unknown Procedure Calls

Shengchao Qin1, Chenguang Luo2?, Guanhua He2, Florin Craciun1, and
Wei-Ngan Chin3

1 Teesside University, Middlesbrough TS1 3BA, UK
2 Durham University

3 National University of Singapore

Abstract. Verification of programs with invocations to unknown pro-
cedures is a practical problem, because in many scenarios not all codes
of programs to be verified are available. Those unknown calls also pose
a challenge for their verification. This paper addresses this problem with
an attempt to verify the full functional correctness of such programs
using pointer-based data structures. Provided with a Hoare-style speci-
fication {Φpr} prog {Φpo} where program prog contains calls to some un-
known procedure unknown, we infer a specification mspecu for unknown
from the calling contexts, such that the problem of verifying prog can
be safely reduced to the problem of proving that the procedure unknown
(once its code is available) meets the derived specification mspecu. The
expected specification mspecu for the unknown procedure unknown is au-
tomatically calculated using an abduction-based shape analysis specifi-
cally designed for a combined abstract domain. We have also done some
experiments to validate the viability of our approach.

1 Introduction

While automated verification of heap-manipulating programs remains a big chal-
lenge [16], significant advances have been seen recently since the emergence
of separation logic [13]. For instance, SpaceInvader [3] can verify the pointer
safety of a large portion of the Linux kernel and many device drivers using
shared mutable data structures; THOR [10] employs additional numerical anal-
ysis to help gain better precision for data structure properties such as list length;
Hip/Sleek [11] can verify more sophisticated properties involving both shape
and numerical information, such as sortedness, height-balanced and red-black
properties. These are all successful examples of verification/analysis of heap-
manipulating programs, esp. those processing pointer-based shared mutable data
structures.

However, a recent prevalent trend of component-based software engineer-
ing [7] poses great challenge for quality assurance and verification of programs.
This methodology involves the integration of software components from both
native development and third-parties, and thus the source code of some com-
ponents/procedures might be unknown for verification. For example, some pro-

? Now with Citigroup Inc.

2 S. Qin, C. Luo, G. He, F. Craciun, W.-N. Chin

grams may have calls to third-party library procedures whose code is not accessi-
ble (e.g. in binary form). Some components may be invoked by remote procedure
calls only with a native interface such as COM/DCOM [14]. Still, some compo-
nents could be used for dynamic upgrading of running systems whose cost of
being stopped/restarted is too expensive to bear [15]. Other scenarios include
function pointers (e.g. in C), interface method invocation (e.g. in OO) and mobile
code, which all contain procedures not available for static verification.

To verify such programs, existing approaches generally do not provide elegant
solutions. For example, black-box testing [2] regards the unknown procedures as
black-boxes to test their functionality, which cannot formally prove the absence
of program bugs, therefore may not be enough for safety-critical systems. Like-
wise, specification mining [1] discovers possible specifications for the (unknown
part of the) program by observing its execution and traces, which is also dy-
namically performed and bears the same problem. For static verifiers/analysers,
SpaceInvader [3] simply assumes the program and the unknown procedure have
disjoint memory footprints so that the unknown call can be safely ignored due to
the hypothetical frame rule [12], whereas this assumption does not hold in many
cases. Some methods [4, 6] try to take into account all possible implementations
for the unknown procedure; however there can be too many such candidates in
general, and hence the verification might be infeasible for large-scaled programs.
Finally, some verifiers will just stop at the first unknown procedure call and
provide an incomplete verification [11], which is obviously undesirable.
Approach and contributions. We propose a novel approach in this paper
to verifying heap-manipulating programs calling unknown procedures. Given
a specification S = {Φpr} prog {Φpo} where prog contains calls to an unknown
procedure unknown, we try to infer a specification Su for unknown based on the
calling context(s) of prog. The verification of prog against S can now be safely
reduced to the verification of unknown against the inferred specification Su, pro-
vided that the verification of the known fragments does not cause any problems.
The inferred specification is subject to a later verification when an implemen-
tation or a specification for the unknown procedure becomes available. This is
essentially an improvement of our previous work [8] by extending the program
properties to be verified from simple pointer safety to full functional correctness
of linked data structures. Such properties include structural numerical ones like
size and height, relational numerical ones like sortedness, and multi-set ones like
symbolic content. Our paper makes the following technical contributions:
– We propose a novel framework in a combined abstract domain (involving

both shape and pure properties) for the verification of full functional cor-
rectness of programs with unknown calls.

– Our approach is essentially top-down, as it can be used to infer the specifica-
tion for callee procedures based on the specification for the caller procedure.
Hence it may benefit the general software development process as a comple-
ment for current bottom-up approaches [3, 11].

– We have invented an abduction mechanism which can be applied in this
combined domain. It not only can infer shape-based anti-frames for an en-
tailment, but also can discover corresponding pure information (numerical

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 3

and/or multi-set) as well. We also defined a partial order as a guidance for
the quality of abduction results.

– We have conducted some initial experimental studies to test the viability and
performance of our approach. Preliminary results show that our approach
can derive expressive specifications which fully capture the behaviours of the
unknown code in many cases.

In the following we will first illustrate our approach with an illustrative example
and then describe its formal settings. Any technical details not described due to
space limit can be found in our technical report [9].

2 The Approach

We first introduce our specification mechanism, followed by an illustrative ex-
ample for the verification.

2.1 User-defined Predicates

Separation logic [13] extends Hoare logic to support reasoning about shared
mutable data structures. It provides separation conjunction (∗) to form formulae
like p1 ∗ p2 to assert that two heaps described by p1 and p2 are domain-disjoint.
Our abstract domain is founded on a hybrid logic of both separation logic and
classical first-order logic to specify both separation and pure properties. Over
this domain we allow user-defined inductive predicates. For example, with a data
structure definition for a node in a list data node { int val; node next; }, we
can define a predicate for a list with the content stored in its nodes as

root::llB〈S〉 ≡ (root=null∧S=∅)∨(∃v,q,S1·root::node〈v, q〉∗q::llB〈S1〉∧S=S1t{v})
The parameter root for the predicate llB is the root pointer referring to the
list. Its content is denoted by the multi-set S. A uniform notation p::c〈v∗〉 is
used for either a singleton heap or a predicate. If c is a data node, the notation
represents a singleton heap, p7→c[v∗], e.g. the root::node〈v, q〉 above. If c is a
predicate name, then the data structure pointed to by p has the shape c with
parameters v∗, e.g., the q::llB〈S1〉 above.

