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Abstract
A promising approach for type-safe generic codes in the object-
oriented paradigm isvariant parametric type, which allows covari-
ant and contravariant subtyping on fields where appropriate. Pre-
vious approaches formalise variant type as a special case of the
existential type system. In this paper, we present a new framework
based onflow analysisandmodular type checkingto provide a sim-
ple but accurate model for capturing generic types. Our scheme
stands to benefit from past (and future) advances in flow analysis
and subtyping constraints. Furthermore, it fully supports casting
for variant types with a special reflection mechanism, calledcast
capture, to handle objects with unknown types. We have built a
constraint-based type checker and have proven its soundness. We
have also successfully annotated a suite of Java libraries and client
code with our flow-based variant type system.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Classes and ob-
jects; Polymorphism; Constraints; D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.2 [Programming
Languages]: Language Classifications—Object-oriented languages;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—Object-oriented constructs; Type structure
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1. Introduction
Software reuse is an important aspect of software engineering.

Traditionally, most mainstream object-oriented (OO) languages,
such as Java, C++ and C#, have relied on class subtyping to sup-
port reuse (or genericity) via inclusion polymorphism. While this
mechanism allows the convenient storage of objects via safe upcast
into generic data structure, the converse process of retrieving ob-
jects from the same data structure requires downcast testing, which
incurs runtime overheads and is possibly unsafe.

To address the shortcomings of inclusion polymorphism, there
have been several recent proposals (amongst the Java [3] and C#
[19] communities) for parametric types to be supported . Here, each
classc is allowed to carry a list of type parameters for its fields,
e.g.,c〈t1,..,tn 〉, whereby the type of each field can either be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-348-4/06/0010. . . $5.00.

instantiated or left as a type variable. Below are two classes whose
fields have been parameterised:

class Cell 〈A〉 {
A fst; · · · }

class Pair 〈A,B 〉 extends Cell 〈A〉 {
B snd; · · · }

With such parameterised class declarations, we may then de-
fine specialised instances, such asCell 〈Int 〉, Cell 〈Float 〉 or
Pair 〈Int,Num 〉, which contain more specific type information for
the fields of each class instance. Though parametric types can co-
exist with class subtyping, pointwise matching of the respective
fields is required. For example, the subtyping relation (denoted by
<: ) Pair 〈t1,t2 〉 <:Cell 〈t3 〉 is allowed only whenPair<:Cell
and t1=t3 . The latter condition is for pointwise matching of the
common field. Similarly,Pair 〈t1,t2 〉<:Pair 〈t3,t4 〉 holds, pro-
videdt1=t3 andt2=t4 . Pointwise matching (invariant subtyping)
is required because field reading and field writing are based on op-
posite flows that change the directions of subtyping. This require-
ment limits the reusability of programs based on parametric types.

To address this shortcoming, Igarashi and Viroli [17] developed
a new variant parametric type system (or variant type, in short) to
improve the subtyping of generic structures, depending on how the
fields are being accessed. Letc denote a class with one type param-
eter. Leto denote an object of variant typec〈α1t1〉 while v denotes
a location of variant typec〈α2t2〉, into which o is to pass. Each
variant typec〈αt〉 has a varianceα (see Section 3.1) attached to its
field to indicate how the field is to be accessed. A field that is sub-
ject to read-only access via reference ofv (denoted byα2 = ⊕) may
be supported by covariant subtyping. That is,c〈α1t1〉<:c 〈⊕t2〉 if
α1<: ⊕ andt1<: t2. Conversely, a field that is subject to write-only
access via reference ofv (denoted byα2 = ª) may be supported
by contravariant subtyping. That is,c〈α1t1〉<:c 〈ªt2〉 if α1<: ª
andt2<: t1. Also, a field that is subject to both read and write ac-
cesses via reference ofv (denoted byα2 = ¯) must be supported
by invariant subtyping. That is,c〈α1t1〉<:c 〈¯t2〉 if α1<: ¯ and
t1<: t2∧t2<: t1. Lastly, if a field is not accessed via reference of
v (denoted byα2 = ~), we can use bivariant subtyping. That is, we
supportc〈α1t1〉<:c 〈~t2〉 for anyt1 andt2.

Variant types give a much richer subtyping hierarchy than pa-
rameterised types do. Figure 1 illustrates some variant types for
Cell objects and their places in the subtyping hierarchy. Note
that→ denotes a subtyping relation in the graph. Also,Cell 〈~t 〉,
Cell 〈⊕Object 〉 andCell 〈ª⊥〉 are equivalent to each other while
Cell 〈¯Num〉, Cell 〈¯Float 〉 andCell 〈¯Int 〉 are unrelated. Note
that ⊥ denotes the type ofnull values which can be assigned
into any class type. However, eachCell 〈¯t 〉 is a subtype of both
Cell 〈⊕t 〉 andCell 〈ªt 〉. Also, types of the formCell 〈⊕t 〉 and
Cell 〈ªt 〉 have a subtyping hierarchy based on covariance and con-
travariance, respectively.

The benefits of variant typing have been known for some time.
However, early proposals have attached access rights to the fields



Figure 1. A Rich Subtyping Hierarchy

of each class declaration. This mechanism is known asdeclaration-
site varianceand is shown in the following example:

class DSCell 〈A〉 {
⊕A fst;
A getFst() { return fst; }
void setFst(A x) { fst=x; } }
The fieldfst is declared read only using the variance⊕. Conse-

quently, the methodsetFst cannot be invoked. Using the concept
of structured virtual type, Thorup and Torgersen [35] were the first
to link access rights and covariant subtyping to the fields of each
use of a classrather than the class declaration itself. Thisuse-site
variancemechanism is much more flexible than previous mecha-
nisms based ondeclaration-site variance. In the following exam-
ple, the access to the fieldfst is governed by the variance vari-
ableα. A reference of typeUSCell 〈⊕Int 〉 allows read-only ac-
cess, while a reference of typeUSCell 〈¯Int 〉 allows read-write
access to the fieldfst .

class USCell 〈αB〉 {
αB fst;
B getFst() { return fst; }
void setFst(B x) { fst=x; } }
Later, Igarashi and Viroli extended this concept to support

contra- and bi-variance [17]. They formalised the variant type sys-
tem by mapping it into a correspondingexistential typesystem
[7, 21, 22]. A recent proposal by Sun Microsystems for generics
in Java 1.5 [37] supportswildcard typebased on an improvement
of Igarashi and Viroli’s variant type system, but it is still viewed
as a special case of the existential type system with subtyping.
However, a more general version of existential type system, called
System F≤, has undecidable subtyping [28], while the decidabil-
ity of Igarashi and Viroli’s variant type system, remains an open
problem [18].

In this paper, we propose a new approach for the variant para-
metric type system that is based on the mechanism of flow anal-
ysis. Our flow analysis captures value flows via subtyping con-
straints. A major benefit of this approach is the considerable knowl-
edge in flow analysis that has been accumulated in the recent past

[25, 32, 38, 15, 16, 34, 26]. In particular, to support modular type-
checking, we require non-structural subtype entailment of the form
∀v(C1 =⇒ ∃wC2), whereC1, C2 are subtyping constraints while
v, w are sets of type variables. These constraints are non-structural
as we use⊥ <: t <: Object, to support the OO class inheritance
mechanism. While the decidability of non-structural subtype entail-
ment remains an open problem, there exist sound approximations
that use constraint simplification and induction techniques [32, 38].
Our work is built on top of sound but practical solutions to subtyp-
ing (flow) constraints, and we have developed a systematic frame-
work for the variant parametric type system with the following new
features:

• Our framework is based onflow analysiswhich can concisely
and intuitively capture flow of values on a per method ba-
sis (Section 3). We use variance annotations primarily to predict
the flows of values, and not for access control. We also provide
special considerations for two type values. A value ofObject
type can always flow out from any location while a null value
of ⊥ type can always flow into any location.

• We augment our generic type system withintersection typeto
help capture information flow more accurately. An intersection
type t1&t2 denotes a type with both the properties oft1 and
t2 . Such types are important for languages with multiple in-
heritance (such as Java via its interface mechanism), and can
accurately capture the flow of objects with their expected field
accesses.

• Our approach is based onmodular type checking(Section 5).
Each method is specified with a flow constraint (and variant
types) that is used to predict the value flows that may occur in
the method’s body. We verify each method separately to ensure
that the predicted accesses, flow constraint and variant typings
are efficiently and safely checked.

• We advocate the support ofdowncast to arbitrary variant types
(Section 6). With this mechanism is a novelcast capturethat
uses a reflection technique to deal with values of unknown type.
Cast capture has helped improve the generic implementation of
several JDK 1.5 libraries.



• We present a soundness theorem and avariant type checker.
We have successfully applied our prototype to a suite of Java li-
braries and client codes (Section 8). On average, we are able to
eliminate 87.9% of the casts from non-generic Java 1.4 applica-
tion code, that means 12.9% more casts than wildcard-generic
Java 1.5 application code.

Our goal is to strive for type-safe OO programs with better
genericity via a modular flow-based approach to variant parametric
type system. Next, we explain our approach with the help of some
examples.

2. Better Genericity
The main goal of genericity is to support highly reusable software

components. To allow this to happen in a type-safe way, we should
strive to provide type descriptions that are concise, understandable,
general and accurate. Specifically, each well-typed generic program
should be accurately identified where possible. As a side benefit,
we are able to track type information in a precise manner, allowing
redundant cast operations to be eliminated where possible. In this
section, we examine the key aspects for which our approach based
on flow analysis makes improvements over existing approaches
based on existential types. Some of these improvements may not
be peculiar to the flow-based approach, but they were gradually
developed starting from a different view point.

2.1 Intersection Type

Parametric type systems use number of cast operations eliminated
as a measure of accuracy [10, 14]. As it turns out, there may be
competing decisions on what types to use for certain cast operations
to be eliminated. The following example from [10] illustrates:

class B1 extends A implements I { · · · }
class B2 extends A implements I { · · · }
void foo(Boolean b) {

Cell cb1 = new Cell(new B1());
Cell cb2 = new Cell(new B2());
Cell c = b ? cb1 : cb2;
A a = (A) c.get();
I i = (I) c.get();
B1 b1 = (B1) cb1.get();
B2 b2 = (B2) cb2.get(); }

This program contains four cast operations. With the help of para-
metric types, Donovan et al. [10] suggested three sets of possible
types, each with a different subset of casts eliminated, as sum-
marised below:

Types of Variables Casts Eliminated
cb1 cb2 c (A) (I) (B1) (B2)

Cell〈B1〉 Cell〈B2〉 Cell
√ √

Cell〈A〉 Cell〈A〉 Cell〈A〉 √
Cell〈I〉 Cell〈I〉 Cell〈I〉 √

Note thatCell denotes a raw type where nothing is known of its
components. Hence, onlyObject values are statically retrievable
from it. Raw type was originally proposed in [3] for backwards
compatibility, and it is the basis for generic typing through inclu-
sion polymorphism. However, none of the three proposed solutions
are able to eliminate all four casts. This indicates that parametric
typing is not expressive enough to capture generic type for such
programs. There are two possible improvements. First, note that
the fields ofcb1, cb2 andc are subject to read-only accesses, and
not modified in the program fragment. We can therefore provide co-
variant annotations to the fields of these variables, and obtain two
possible outcomes, each with three casts eliminated:

cb1 cb2 c (A) (I) (B1) (B2)
Cell〈⊕B1〉 Cell〈⊕B2〉 Cell〈⊕A〉 √ √ √
Cell〈⊕B1〉 Cell〈⊕B2〉 Cell〈⊕I〉 √ √ √

Second, both classesB1 andB2 have supertypesA and I in com-
mon. To exploit this, we can use an intersection type parameter in
Cell 〈⊕(A&I) 〉 to describe the variablec . In a lattice of type val-
ues, an intersection typeA&I essentially defines the greatest lower
bound ofA andI . With this, all four casts can now be eliminated in
our new solution to genericity, as shown below:

cb1 cb2 c (A) (I) (B1) (B2)
Cell〈⊕B1〉 Cell〈⊕B2〉 Cell〈⊕A&I 〉 √ √ √ √

Note that the above example cannot be coded in Java 1.5 syntax.
Java 1.5 does not allow the use of intersection types for local
variable declaration, field declaration or method argument/return
types. Intersection types can be used only as upper bounds for a
method type parameter.