If users want to verify a sorting algorithm, they can incorporate sortedness
property into the above predicate as follows:

sllB〈S〉 ≡ (root=null ∧ S=∅) ∨
(root::node〈v, q〉 ∗ q::sllB〈S1〉 ∧ S={v}tS1 ∧ (∀u∈S1 · v≤u))

where we use the following shortened notation: (i) default root parameter in
LHS may be omitted, (ii) unbound variables, such as q and S1, are implicitly
existentially quantified. Meanwhile, later we may still use underscore to denote
an implicitly quantified variable. Such user-supplied predicates can be used to
specify method specifications.

2.2 Illustrative Example

In this section, we illustrate informally, via an example, how our approach verifies
a program by inferring the specification for the unknown procedure it invokes.
Example 1 (Motivating example). Our goal is to verify the procedure sort against
the given specification shown in Figure 1. According to the specification, the pro-
cedure takes in a non-empty linked list x and returns a sorted list referenced as

4 S. Qin, C. Luo, G. He, F. Craciun, W.-N. Chin

0 node sort(node x) requires x::llB〈S〉 ensures res::sllB〈S〉
1 { // res is the value returned by the procedure

1a // Forward analysis begins with current state σ : x::llB〈S〉
2 if (x == null) return null;

2a // σ : x::llB〈S〉 ∧ x=null ∧ res=null

2b // Check whether current state meets the postcondition: σ ` res::sllB〈S〉
2b // which succeeds; the verification on this branch terminates

3 else {

3a // σ : x::llB〈S〉 ∧ x6=null

3b // Unknown call is now encountered (line 4); extract its precondition from σ:

3c // Φupr := Local(σ, {x}) := x::llB〈S〉 ∧ x 6=null

3d // Also distinguish the frame part not touched by unknown call:

3e // R0 := Frame(σ, {x}) := emp ∧ x 6=null

4 node y = unknown(x);

4a // Immediately after the unknown call we know nothing about its effect, so

4b // we begin to discover its post-effect starting from emp (saved in σ′):

4c // σ′0 : emp ∧ x=a ∧ y=resu σ := R0 ∗ σ′0 σ′ := σ′0
4d // Next instruction (y.next) requires y be a node

4e // But the entailment checking σ ` y::node〈v, p〉 fails

4f // This requirement might be part of the unknown call’s post-effect; we use

4g // abduction to find it and add it to current state and unknown call’s post:

4h // σ ∗ [σ′1] B y::node〈v, p〉 (s.t. σ ∗ σ′1 ` y::node〈v, p〉 ∗ true)

4i // σ′1 : y::node〈v, p〉 σ := σ ∗ σ′1 σ′ := σ′ ∗ σ′1
5 node z = y.next;

5a // Current state σ : y::node〈v, z〉
5b // Next instruction invokes this procedure recursively and requires its pre, but

5c // σ ` z::llB〈S1〉 fails possibly due to lack of knowledge about unknown call

5d // Again we use abduction to find the missing part of unknown call’s post-effect

5e // σ ∗ [σ′2] B z::llB〈S1〉 (s.t. σ ∗ σ′2 ` z::llB〈S1〉 ∗ true)

5f // σ′2 : z::llB〈S1〉 σ := σ ∗ σ′2 σ′ := σ′ ∗ σ′2
6 node w = sort(z);

6a // Current state σ : y::node〈v, z〉 ∗w::sllB〈S1〉 (w already refers to a sorted list)

7 y.next = w;

7a // Current state σ : y::node〈v, w〉 ∗ w::sllB〈S1〉
8 return y;

8a // σ : y::node〈v, w〉 ∗ w::sllB〈S1〉 ∧ res=y; it should imply sort’s postcondition

8b // But σ ` res::sllB〈S〉 still fails, suggesting more post-effect of unknown call

8c // A final abduction is conducted to find it: σ ∗ [σ′3] B res::sllB〈S〉
8d // σ′3 : S={v}tS1 ∧ ∀u∈S1·v≤u σ := σ ∗ σ′3 σ′ := σ′ ∗ σ′3
8e // All abduction results will be combined at last to form unknown call’s post

9 } }

9a // Φupr : a::llB〈S〉 ∧ a 6=null (a is the unknown procedure’s formal parameter)

9b // Φupo : resu::node〈v, b〉 ∗ b::llB〈S1〉 ∧ S={v}tS1 ∧ ∀u∈S1·v≤u

Fig. 1. Verification of sort which invokes an unknown procedure unknown.

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 5

res. The (symbolic) content of these two lists are identical (S). Note that sort

calls an unknown procedure unknown at line 4. As we do not have available
knowledge about it, the discovery of its specifications is essential for both the
verification and our understanding of the program (such that we may find out
what sorting algorithm this procedure implements).

We conduct a forward analysis on the program body starting with the pre-
condition x::llB〈S〉 (line 0). The results of our analysis (e.g. the abstract states)
are marked as comments in the code. The analysis carries on until it reaches the
unknown procedure call at line 4.

As afore-shown, the current state before line 4 is x::llB〈S〉 ∧ x 6=null (σ at
line 3a). Then we want to discover the precondition for the unknown call from it.
To do that, we split σ into two disjoint parts: the local part Φupr (line 3c) that is
depended on, and possibly mutated by, the unknown procedure; and the frame
part R0 (line 3e) that is not accessed by the unknown procedure. Intuitively, the
local part of a state w.r.t. a set of variables X is the part of the heap reachable
from variables in X; while the frame part denotes the unreachable heap part.
Thus we take Φupr (line 3c) as a crude precondition for the unknown procedure.
The frame part R0 is not touched by the unknown call and will remain in the
post-state, as shown in line 4c.

At line 4c, the abstract state after the unknown call (σ) consists of two parts:
one is the aforesaid frame R0 not accessed by the call, and the other is the pro-
cedure’s postcondition which is unfortunately not available. Our next step is to
discover the postcondition by examining the code fragment after the unknown
call (lines 4a to 8e). For this task, a traditional approach is a backward reason-
ing from the caller’s postcondition towards the unknown call’s postcondition.
However, this is proven infeasible for separation logic based shape domain by
previous works [3], and hence we employ another approach with a forward rea-
soning from the unknown call towards the caller’s postcondition, using abduction
to discover the unknown call’s postcondition.

Initially, we assume the unknown procedure having an empty heap σ′0 as its
postcondition1, and gradually discover the missing parts of the postcondition
during the symbolic execution of the code fragment after the unknown call. To
do that, our analysis keeps track of a pair (σ, σ′) at each program point, where σ
refers to the current heap state, and σ′ denotes the expected postcondition dis-
covered so far for the unknown procedure. The notations σ′i are used to represent
parts of the discovered postcondition.

At line 5, y.next is dereferenced, whose value is then assigned to z. Such deref-
erence causes a problem, as we have an empty heap beforehand (σ in line 4c).
However, this is not necessarily due to a program error; it might be attributed
to the fact that the unknown call’s postcondition is still unknown. Therefore,
our analysis performs an abduction (line 4h) to infer the missing part σ′1 for
σ such that σ ∗ σ′1 implies that y points to a node. As shown in line 4i, σ′1 is
inferred to be y::node〈v, p〉, which is accumulated into σ′ as part of the expected

1 Note that we introduce fresh logical variables a and resu to record the value of x
and y when unknown returns.

6 S. Qin, C. Luo, G. He, F. Craciun, W.-N. Chin

postcondition of the unknown procedure. (We will explain the details for abduc-
tion in Section 4.) Now the heap state combined with the inferred σ′1 meets the
requirement of the dereference, and thus the forward analysis continues.

At line 6, the procedure sort is called recursively. Here the current heap state
still does not satisfy the precondition of sort (as shown in line 5c). Blaming the
lack of knowledge about the unknown call’s postcondition, we conduct another
abduction (line 5e) to infer the missing part σ′2 for σ such that σ ∗σ′2 entails the
precondition of sort w.r.t. some substitution [z/x]. Updated with the abduction
result z::llB〈S1〉, the program state now meets the precondition of sort, which
is later transformed to w::sllB〈S1〉 as the effect of sorting over z.

After that, line 7 links y and the sorted list w together. Then y is returned as
the procedure’s result at last. The corresponding state σ at line 8a is expected
to establish the postcondition of sort for the overall verification to succeed.
However, it does not (as shown in line 8b). Again this might be because part of
the unknown call’s postcondition is still missing. Therefore, we perform a final
abduction (line 8c) to infer the missing σ′3 as follows:

(y::node〈v, w〉 ∗ w::sllB〈S1〉 ∧ res=y) ∗ [σ′3] B res::sllB〈S〉
such that σ ∗ σ′3 implies the postcondition. In this case, our abductor returns σ′3
as a sophisticated pure constraint S={v}tS1 ∧∀u∈S1·v≤u as the result which is
then added into σ′, as shown in line 8d.

Finally, we generate the expected pre/post-specification for the unknown
procedure (lines 9a and 9b). The precondition is obtained from the local pre-
state of the unknown call, Φupr at line 3c, by replacing all variables that are
aliases of a with the formal parameter a. The postcondition is obtained from
the accumulated abduction result, σ′, after performing a similar substitution
(which also involves formal parameter resu). Our discovered specification for
the unknown procedure node unknown(node a) is:

Φupr : a::llB〈S〉 ∧ a 6=null

Φupo : ∃b · resu::node〈v, b〉 ∗ b::llB〈S1〉 ∧ S={v}tS1 ∧ ∀u∈S1·v≤u
This derived specification has two implications. The first is that the entire pro-
gram is verified on the condition that unknown meets such specification. The
second is an improvement of our understanding on the behaviours of both the
caller (sort) and the callee (unknown): the callee should choose the smallest
element from its input list, and its way of choice decides the type of sorting for
the caller (selection or bubble sort).

3 Language and Abstract Domain

To simplify presentation, we focus on a strongly-typed C-like imperative lan-
guage in Figure 2. A program Prog consists of two parts: type declarations and
method declarations. The type declarations tdecl can define either data type
datat (e.g. node) or predicate spred (e.g. llB). The method declarations include
meth and munk, of which the second contains invocations to unknown procedures
while the first does not. The spred and mspec are defined in Figure 3.

Note that the language is expression-oriented, so the body of a method is an
expression composed of standard instructions and constructors of an imperative

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 7

Prog ::= tdecl meth munk tdecl ::= datat | spred
datat ::= data c { field } field ::= t x t ::= c | τ
meth ::= t mn ((t x); (t y)) mspec {e} τ ::= int | bool | void
munk ::= t mn ((t x); (t y)) mspec {v}
e ::= d | d[x] | x=e | e1; e2 | t x; e | if (x) e1 else e2 | while x {e} inv ∆
u ::= unk(x;y) | unk(x0;y0); e1; unk1(x1;y1); e2; ...; en−1; unkn(xn;yn) |

if (x) v else e | if (x) e else v | if (x) v1 else v2 | while x {v} inv ∆
v ::= e1;u; e2
d ::= null | kτ | x | skip | new c(x) | mn(x;y)
d[x] ::= x.f | x.f :=z | free(x)

Fig. 2. A core (C-like) imperative language.

language. e is the (recursively defined) program constructor and d and d[x] are
atom instructions. Note also that the language allows both call-by-value and call-
by-reference method parameters (which are separated with a semicolon ; where
the ones before ; are call-by-value and the ones after are call-by-reference).

To address the unknown calls, we employ unknown constructors u and v to de-
note expressions that involve invocations to the unknown procedures (unk(x,y)).
An unknown block v is defined as a sequence of normal expressions sandwiching
an unknown expression u, which can be a single unknown call, or a sequence of
unknown calls, or an if-conditional statement/while loop containing an unknown
block. Our aim is to discover the specifications for the unknown procedures in u
and v to verify the whole program.

mspec ::= requires Φpr ensures Φpo spred ::= root::c〈v〉 ≡ Φ
∆ ::= Φ | ∆1∨∆2 | ∆∧π | ∆1∗∆2 | ∃v·∆
Φ ::=

∨
σ σ ::= ∃v·κ∧π

κ ::= emp | v::c〈v〉 | κ1 ∗ κ2 π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 6=v2 | v 6=null | true | γ1∧γ2
φ ::= ϕ | b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2
s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2) | |B|
ϕ ::= v∈B | B1=B2 | B1@B2 | B1vB2 | ∀v∈B·φ | ∃v∈B·φ
B ::= B1tB2 | B1uB2 | B1−B2 | ∅ | {v}

Fig. 3. The specification language.