2.2 Modular Flow Specification

Another important principle for better genericity is that type de-
scription should be designed in amodularfashion (on a per method
basis). Type annotations appearing in the method header should de-
pend only on the method body while each call site should be a
specific instance of the method’s type declaration. This principle is
important for efficient type checking and ease of type annotation.
Specifically, for each instance method, we provide the following
method declaration:

t | t0 mn(t1 v1,..., tn vn) where ψ {... }

A separate annotation “t | ” is added at the beginning of each
method’s declaration to capture the variance of the implicitthis
parameter. This separate annotation (omitted in previous works,
such as [17, 37]) allows us to capture the behaviour of each method,
independent of its class declaration. Note thatψ captures the ex-
pected value flows of each method’s body in terms of type of the pa-
rameters (t1, .., tn), result (t0), and receiver (t). We support modular
type checking by localising type variables which are not present in
the type of parameters, result and receiver. A previous approach
[17] relies on the existential open/close mechanism for the receiver
parameter to determine if the receiver parameter is of suitable vari-
ance while other parameters are checked via subtyping. In contrast,
we achieve uniform treatment for all parameters.

To illustrate the modular type annotation mechanism, consider
three method declarations for thePair class:

class Pair 〈A,B 〉 extends Cell 〈A〉 {
B snd;
Pair 〈~, ⊕Y〉 | Y getSnd()
{return this.snd; }

Pair 〈~, ªY〉 | void setSnd(Y v)
{this.snd=v; }

Pair 〈~, ~〉&W | Pair 〈¯W,¯W〉 dup()
{return new Pair 〈W,W〉(this,this); } }

First, note thatgetSnd will read the second field whilesetSnd
will write to it. Because of these effects, we may apply covariant
(⊕) and contravariant (ª) subtypings to the second component of
the Pair object for getSnd and setSnd , respectively. Second,
bivariant (~) subtyping is allowed for the unaccessed component
of thePair object for both methods. As a shorthand, we may write
~ to denote~t since all bivariant types are equivalent. Note thatY
from getSnd andY from setSnd denote different type variables
treated independently by our modular type checker.



The third method is an interesting application of intersection
type. The method itself does not access the fields of thethis pa-
rameter, which escapes into the two fields of the method’sPair
result. To capture this value flow, we declare an intersection type
Pair 〈~, ~〉&Wfor the this parameter. The typePair 〈~, ~〉 is to
acknowledge that we have aPair object whose fields are not ac-
cessed by the currentdup method. A type variableWhelps indicate
that this parameter will escape into the fields of the result with type
Pair 〈¯W,¯W〉. This flow allows the variant type ofWto flow into
the two fields of the outputPair . Hence, for a given receiver of
type t, we havet<:Pair 〈~, ~〉 andt<:W. Possible candidates for
the typet arePair 〈⊕X, ⊕Y〉 or Pair 〈⊕X, ªY〉, etc. In contrast, if
we use the following type suggested in [17]:

Pair 〈¯X, ¯Y〉 | Pair 〈¯Pair 〈¯X, ¯Y〉, ¯Pair 〈¯X, ¯Y〉〉 dup()

we requiret=Pair 〈¯X, ¯Y〉 or t=⊥, which restricts the possible
uses of the method. One way to improve this situation is to dupli-
cate thedup method for different scenarios, as shown below:

Pair 〈⊕X, ⊕Y〉 | Pair 〈¯Pair 〈⊕X, ⊕Y〉, ¯Pair 〈⊕X, ⊕Y〉〉 dup()
Pair 〈⊕X, ªY〉 | Pair 〈¯Pair 〈⊕X, ªY〉, ¯Pair 〈⊕X, ªY〉〉 dup()
Pair 〈¯X, ªY〉 | Pair 〈¯Pair 〈¯X, ªY〉, ¯Pair 〈¯X, ªY〉〉 dup()

However, such duplications go against the goal of genericity. On
the other hand, our solution with intersection types can improve
genericity by allowing value flows to be accurately captured.

2.3 Avoiding F-Bounds where Possible

One feature that adds to the expressivity of bounded existential
type is the use of F-bounds [5] which effectively capture recursive
constraints of the formT<:C〈.., T, ..〉 whereT is a type variable
andC is a class name. While the designers of Java 1.5 consider
this feature to be significant and useful [37], it is also a source of
complication as reported recently in [20]. In particular, F-bound
together with existential type is a source of undecidability for
System F≤ which caused an earlier implementation of Java 1.5 to
fail in accepting some programs with F-bounds that were actually
type-safe (as first reported in [20]). Subsequent improvements in
Java 1.6 have removed the reported errors, but the decidability of
its type system remains an open problem.

While the flow-based approach that we advocate also supports
recursive flow constraints (if the inductive mechanism of [32, 38]
is used), our pragmatic philosophy is to avoid F-bounds whenever
it is possible to do so.

As an example of F-bound, consider the following definition of
theComparable interface for Java 1.5:

interface Comparable 〈T〉 {
int compareTo(T o); }

Here, class parameterT is being used to capture the parameter of the
methodcompareTo . As this parameter is required to be a subtype
of Comparable itself, F-bound of the formT<:Comparable 〈ªT〉
is usually needed whenComparable is used, as shown in the next
example:

class Collections {
〈T extends Comparable 〈? super T 〉〉 static T max

(Collection 〈? extends T 〉 col) { · · · }
}

In our flow-based approach, the current philosophy is to cap-
ture the value flows of each method independently. Hence, we
have chosen to capture the value flow and subtyping relation di-
rectly for each method instead, as shown below for our definition
of Comparable :

interface Comparable 〈A〉 {
Comparable 〈¯T〉 | int compareTo(T o);
}

Based on this definition, we can write themax method, as follows:

class Collections {
static T max(Collection 〈⊕T〉 col)

where T<:Comparable 〈ªT〉 { · · · }
}

This alternative is equivalent to the earlier Java 1.5 definition.
We also support a simpler way, to expressComparable inter-

face, as follows:

interface Comparable {
S & Comparable | int compareTo(T o)

where T<:Comparable ∧ T<:S ;
}

The use of this definition does not require any F-bound, but it is
more restrictive than Java 1.5 definition ofComparable interface.

Another potential use of F-bound occurs for recursive fields
of class declarations. An example is the following recursiveList
class:

class List 〈A,B 〉 extends Object
where B<:List 〈A,B 〉 {

A val;
B next; ...
}

This solution uses an F-boundB<:List 〈A,B 〉 that makes constraint
solving more complex [32]. However, in our system we may choose
to avoid the recursive constraint from the invariant of the classList
by leaving the recursivenext field with an incomplete variance®,
as follows:

class List 〈A〉 extends Object {
A val;
®List 〈A〉 next; ...
}

The variance of thenext field is incomplete at its declaration
site and can be promoted to either¯ or ⊕, depending on how its
underlying type parameterList 〈A〉 is being instantiated at the use
site. This type promotion process is elaborated later in Section 4.2,
and can be used to avoid F-bound, where possible.

2.4 Avoiding Existential Type Always

It has been generally acknowledged that existential type is use-
ful for describing data types whose implementation details can be
made abstract. This aspect is closely related to the use of bivari-
ant type~t where the underlying typet is unknown and may be
assumed to be of any type. While no-access is one way to enforce
bivariant type, it is also possible to use the open/close mechanism
of existential type system to describe situations where implemen-
tation details can be made abstract. A typical example is thecopy
operation on two elements of a vector that was highlighted in [18],
and reproduced below:

void copy(Vector 〈~〉 x, int i, int j) {
open x as [Y,y] in

y.setElementAt(y.elementAt(i),j)
}

The above code opens the bivariant type ofx as an object bound
to variabley with an abstract typeY. As all elements of each vec-
tor are of the sameY type, we may safely copy a value from one
position of the vector into another position, without knowing the



actual underlying type. The close correspondence between existen-
tial type and bivariant type is a primary reason why Igarashi and
Viroli considered existential type system as the underlying model
for their variant parametric type system.

However, the designers of Java 1.5 considered the open/close
mechanism of existential type system to be somewhat restrictive
[36]. They have therefore proposed a relaxation to open each ex-
pression as an existential type by associating it with a global type
variablewithouta corresponding close operation. This use is simi-
lar to the flow-based approach where each parameter (or local vari-
able) is regarded as a location where values may flow in and/or out.
Nevertheless, in the context of existential type system, such relax-
ation might possibly be unsound since each existential type may in
fact correspond to contradicting type values. This is possibly why
correctness proof is yet to be completed (as of [36]), even though
a full-scale implementation for wildcard type system has already
been released for public use.

Furthermore, Java 1.5 relied on polymorphic (generic) type
system for selected methods to capture situations where invariant
type appears necessary, as shown by the following example:

〈T〉 void docopy(Vector 〈T〉 x, int i, int j) {
T tmp = x.elementAt(i);
x.setElementAt(tmp,j)
}
Through a wildcard capture mechanism, it is possible to provide

a method with bivariant parameter, as shown below:

void copy(Vector 〈?〉 x, int i, int j) {
docopy(x,i,j);
}

Note that wildcard type ofx has been captured by the globalT
type variable. Again, the open/close mechanism is averted, even
though the underlying system is still based on bounded existential
type system.

Our current philosophy is to avoid existential type system alto-
gether. To capture the effect of an unknown abstract type, we have
introduced a casting mechanism that is able to capture the underly-
ing type of an object via a fresh type variable. We refer to this as a
cast capturetechnique which is elaborated in more details in Sec-
tion 6. The samecopy method can be re-written with a casting of
thex parameter from bivariant typeVector 〈~〉 to an invariant type
(Vector 〈¯T〉) . In the process,T is used to capture the unknown
type, as shown below:

void copy(Vector 〈~〉 x, int i, int j) {
Vector 〈¯S〉 w;
{w = (Vector 〈¯T〉) x;

w.setElementAt(w.elementAt(i),j) }
}
While this cast capture construct may look like a syntactic

sugar for the open/close mechanism, we stress that it is part of a
more general mechanism that can take an arbitrary type as source
(instead of a bivariant type) for casting into another arbitrary type as
target (instead of an invariant type). A cast for ac1-object into an
invariant type of the formc2〈(¯t)∗〉 wherec1<:c2 is always safe
since every object is built using an invariant type. Furthermore,
cast-capture is a runtime mechanism while open-close is a type-
related operation to expose an obtained type at compile-time. Our
cast capture mechanism using reflection is more general as it can
capture type values at runtime, and also support a mix of cast
capture and cast testing. In our formulation of variant parametric
type system, the flow-based approach with casting has therefore
avoided the need for existential type system altogether.

Some readers may contend that the casting mechanism is the
prerogative of programmers and may be too burdensome to write.

While this is so, we believe that there is still scope for automatic in-
sertion of safe casts to invariant type (in a spirit similar to automatic
type coercion) that is consistent with each user program.