Our specification language (in Figure 3) allows (user-defined) shape predi-
cates to specify both separation and pure properties. The shape predicates spred
are constructed with disjunctive constraints Φ. We require that the predicates
be well-formed [11].

A conjunctive abstract program state σ is composed of a heap (shape) part κ
and a pure part π, where π consists of γ, φ and ϕ as aliasing, numerical and bag
information, respectively. We use SH to denote a set of such conjunctive states.
During our verification, the abstract program state at each program point will
be a disjunction of σ’s, denoted by ∆ (and the set of such disjunctions PSH). An
abstract state ∆ can be normalised to the Φ form [11].

The memory model of our specification formulae is adapted from the model
given for “early versions” of separation logic [13], except that we have extensions
to handle user-defined shape predicates and related pure properties. Meanwhile,

8 S. Qin, C. Luo, G. He, F. Craciun, W.-N. Chin

for program variables in abstract states, we use unprimed ones to denote their
initial values and primed ones for current values [9, 11].

4 Abduction

As shown in Section 2, when analysing the code after an unknown call, it is
possible that the current state cannot meet the required precondition for the
next instruction due to the lack of information about the unknown procedure.
Therefore we need to infer the unknown procedure’s specification with abduc-
tion (or abductive reasoning) [3, 5]. It works as follows: for a failed entailment
checking σ1 ` σ2 ∗ true, it attempts to compute an anti-frame σ′, such that
σ1 ∗ σ′ ` σ2 ∗ true succeeds. For instance, the entailment checking emp ` x::llB〈S〉
fails as the antecedent contains an empty heap. Then x::llB〈S〉 will be found to
strengthen the antecedent and validate the entailment emp ∗ x::llB〈S〉 ` x::llB〈S〉.

An abduction σ1 ∗ [σ′] B σ2 can also be written as σ1 ∗ [σ′] B σ2 ∗ σ3, where
σ1 and σ2 are inputs, σ′ is the abduction result (the anti-frame), and σ3 is the
frame part resulted from the entailment checking σ1 ∗ σ′ ` σ2.

σ 0 σ1 ∗ true σ1 ` σ ∗ σ′ σ ∗ σ′ ` σ1 ∗ σ2

σ ∗ [σ′] B σ1 ∗ σ2

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ0 ∈ unroll(σ) data no(σ0) ≤ data no(σ1)

σ0 ` σ1 ∗ σ′ or σ0 ∗ [σ′0] B σ1 ∗ σ′ σ′′=XPure1(σ′) σ ∧ σ′′ ` σ1 ∗ σ2

σ ∧ [σ′′] B σ1 ∗ σ2

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ1 ∗ [σ′1] B σ ∗ σ′ σ′′=XPure1(σ′) σ ∧ σ′′ ` σ1 ∗ σ2

σ ∧ [σ′′] B σ1 ∗ σ2

σ 0 σ1 ∗ true σ1 0 σ ∗ true σ ∗ σ1 0 false

σ ∗ [σ1] B σ1 ∗ σ2

Fig. 4. Abduction rules.

Our abduction rules given in Figure 4 deal with four different cases. The first
rule triggers when the LHS (σ) does not imply the RHS (σ1) but the RHS implies
the LHS with some formula (σ′) as the frame. This rule is quite general and
applies in many cases, such as the state immediately after an unknown call where
we start with emp as the heap state. For the example above emp 0 x::llB〈S〉,
the RHS can entail the LHS with frame x::llB〈S〉. The abduction then checks
whether σ plus the frame information σ′ entails σ1 with some frame formula σ2
(emp in this example), and returns the result x::llB〈S〉.

In the case described by the second rule, neither side implies the other, e.g.
for x::sllB〈S〉 as LHS (σ) and ∃p, u, v · x::node〈u, p〉 ∗ p::node〈v, null〉 as RHS
(σ1). As the shape predicates in the antecedent σ are formed by disjunctions
according to their definitions (like sllB), its certain disjunctive branches may
imply σ1. As the rule suggests, to accomplish abduction σ ∗ [σ′′] B σ1 ∗ σ2, we
first unfold σ (σ0 ∈ unroll(σ)) and try entailment or further abduction with the
results (σ0) against σ1. If it succeeds with a frame σ′, then we first obtain a pure
approximation of σ′ with XPure [11], and confirm the abduction by ensuring
σ ∧ σ′′ ` σ1 ∗ σ2, for some σ2. For the example above, the abduction returns
|S|=2 as the anti-frame σ′ and discovers the nontrivial frame S={u, v} ∧ u≤v

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 9

(σ2). Note the function data no returns the number of data nodes in a state, e.g.
it returns one for x::node〈v, p〉 ∗ p::llB〈T〉. This syntactic check is important for
the termination of the abduction. The unroll unfolds all shape predicates once in
σ, normalises the result to a disjunctive form (

∨n
i=1 σi), and returns the result

as a set of formulae ({σ1, ..., σn}). The XPure is a strengthened version of that
in [11], as it also keeps the pure part of σ′ in the result.

In the third rule, neither side entails the other, and the second rule does
not apply, for example ∃p, u, v · x::node〈u, p〉 ∗ p::node〈v, null〉 as LHS (σ) and
∃S · x::sllB〈S〉 as RHS (σ1). In this case the antecedent cannot be unfolded
as they are already data nodes. As the rule suggests, it reverses two sides of
the entailment and applies the second rule to uncover the constraints σ′1 and
σ′. Then it checks that the LHS (σ), with σ′ added, does imply the RHS (σ1)
before it returns σ′. For the example above, the abduction returns u≤v which is
essential for the two nodes to form a sorted list (σ1).