3. Variance via Flow Analysis
A central feature of our proposed approach is the focus on flow
analysis. Variance annotations are used to support the analysis of
value flows to capture more accurate generic types, whereby suit-
able field subtypings (covariance and contravariance) are facilitated
where possible.

We highlight the expressiveness of variant types through some
more examples in Figure 2. Apart from a genericVector 〈A〉 class
declaration, we provide a number of static methods to highlight
how flow analysis may assist in the formulation of generic types. In
thecopyVec method, the elements from a first vectorVector 〈⊕X〉
are copied into a second vectorVector 〈ªY〉, while a constraint
X<:Y captures the direction of the value flow.

class Vector 〈A〉 extends Collection 〈A〉 {
Vector 〈~〉 | int size() {... }
Vector 〈⊕X〉 | X elementAt(int i) {... }
Vector 〈ªX〉 | void setElementAt(X v, int i) {... }
}
void copyVec(Vector 〈⊕X〉 v, Vector 〈ªY〉 w,

int start) where X<:Y {
for(int i=0;i<v.size()&&i+start<w.size();i++)

w.setElementAt(v.elementAt(i),i+start);
}
void copyNestVec(Vector 〈⊕Vector 〈⊕X〉〉v,

Vector 〈ªY〉 w) where X<:Y {
int pos=0;
for(int i=0; i<v.size();i++) {

Vector 〈⊕Z〉 s=v.elementAt(i);
if (pos+s.size()<w.size())
{copyVec(s,w,pos); pos +=s.size(); }

}}
void clearVec(Vector 〈ª⊥〉 v) {

for(int i=0; i<v.size();i++)
v.setElementAt(null,i);

}
Vector 〈¯Z〉 merge(Vector 〈⊕X〉 v, Vector 〈⊕Y〉 w)

where X<:Z ∧Y<:Z
{... }

Vector 〈¯Pair 〈¯X, ¯Z〉〉 join(Vector 〈⊕Pair 〈⊕X, ⊕Y〉〉 v,
Vector 〈⊕Pair 〈⊕Y, ⊕Z〉〉 w)

{... }
void swap(Pair 〈¯X, ¯Y〉 p) where X<:Y ∧Y<:X {

T t=p.fst; p.fst=p.snd; p.snd=t;
}

Figure 2. Examples with Variant Types

Method copyNestVec copies from a nested vector of type
Vector 〈⊕Vector 〈⊕X〉〉 into a second vectorVector 〈ªY〉 with
flow constraintX<:Y . This code remains highly generic as it uses
covariant and contravariant subtypings. The next example shows
how we use a special type⊥ to indicate that null values will be
written into the vector. Given thatVector 〈ª⊥〉 is high up in the
class hierarchy, this method is rather generic as we can supplyany
vector as its argument.

We also provide method headers formerge and join . From
the type annotation ofmerge , we can tell that values from the first
two vectors are retrieved, and then they flow into a new result vec-
tor. For thejoin method, we retrieve values from the two vec-
tors Vector 〈⊕Pair 〈⊕X, ⊕Y〉〉 andVector 〈⊕Pair 〈⊕Y, ⊕Z〉〉 be-
fore building a new vectorVector 〈¯Pair 〈¯X, ¯Z〉〉 that is joined



on the Y type. The result’s invariant type offers a strong post-
condition with read/write capability.

For the swap method, the two fields of aPair object are
swapped. Due to both reading and writing, we require the invari-
ant typePair 〈¯X, ¯Y〉 and the expected value flow:X<:Y∧Y<:X .
Based on the flows from the three assignments of the swap body,
we may obtain the following constraints:̄X<: ⊕T, ¯Y<: ⊕X and
¯T<: ⊕Y, whereT is a local type variable (using type rules in Sec-
tion 5.1). These constraints are simplified to obtain the following
collected flow for the method body:X<:T ∧Y<:X∧T<:Y . Theswap
method type checks as the expected flow implies the collected flow:

∀X,Y.(X<:Y ∧Y<:X =⇒ ∃T.(X<:T ∧Y<:X∧T<:Y))

Note that the local type variableT is existentially quantified, while
type variablesX,Y from method parameters are universally quanti-
fied.

3.1 Improved Variant Subtyping

Variant parametric typeτ consists of a varianceα and a typet. Its
grammar is introduced in Figure 4. We use variance annotations
¯,⊕,ª and~, which correspond to read-write access, read-only
access, write-only access, and no-access, respectively. These anno-
tations are ordered by the following relation that is denoted by<:α
but abbreviated to<: below:

¯<:⊕ ¯<:ª ⊕<: ~ ª<:~
α1<:α2 α2<:α3

α1<:α3
α<:α

A type t is either a type variablevt, a variant parametric class
c〈τ1, . . . , τn〉, the bottom type⊥ or an intersection typet&t. The
bottom type is used to hold thenull value.

We allow finite intersections of types through the type operator
&. Semantically,t1&t2 denotes the set of objects satisfying the
interface specification of botht1 andt2. In a lattice of type values
with partial order defined by class inheritance (throughextends)
and interface mechanism (throughimplements), t1&t2 defines the
greatest lower bound oft1 andt2. Our intersection types are similar
to the compound types proposed in [4]. Specifically, they can be
of the form[t1&]t2&...&tn[&W ], wheret1 is a class,t2, ..., tn are
interfaces, andW is a type variable.

In our system, variant parametric types are used to support flow
analysis rather than access controls. As we focus on value flows
at each method boundary, we apply variance annotations primarily
to fields. The outermost variance of local variables is always¯.
For fields, variance annotations are used to support covariant or
contravariant subtyping where possible.

The subtyping relations are denoted by<:τ and<:t, both ab-
breviated to<: as follows:

` τ1<:τ2⇒ψ ` t1<:t2⇒ψ

The resulting constraintsψ (see Figure 4 for their grammar) are
kept in a disjunctive normal form. Instead of proving each sub-
typing directly, we collect a set of subtyping constraintsψ via
τ−subtyping andt−subtyping in Figure 3.