When an abduction is conducted, the first three rules should be attempted
first; if they do not succeed in finding a solution, the last rule is invoked to
simply add the consequent to the antecedent, provided that they are consistent.
It is effective for situations like x::node〈 , 〉 0 y::node〈 , 〉, where we should add
y::node〈 , 〉 to the LHS directly (as the other three rules do not apply here).

One observation on abduction is that there can be many solutions of the anti-
frame σ′ for the entailment σ1 ∗ σ′ ` σ2 ∗ true to succeed. For instance, false is
always a solution but should be avoided where possible. For all possible solutions
to an abduction, we can compare their “quality” with a partial order � over SH
defined by the entailment relationship (`):

σ1 � σ2 =df σ2 ` σ1 ∗ true

and the smaller (weaker) one in two abduction solutions is regarded as better.
We prefer to find solutions that are (potentially locally) minimal with respect to
� and consistent. However, such solutions are generally not easy to compute and
could incur excess cost (with additional disjunction in the analysis). Therefore,
our abductive inference is designed more from a practical perspective to discover
anti-frames that should be suitable as specifications for unknown procedures, and
the partial order � is more a guidance of the decision choices of our abduction
implementation, rather than a guarantee to find the theoretically best solution.

5 Verification

This section presents our algorithms to verify programs with unknown calls.

1. Main verification algorithm. Our main verification algorithm is given in
Figure 5. It verifies an unknown block v (the third parameter) against given
specifications mspecv (the second parameter). The first parameter includes the
specifications of already available procedures which might be invoked as well as
the unknown ones in the program to be verified. Upon successful verification, this
algorithm returns specifications that should be met by the unknown procedures
in v. If the verification fails, it suggests that the current program cannot meet one
or more given specifications due to a potential program bug. The specifications

10 S. Qin, C. Luo, G. He, F. Craciun, W.-N. Chin

for unknown procedures will be expressed in terms of special variables a, b, etc.
as in the earlier example.

Algorithm Verify(T ,mspecv, v)

1 Denote v as { e1;u; e2} ; mspecu := ∅
2 (x0,y0) := prog var(v) ; (x,y) := prog var(u)

3 foreach (requires Φpr ensures Φpo) ∈ mspecv do

4 S0 := |[e1]|T {Φpr ∧ y′
0=y0}

5 if false ∈ S0 then return fail endif

6 foreach σ ∈ S0 do

7 Φupr := Local(σ, {x,y})
8 z := fv(Φupr) \ {x,y}
9 S := |[e2]|AT {([b/y]Frame(σ, {x,y}) ∧ x=a ∧

y=b ∧ z=c, emp ∧ x=a ∧ y=b ∧ z=c)}
10 S′ := { (σ, σ′) | (σ, σ′)∈S ∧ σ ` Φpo ∗ true } ∪

{ (σ ∗ σ′′, σ′ ∗ σ′′) | (σ, σ′)∈S ∧
σ 0 Φpo∗true ∧ σ∗[σ′′] B Φpo∗true }

11 if ∃(σ, σ′)∈S′ . fv(σ′) * ReachVar(σ, {a, b})
then return (fail, σ′) endif

12 foreach (σ, σ′) ∈ S′ do

13 Φupr := [a/x, b/y, c/z]Φupr
14 Φupo := sub alias(σ′, {a, b, c})
15 g := (fv(Φupr) ∩ fv(Φupo)) ∪ {a, b}
16 mspecu := mspecu ∪ {(requires ∃(fv(Φupr)\g) · Φupr

ensures Φupo)}
17 end foreach

18 end foreach

19 end foreach

20 Tu := CaseAnalysis(T ,mspecu, u)

21 return T]Tu
end Algorithm

Fig. 5. The main verification algorithm.

The algorithm initialises in the first two lines. It distinguishes the body of the
unknown block v (as an unknown expression u in between two normal expressions
e1 and e2), sets up the set to store discovered specifications (line 1), and finds
the program variables that are potentially accessed by v and u, respectively
(prog var in line 2). Note that x0 and x are the variables read by v and u, and
y0 and y are those mutated. For example, if v contains an assignment y = x

then x will be in x0 and y in y0.

After the initialisation, for each specification (requires Φpr ensures Φpo) to
verify against (line 3), the algorithm works in three steps. The first step is to
compute the preconditions of u (lines 4–7). It first conducts a symbolic execution
from Φpr over e1 (the program segment before u) to obtain its post-states, from
which the preconditions for u will be extracted (line 4). The symbolic execution is
essentially a forward analysis whose details are presented later. If the post-states
include false, then it means the given Φpr cannot guarantee e1’s memory safety,
and thus fail is returned (line 5). Otherwise, each post-state of e1 is processed by

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 11

function Local as a candidate precondition for u (line 7). Intuitively, it extracts
the part of each σ reachable from the variables that may be accessed by u,
namely, x and y. The function Local is defined as follows:

Local(∃z · κ ∧ π, {x}) =df ∃fv(σ) ∪ {z} \ ReachVar(κ ∧ π, {x}) ·
ReachHeap(κ ∧ π, {x}) ∧ π

where fv(σ) stands for all free (program and logical) variables occurring in σ,
and ReachVar(κ ∧ π, {x}) is the minimal set of variables reachable from {x}:
{x} ∪ {z2 | ∃z1, π1 · z1∈ReachVar(κ∧π, {x}) ∧ π=(z1=z2 ∧ π1)} ∪ {z2 |
∃z1, κ1 · z1∈ReachVar(κ∧π, v) ∧ κ=(z1::c〈.., z2, ..〉 ∗ κ1)} ⊆ ReachVar(κ∧π, {x})

That is, it is composed of aliases of x as well as variables reachable from x. And
the formula ReachHeap(κ∧π, {x}) denotes the part of κ reachable from {x} and
is formally defined as the ∗-conjunction of the following set of formulae:

{κ1 | ∃z1, z2, κ2 · z1∈ReachVar(κ∧π, {x}) ∧ κ=κ1∗κ2 ∧ κ1=z1::c〈.., z2, ..〉}
The second step is to discover the postconditions for u (lines 9–11). This

is mainly completed with another symbolic execution with abduction over e2
(line 9), whose details are also introduced later. Here we denote u’s post-state
as emp, since its knowledge is not available yet. Therefore, the initial state for
the symbolic execution of e2 is simply the frame part of state not touched by u.
The function Frame is formally defined as

Frame(∃z · κ ∧ π, {x}) =df ∃z · UnreachHeap(κ ∧ π, {x}) ∧ π
where UnreachHeap(∃z · κ ∧ π, {x}) is the formula consisting of all ∗-conjuncts
from κ which are not in ReachHeap(∃z · κ ∧ π, {x}).