The first fourτ -subtyping rules support contravariance, covari-
ance, invariance and bivariance, respectively. The invariant case
generates a constraint from the semantical equivalence of the two
types (t1 ≡ t2). Unlike the subtyping rule of Igarashi and Viroli
[17], our improved mechanism handles two special values in the
subtyping hierarchy, namely⊥ (for type of null) andObject (for
top of class hierarchy). These two types are special in that it is al-
ways safe to write a null (of⊥ type) into any location (even if it has
been marked for read-only access), and it is safe to read anObject
value from any location (even if it has been marked for write-only

τ−subtyping

α1<:ª ` t2<:t1⇒ψ

` α1t1<:ª t2⇒ψ

α1<:⊕ ` t1<:t2⇒ψ

` α1t1<:⊕ t2⇒ψ

` t1≡t2⇒ψ

` ¯t1<:¯ t2⇒ψ
` τ<: ~t⇒true

¬(α1<:⊕)

` α1t1<:⊕ Object⇒true

¬(α1<:ª)

` α1t1<:ª⊥⇒true

t−subtyping

`⊥<:t⇒true `t<:Object⇒true ` t<:t⇒true

` τi<:τ ′i⇒ψi, i = 1..n

`c〈τi〉ni=1<:c〈τ ′i〉ni=1⇒
Vn

i=1 ψi

`t1<:t2⇒ψ1 `t2<:t3⇒ψ2

` t1<:t3⇒ψ1∧ψ2

class c1〈Vi〉mi=1 extends ...c2〈τ ′i〉ni=1... ρ=[Vi 7→τi]
m
i=1

c2〈ρτ ′i〉ni=1⇒p c2〈ρτ ′′i 〉ni=1

` c1〈τi〉mi=1<:c2〈ρτ ′′i 〉ni=1⇒true

`t<:t1⇒ψ1 `t<:t2⇒ψ2

`t<:(t1&t2)⇒ψ1∧ψ2

`t1<:t⇒ψ1 `t2<:t⇒ψ2

`(t1&t2)<:t⇒ψ1∨ψ2

t1=vt∨t2=vt

` t1<:t2⇒t1<:t2

` t1<:t2⇒ψ1 ` t2<:t1⇒ψ2

` t1≡t2⇒ψ1∧ψ2

Figure 3. Variant Subtyping

access). We may also cast any typeτ to either⊕Objectorª⊥ as it is
always safe to read an object or write a null value. This mechanism
is implemented by the last twoτ -subtyping rules.

In the second part of Figure 3, the first two t-subtyping rules
handle the bottom and top of the hierarchy. Subtyping between
types of the same class is decomposed structurally by the fourth
rule. The next two rules describe transitivity and the class in-
heritance relation. The class inheritance rule uses type promotion
mechanism that is described later in Section 4.1 Intersection types
satisfy the subtyping relations as in [29]. Subtyping relations that
contain type variables are not simplified further and preserved in
the resulting constraint. Semantic equality (t1≡t2) is given by the
last t-subtyping rule. In summary, from the subtyping relations be-
tween types, we generate a set of subtyping constraints (on type
variables). Note that in the following sections, we will useτ1<:τ2
as an abbreviation forψ, where` τ1<:τ2⇒ψ.

4. Core Language
We introduce a core language to ease the formulation of static
and dynamic semantics. This language can be viewed as a result
of translation from full Java language prior to type checking. For
ease of presentation, we omit features that are related to static
methods, exception handling, concurrency and inner classes. (Our
implementation handles all features of the Java language.)

Our core language is named Variant CoreJava, and summarised
in Figure 4. We use the suffix notationy∗ to denote a list of (zero or
more) distinct syntactic terms that are suitably separated. Both class
and interface declarations are supported using the same syntactic
grammar termdef. As with Java, the main difference is that inter-
face definitions do not have fields, and are defined using abstract
methods (without body). Furthermore, while we support multiple
inheritance, it is of the same restricted kind as that supported by
the Java language. Each class may extend from only a single su-
perclass but may implement multiple interfaces. In our language,
the declarationclass c〈V ∗〉 extends gc1..gcn assumes thatgc1 is a



Programs

P ::= def∗

def ::= class c〈V ∗〉 extends gc1..gcn where ψinv

{(π f)∗ meth∗}
gc ::= c〈π1, .., πn〉

meth::= t | t mn((t v)∗)〈v∗t 〉 where ψ {e}
w ::= v | v.f
e ::= null | w | w = e | {t v = e1; e2} | e1 ; e2

| new c〈t∗〉(v∗) | if v then e1 else e2
| while v do e | v0.mn(v∗)〈t∗〉
| (t)v | {v1 = (t)v ; e}

Variant Parametric Types

τ ::= αt

t ::= vt | c〈τ1, .., τn〉 | t&t | ⊥
α ::= ¯ | ⊕ | ª | ~

Incomplete Variant Parametric Types

π ::= V | ® s

s ::= c〈π1, .., πn〉 | s&s | ⊥
Subtyping constraints

ψ ::= t1<:t2 | ψ∧ψ | true
Class Invariant

ψinv ::= V <:ic〈τ∗〉 | c〈τ∗〉<:i V | ψinv ∧ ψinv | true
Figure 4. Syntax ofVARIANT COREJAVA

class whilegc2..gcn are essentially interfaces (implements is also
represented byextends for easy presentation). Each class decla-
ration captures a class invariantψinv that is expected to hold for
all newly constructed objects of the class. This is being used to
specify suitable class lower and/or upper bounds for type variables.
Since our system is based on use-site variance, the class fields types
and the arguments of class inheritance have incomplete variance at
declaration-site (denoted byπ andV ). Section 4.1 describes the an-
notations of class declarations with incomplete variant parametric
types.