The conjunctions x=a ∧ y=b ∧ z=c in line 9 are to keep track of variable
snapshot accessed by u using the special variables a, b and c. Then the symbolic
execution returns a set S of pairs (σ, σ′) where σ is a possible post-state of e2
and σ′ records the discovered effect of u. However, maybe u still has some effect
that is only exposed in the expected postcondition Φpo for the whole program;
therefore we need to check whether or not σ can establish Φpo. If not, another
abduction σ∗[σ′′] B Φpo is invoked to discover further effect σ′′ which is then
added into σ′.

There can still be some complication here. Note that the effect discovered
during e2’s symbolic execution may not be attributed all over to u; it is also
possible that there is a bug in the program, or the given specification is not
sufficient. As a consequence of that, the result σ′ returned by our abduction
may contain more information than what can be expected from u, in which case
we cannot simply regard the whole σ′ as the postcondition of u. To detect such a
situation, we introduce the check in line 11. It tests whether the whole abduction
result is reachable from variables accessed by u. If not, then the unreachable part
cannot be expected from u, which indicates a possible bug in the program or
some inconsistency between the program and its specification. In such cases, the
algorithm returns an additional formula that can be used by a further analysis
to either identify the bug or strengthen the specification.

The third step (lines 12–17) is to form the derived specifications for u in terms
of variables a, b and g. Here g denotes logical variables not explicitly accessed by

12 S. Qin, C. Luo, G. He, F. Craciun, W.-N. Chin

u, but occurring in both pre- and postconditions (ghost variables). The formula
sub alias(σ′, {a, b, c}) is obtained from σ′ by replacing all variables with their
aliases in {a, b, c}. Finally, at line 20, the obtained specifications mspecu for
u are passed to the case analysis algorithm (given in Figure 6) to derive the
specifications of unknown procedures invoked in u.

2. Case analysis algorithm. In order to discover specifications for unknown
procedures invoked in u, the algorithm in Figure 6 conducts a case analysis
according to the structure of u. In the first case (line 2), u is simply a single
unknown call. In this situation, the algorithm returns all the pre-/postcondition
pairs from mspecu as the unknown procedure’s specifications.

Algorithm CaseAnalysis(T ,mspecu, u)

1 switch u

2 case unk(x;y)

3 return { (unk(x;y),mspecu)}
4 case if (x) v1 else v2
5 mspecT := {(requires Φpr∧x ensures Φpo) |

(requires Φpr ensures Φpo) ∈ mspecu}
6 mspecF := {(requires Φpr∧¬x ensures Φpo) |

(requires Φpr ensures Φpo) ∈ mspecu}
7 R1 := Verify(T ,mspecT , v1)

8 R2 := Verify(T ,mspecF , v2)

9 return R1]R2

10 case if (x) v else e

11 mspecT := {(requires Φpr∧x ensures Φpo) |
(requires Φpr ensures Φpo) ∈ mspecu}

12 R := Verify(T ,mspecT , v)

13 if ∃(requires Φpr ensures Φpo) ∈ mspecu, σ ∈ |[e]|T {Φpr∧¬x} ·
σ=false ∨ σ 0 Φpo∗true then return fail

14 else return R endif

15 case if (x) e else v (Similar to the previous case)

16 case while x { v} inv ∆
17 return Verify(T , requires ∆∧x ensures ∆, v)

18 case unk0(x0;y0) { ; ei; unki(xi;yi)}ni=1

19 return { (unki(xi;yi), SeqUnkCalls(T ,mspecu, u))}ni=0

end Algorithm

Fig. 6. The case analysis algorithm.

In the second case (line 4), u is an if-conditional and both branches contain
an unknown block. The algorithm uses the main algorithm to verify the two
branches separately with preconditions Φpr∧x and Φpr∧¬x respectively, where
Φpr is one of the preconditions of the whole if. The results obtained from the
two branches are then combined using the] operator:

R1]R2 =df {(f,Refine(mspec1f ∪mspec2f)) | (f,mspec1f)∈R1 ∧ (f,mspec2f)∈R2}
where Refine is used to eliminate any specification (requires Φpr ensures Φpo)
from a set if there exists a “stronger” one (requires Φ′pr ensures Φ′po) such that
Φ′pr�Φpr and Φpo�Φ′po. It is defined as

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 13

Refine(∅) =df ∅
Refine({(requires Φpr ensures Φpo)} ∪ Spec) =df

if ∃(requires Φ′pr ensures Φ′po)∈Spec · Φ′pr�Φpr ∧ Φpo�Φ′po
then Refine(Spec) else {(requires Φpr ensures Φpo)} ∪ Refine(Spec)

and] is to refine the union of two specification sets.
The third and fourth cases (lines 10 and 15) are for if-conditionals which

contain only one unknown block in one of the two branches. This is handled in a
similar way as in the second case. The only difference is, for the branch without
unknown blocks, we need to verify it with the underlying semantics (line 13).

The fifth case is the while loop. As we assume its invariant is already given
for the verification, we simply verify its body with the main algorithm, regarding
the invariant as both pre- and postconditions (line 17).

In the last case (line 21), where u consists of multiple unknown procedure
calls in sequence, another algorithm SeqUnkCalls is invoked to deal with it. We
informally introduce its idea here due to space limit; its algorithm and subsequent
discussions about our solution can be found in the report [9].

Suppose we have {Φpr} {unk0(x0;y0); e; unk1(x1;y1)} {Φpo} to be verified,
where e is the only known code fragment within the block. Our current solution
finds a common specification to capture both unknown procedures’ behaviours.