Each method declarationmeth contains a constraintψ which
captures the expected value flows for its type variables. It also
specifies method type parameters〈v∗t 〉 in order to support modular
type checking. This set of type variables is automatically inserted
by our compiler.

We use an expression-oriented language, where method body
is denoted bye. Local variable declaration is supported by block
structure of the form:{t v = e1; e2}, with e2 denoting its result.
Each object is always built with an invariant typec〈¯t∗〉 via the
constructnew c〈t∗〉(v∗). Our core language also supports a full
casting mechanism via(t)v, wheret can be an arbitrary variant
type. In addition, we support a novel cast capture mechanism via
{v1 = (t)v ; e}, wheret is an invariant type with unknown type
variables that may be captured at runtime and used ine. These
special features will be described in more detail in Section 6.

For simplicity of presentation, our core language represents
primitive types (such asvoid , bool ) by their corresponding classes
(such asVoid , Bool ). In our implementation, we handle primitive
types directly, as elaborated in Section 9. For soundness reasons,
we treat arrays in the same way as other classes (unlike Java 1.5,
which assumes arrays to be covariant).

In the subtyping constraints, disjunction is supported internally
as it may be generated by subtyping relation for intersection types.

4.1 Class Parameterisation and Inheritance

For class declarations, an important decision is which fields are to
be parameterised and how the class inheritance mechanism is to be
supported. In general, each class declaration should be written in
the following manner:

class c1 〈V1.. Vn〉 extends c2 〈π̂1.. π̂s〉 where ψinv {
π1 f1;
...
πm fm; ...
}

where each{Vi}n
i=1 originates either from the fields of the current

class{πi}m
i=1 or from the arguments of its superclass,{π̂i}s

i=1.
{Vi}n

i=1 are variables corresponding to types with variance. For
instance, the following non-generic declarations ofCell andPair
classes:

class Cell {
Object fst; · · · }

class Pair extends Cell {
Object snd; · · ·
}

can be parameterized as:

class Cell 〈A〉 {
A fst; · · · }

class Pair 〈A,B 〉 extends Cell 〈A〉 {
B snd; · · ·
}

The variance of the fieldsfst and snd is governed by the vari-
ablesA andB. Given the typePair 〈⊕Int, ªInt 〉, the fieldfst is
covariant and the fieldsnd is contravariant.

4.2 Type Promotion

There are some situations where the variance of a class field cannot
be specified at use site. In the following example, the variance
of the field sndP does not have any correspondence in the class
parametersA,B,C and remains unknown after instantiation of these
parameters.

class Triple 〈A,B,C 〉 extends Cell 〈A〉 {
Pair 〈B,C 〉 sndP; · · ·
}

The compiler inserts a special variance marker® to represent the
unknown variance of fieldsndP :

class Triple 〈A,B,C 〉 extends Cell 〈A〉 {
®Pair 〈B,C 〉 sndP; · · ·
}
Note that the source program does not contain any variance

markers. We use them to explain how incomplete (or unknown)
variance of variant parametric types are computed to either⊕ or
¯. This process is known astype promotionand can be used for
incomplete variant parametric types from field declarations and
arguments of class inheritance.

The type promotion is defined using the relations

ρ ` π⇒pτ ρ ` s⇒pt

whereρ is a substitution[V 7→ τ ] from class declaration parameters
V to variant parametric typesτ . The typesπ and s may contain
unknown variance®. The rules are described in Figure 5.

The second rule promotes the unknown variance® to either
⊕ or ¯ depending on the predicateinv(t) wheret is the type ob-
tained after substitution. Predicateinv(t) returnstrue , when all



ρ ` V⇒p ρV

ρ ` s⇒p t α = if inv(t) then ¯ else ⊕
ρ ` ®s⇒p αt

ρ ` πi⇒p τi i = 1, n

ρ ` c〈π1, ..πn〉⇒p c〈τ1, ..τn〉
ρ ` si⇒p ti i = 1, 2

ρ ` s1&s2⇒p t1&t2

inv(¯t)=true
α=⊕ | ª |~

inv(αt)=false
inv(vt) = true

inv(c〈τ1, ..τn〉) =
^

i=1,n

inv(τi) inv(t1&t2) =
^

i=1,2

inv(ti)

inv(c〈〉) = true inv(⊥) = true

Figure 5. Type Promotion

variances fromt (if any) are¯ and false otherwise. Given
Triple 〈⊕Int, ⊕Int, ⊕Int 〉, the type of field sndP is com-
puted as follows:ρ ` ®Pair 〈B,C 〉⇒p⊕Pair 〈⊕Int, ⊕Int 〉 where
ρ = [A 7→ ⊕Int ,B 7→ ⊕Int ,C 7→ ⊕Int ]. As another example,
givenTriple 〈⊕Int, ¯Int, ¯Int 〉, the type of fieldsndP is com-
puted as follows:ρ ` ®Pair 〈B,C 〉⇒p¯Pair 〈¯Int, ¯Int 〉 where
ρ = [A 7→ ⊕Int ,B 7→ ¯Int ,C 7→ ¯Int ].

Another application of type promotion is for recursive fields of a
class. The recursive fieldnext of the classList has an incomplete
variance® as follows:

class List 〈A〉 extends Object {
A val;
®List 〈A〉 next; ...
}

The variance of the fieldnext is incomplete at its declaration
site and can be promoted to either̄ or ⊕, depending on how
its underlying type parameterList 〈A〉 is being instantiated at the
use site. For example, whenA is instantiated toªX, the variance
of the next field will be promoted to⊕ via ρ ` ®List 〈A〉 ⇒p

⊕List 〈ªX〉, where ρ = [A 7→ ªX]. On the other hand, ifA is
instantiated tō X, then ρ = [A 7→ ¯X] and the variance of the
next fields is instantiated tō X as follows:ρ ` ®List 〈A〉 ⇒p

¯List 〈¯X〉.
Our type promotion is a refinement of that proposed in [17].