The algorithm works in three steps. In the first step, it extracts the pre-
condition for the first procedure, say Φu

pr, from the given precondition Φpr by
extracting the part of heap that may be accessed by the call via x0 and y0, which
is similar to the first step of the main algorithm Verify. Aiming at a general spec-
ification for both unknown calls, it then assumes that the second procedure has
a similar precondition Φu

pr. In the second step, it symbolically executes the code
fragment e with the help of the abductor, to discover a crude postcondition, say
Φu, expected from the first unknown call. This is similar to the second step of
the main algorithm Verify, except that the postcondition for e is now assumed to
be Φu

pr. In the third step, the algorithm takes Φu (with appropriate variable sub-
stitutions) as the postcondition of the second unknown call, and checks whether
or not the derived post (Φu) satisfies Φpo. If not, it invokes another abduction to
strengthen Φu to obtain the final postcondition Φu

po for the unknown procedures.
Note that this strengthening does not affect soundness: the strengthened Φu

po can
still be used as a general postcondition for both unknown procedures.

3. Abstract semantics. Our verification algorithms utilise two semantics: an
underlying semantics and an abstract semantics with abduction. They are used
to conduct the forward analysis over program body. The type of our underlying
semantics is defined as

|[e]| : AllSpec→ PSH → PSH

where AllSpec contains procedure specifications (extracted from the program
Prog). For some expression e, given its precondition, the semantics will calculate
the postcondition.

The abstract semantics with abduction is of the type:

|[e]|A : AllSpec→ P(SH× SH)→ P(SH× SH)

14 S. Qin, C. Luo, G. He, F. Craciun, W.-N. Chin

It takes a piece of program and a specification table, to map a (disjunctive) set
of pair of symbolic heaps to another such set (where the first in the pair is the
current state and the second is the accumulated postcondition for unknown call).

Formal definition of both semantics can be found in the technical report [9].

4. Soundness and termination. For soundness of our verification, we have
the following theorem:

Theorem 1 (Soundness). Our analysis is sound due to the soundness of en-
tailment checking, abduction and abstract semantics.

The proof for entailment checking is by structural induction [11]. For abduction,
as its result is always checked with entailment, its soundness follows that of
entailment checking’s. Finally, the soundness of abstract semantics is proven by
induction over program constructors.

We have also confirmed that our verification terminates:

Theorem 2 (Termination). Our verification will terminate in finite steps for
finite input of programs and specifications.

This is because our algorithms perform structural reasoning over finite input.
More details of soundness and termination can be found in our report [9].

6 Experimental Results

We have implemented the verification algorithms and the abstract semantics
with Objective Caml and evaluated them over some heap-manipulating pro-
grams. The results are in Tables 1 and 2. In each table, the first and second
columns denote the programs used for evaluation and their time consumption,
respectively. During the experiments, we manually hide some instructions in the
original programs as calls to unknown procedures, whose specifications we try
to discover during the verification process. Accordingly, the third column in the
first table contain both the specifications of the programs to be verified (upper
line), and the derived specifications for the unknown procedure (lower line). For
the second table, as we used the same specification x::llB〈S〉 ∗→ res::sllB〈S〉
to verify all the sorting algorithms, the third column (from the second line on)
states the discovered specification for the unknown call only. Due to space limit,
more experimental results are available in our report [9].

It can be seen that all programs are successfully verified, with some obliga-
tions on the unknown calls discovered. We note down two observations on the
experimental results. The first is that the discovered specifications for the un-
known procedures are usually more general than what we expect. Bear in mind
that we have replaced some instructions from those programs with unknown
calls. We have compared the inferred specifications for those unknown calls with
the original instructions. The results show that the specifications derived by our
algorithm not only fully capture the behaviours of those instructions, but also
suggest other possible implementations. A case in point is list’s travrs. Its “un-
known call” was originally an assignment x = x.next which traverses the list
towards its end by one node. We are able to infer that the unknown call may
actually traverse the list for arbitrary number of nodes, provided it does not go

Verifying Heap-Manipulating Programs with Unknown Procedure Calls 15

Prog. Time Main spec. (Φpr ∗→Φpo) and Derived unknown spec. (Φupr ∗→Φupo)

List processing programs

create

0.405
emp ∧ n≥0 ∗→ res::llB〈S〉 ∧ n=|S| ∧ ∀v∈S·1≤v≤n
emp ∧ a≥1 ∗→ res::node〈c, b〉 ∧ 1≤c≤n

1.020
emp ∧ n≥0 ∗→ res::sllB2〈S〉 ∧ n=|S| ∧ ∀v∈S·1≤v≤n
emp ∧ a≥1 ∗→ res::node〈c, b〉 ∧ a−1≤c≤a

sort

insert

0.667
x::ll〈n〉 ∧ n≥1 ∗→ x::ll〈m〉 ∧ m=n+1

a::node〈b, c〉 ∗ c::ll〈d〉 ∗→ a::node〈b, e〉 ∗ e::ll〈d+1〉

0.764
x::sll〈n,xs,xl〉 ∧ v≥xs ∗→ x::sll〈n+1,mn,mx〉 ∧ mn=xs ∧ mx=max(xl,v)
a::node〈b,c〉∗c::sll〈d,g,h〉∧b≤f≤g ∗→ a::node〈b,e〉∗e::sll〈d+1,f,h〉

delete

0.646
x::llB〈S〉 ∧ |S|≥2 ∗→ x::llB〈T〉 ∧ ∃a·S=Tt{a}
a::node〈b, c〉 ∗ c::node〈d, e〉 ∗ e::llB〈E〉 ∗→ a::node〈b, e〉 ∗ e::llB〈E〉

0.916
x::sllB〈S〉 ∧ |S|≥2 ∗→ x::sllB〈T〉 ∧ ∃a·S=Tt{a}
a::node〈b, c〉 ∗ c::node〈d, e〉 ∗ e::sllB〈E〉 ∧ ∀f∈E·b≤d≤f ∗→
a::node〈b, e〉 ∗ e::sllB〈E〉 ∧ ∀f∈E·b≤f

travrs

0.272
x::ll〈m〉 ∧ n≥0∧m≥n ∗→ x::ls〈p,k〉 ∗ res::ll〈r〉 ∧ p=res ∧ k=n ∧ m=n+r

a::ll〈b〉 ∗→ a::ls〈c〉 ∗ res::ll〈d〉 ∧ b=c+d ∧ c≤n

2.322
x::sllB〈S〉 ∧ n≥0∧|S|≥n ∗→ x::slsB〈p, T〉 ∗ res::sllB〈S2〉 ∧ p=res∧

|T|=n ∧ S=TtS2 ∧ ∀u∈T,v∈S2 · u≤v

a::sllB〈A〉 ∗→ a::slsB〈A1〉 ∗ res::sllB〈R〉 ∧
A=A1tR ∧ |A1|≤n ∧ ∀b∈A1,c∈R·b≤c

Binary tree, binary search tree, AVL tree and red-black tree processing programs

height 0.821
x::bt〈S, h〉 ∗→ x::bt〈T, k〉 ∧ res=h=k ∧ S=T

a::bt〈A, b〉 ∧ a6=null ∗→ a::node2〈c, d, e〉 ∗ d::bt〈D, f〉 ∗ e::bt〈E, g〉 ∧
A={c}tDtE ∧ b=max(f,g)+1 ∧ (res=d ∨ res=e)

search 1.851
x::bst〈sm, lg〉 ∗→ x::bst〈mn, mx〉 ∧ sm=mn ∧ lg=mx ∧ 0≤res≤1
a::bst〈b, c〉∧a6=null ∗→ a::node2〈d, e, f〉∗e::bst〈b, g〉∗f::h〈c〉∧g≤d≤h

avl ins 5.202
x::avl〈S, h〉 ∗→ res::avl〈T, k〉 ∧ T=St{v} ∧ h≤k≤h+1

a::avl〈A, b〉 ∗→ a::avl〈A, b〉 ∧ res=b

rbt ins 9.093
x::rbt〈S, cl, bh〉 ∗→ res::rbt〈T, cl1, bh1〉 ∧ T=St{v}
a::rbt〈A, b, c〉 ∗→ a::rbt〈A, b, c〉 ∧ res=b

Table 1. Selected experimental results (lists and trees).

beyond the list’s tail or where the user has specified as input, which allows more
implementations for the unknown procedure to be verified.

The second observation is that the precision of unknown calls’ discovered
specifications depends on its caller’s given specification. As can be seen we have
verified several list-processing programs where each one has various specifica-
tions. Within these programs we want to point out that the ones with specifica-
tions of both normal lists and sorted lists share the same code (but just with two
different specifications). Such examples include create, sort insert, delete,
and so on. For create which creates a list containing numbers from 1 to n in
descending order, we can see once incorporated with llB as specification pred-
icates, the unknown call is expected to return a node whose value c is within
1 to n. Comparatively, when verified for sortedness, c is inferred to be between
a−1 and a, as for sortedness to hold. For delete’s sorted version, we also have
the extra information that the list with one node removed is still a sorted list
(with the multi-set value constraints), whose result is stronger than the normal
list version.

16 S. Qin, C. Luo, G. He, F. Craciun, W.-N. Chin

Prog. Time Main spec. (Φpr ∗→Φpo) or Derived unknown spec. (Φupr ∗→Φupo)

Sorting (main) x::llB〈S〉 ∗→ res::sllB〈T〉 ∧ T=S

merge 4.099 a::sllB〈A〉 ∗ b::sllB〈B〉 ∗→ res::sllB〈R〉 ∧ R=AtB
quick 2.064 a::lbd〈A〉 ∗→ a::lbd〈A1〉 ∗ res::lbd〈R〉 ∧ A=A1tR ∧ ∀c∈A1, d∈R · c≤b≤d
unknown 1.824 a::llB〈A〉∧a6=null ∗→ res::node〈c, b〉∗b::llB〈B〉∧A={c}tB∧∀d∈B·c≤d

Table 2. Selected experimental results (sorting).

7 Conclusion

It is a practical and challenging problem to verify the full functional correct-
ness of heap-manipulating imperative programs with unknown procedure calls.
Our proposed solution infers expected specifications for unknown procedures
from their calling contexts. The program is verified correct on condition that
the invoked unknown procedures meet the inferred specifications. We employ a
forward program analysis over a combined domain and invent a novel abduction
for it to synthesise the specifications of the unknown procedure. As a proof of
concept, we have also implemented a prototype system to test the viability of the
proposed approach. Our main future work is to explore more general solution for
unknown calls in sequence to achieve more reasonable specifications for them.
Acknowledgement. This work was supported in part by the EPSRC projects
EP/G042322/1 and EP/E021948/1.

References
1. G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In POPL, 2002.
2. B. Beizer and J. Wiley. Black-box testing: techniques for functional testing of

software and systems. IEEE Software, 13(5), September 1996.
3. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis

by means of bi-abduction. In 36th POPL, January 2009.
4. M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedural points-

to analysis in the presence of function pointers. In PLDI, 1994.
5. R. Giacobazzi. Abductive analysis of modular logic programs. In ILPS, 1994.
6. D. Gopan and T. Reps. Low-level library analysis and summarization. In 19th

CAV, 2007.
7. W. Kozaczynski and G. Booch. Component-based software engineering. IEEE

Software, 15(5):34–36, September 1998.
8. C. Luo, F. Craciun, S. Qin, G. He, and W.-N. Chin. Verifying pointer safety for

programs with unknown calls. Journal of Symbolic Computation, To appear.
9. S. Qin, C. Luo, G. He, F. Craciun, and W.-N. Chin. Verifying heap-manipulating

programs with unknown calls. Research report, Teesside University, 2010. http://
www.scm.tees.ac.uk/s.qin/papers/unknown.pdf.

10. S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. Thor: A tool for reasoning about
shape and arithmetic. In CAV, 2008.

11. H. H. Nguyen, C. David, S. Qin, and W.-N. Chin. Automated verification of shape
and size properties via separation logic. In 8th VMCAI, 2007.

12. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In 31st POPL, January 2004.

13. J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In
17th LICS, 2002.

14. R. Sessions. COM and DCOM: Microsoft’s vision for distributed objects. John
Wiley & Sons, Inc., New York, NY, USA, 1998.

15. C. Szyperski. Component technology: what, where, and how? In ICSE, 2003.
16. J. Woodcock. Verified software grand challenge. In 14th FM, 2006.