First, we allow promotion tō whenever possible while Igarashi
and Viroli considered mainly the promotion of nested types with⊕.
Second, we consider type promotion for only field access and class
inheritance where the outer variance is dependent on the variance
of the underlying type. In contrast, Igarashi and Viroli focused
on the promotion of nested types of arguments/result for method
declarations, which need not be handled in our approach as these
types are fully specified in our method declarations.

4.3 Class Invariant

The class invariantψinv is used to capture the lower and upper
bounds for the parameterised fields of each newly created object
of the class. These bounds are of the form

V
c1〈τ∗〉<:iV <:ic2〈τ∗〉.

Class invariant may also support F-bounds when variableV occurs
in the parameters of classesc1 andc2. If unspecified, the default
lower and upper bounds are⊥ andObject, respectively. An upper
bound invariant on a write-only field restricts the class of the object
that can be written to the field to be subclasses of the bound, and a
lower bound invariant on a read-only field restricts the class of the
object that can be read from the field to be superclass of the bound.

We use the relation⇒cinv to reduce bounds from the class
invariant to a constraint form:̀ [Vi 7→ τi]ψinv⇒cinvψ, whereτi

are the current variant types for the class fields. The relation⇒cinv

is defined in Figure 6. Note that this relation invokes the subtyping
relations defined in Figure 3.

`~t<:it1⇒cinvtrue `t1<:i~t⇒cinvtrue

`t<:t1⇒ψ1 `t1<:t⇒ψ2

`⊕t<:it1⇒cinvψ1∨ψ2

`t<:t1⇒ψ1 `t1<:t⇒ψ2

`t1<:iªt⇒cinvψ1∨ψ2

α=ª | ¯ `t<:t1⇒ψ

`αt<:it1⇒cinvψ

α=⊕ | ¯ `t1<:t⇒ψ

`t1<:iαt⇒cinvψ

` ψi
inv⇒cinvψ

i

` V
ψi

inv⇒cinv
V
ψi

Figure 6. Class Invariant

To illustrate the use of these bounded invariants, consider a
class declaration forCell 〈X〉 with an upper boundX<:Num. For
declarations of the formCell 〈ªInt 〉 andCell 〈ªT〉, the relation
⇒cinv generates theInt<:Num andT<:Num, respectively. The first
constraint reduces totrue , while the second constraint contains a
type variable and will be checked later for satisfiability. As another
example, forCell 〈ªObject 〉 the relation⇒cinv fails as the upper
bound is violated. Correspondingly, for read access, we support
Cell 〈⊕Int 〉 andCell 〈⊕Object 〉, but notCell 〈⊕String 〉 since
no String objects can be read from theNum-bounded field.

The class invariant is accumulated recursively from all the su-
perclasses, as shown below:

[CINV]

class c〈Vi〉mi=1extends(ck〈πik〉nk
i=1)

s
k=1where ψinv {..}∈P

ρ=[Vi 7→τi]
m
i=1 ρ ` c1〈πi1〉n1

i=1⇒pt ` ρψinv⇒cinvψ

cinv(c1〈τi〉mi=1)=ψ∧cinv(t)

5. Variant Type System
Variance annotations of programs are used to support flow analysis
for more accurate generic types. We verify the flow of values
through the following typing relation:

Γ;Q ` e :: αt, ψ

The relation is for type checking, and assumes thatΓ (type envi-
ronment),Q (type variables in scope) andαt (type with expected
variance) are given whileψ is the collected flow constraint. Syntax-
directed rules for various language constructs are given in Figure 7.

Our type system is flow-insensitive as every location (variable,
parameter and field) is given a type that never changes. In our type
system, each object of typet1 can be placed in a location of type
t2, providedt1<:t2. The type of a location is therefore a particular
type viewof its object. This type view of an object may be changed
by upcasting (via assignment or parameter passing) or by downcast
operation that is checkable at runtime. The following rule shows
how to type check an assignment expression:

[ASSIGN]

αt=GetType(Γ, w) α<:ª Γ;Q ` e :: ⊕t, ψ
Γ;Q ` w = e :: ⊕Void, ψ

Flow-in or write-onlyª is mandated on the left-hand side (w) while
flow-out or read-only⊕ is mandated on the right-hand side (e).
To highlight how these flows are enforced, we present the rule for
variable and field access (w stands for eitherv or v.f):



[NULL]

Γ;Q ` null :: τ,⊕⊥<:τ

[LOCAL]

Γ′=Γ+{v::¯t} Γ;Q ` e1::⊕t, ψ1 Γ′;Q ` e2::τ, ψ2

Γ;Q ` {t v=e1; e2} :: τ, ψ1∧ψ2

[SEQ]

Γ;Q ` e1::~t, ψ1 Γ;Q ` e2::τ, ψ2

Γ;Q ` e1; e2::τ, ψ1∧ψ2

[COND]

Γ(v)<:⊕ Bool
Γ;Q ` e1 :: τ, ψ1 Γ;Q ` e2 :: τ, ψ2

Γ;Q ` if v then e1 else e2 :: τ, ψ1∧ψ2

[WHILE]

Γ(v)<:⊕ Bool
Γ;Q ` e :: τ, ψ

Γ;Q ` while v do e :: ⊕Void, ψ

[PROG]

`def InheritanceOK(defi), i = 1..n
`def defi, i = 1..n

`prg defi=1..n

[CALL]

ρ = [Vj 7→ tj ]
k
j=1 τ ′i=Γ(v′i)

q
i=0

t̂0 | t mn((t̂i vi)
q
i=1)〈V1..k〉 where ψ..∈τ ′0

ψ1 =
Vq

i=0 τ
′
i<:ρ(⊕t̂i)∧ρ(⊕t)<:τ

Γ;Q ` v′0.mn(v′1, .., v′q)〈t1..k〉 :: τ, ψ1∧ρψ

[CLASS]

c1`methmethi, i=1..q
vars{πi}n

i=1∪(vars
Ss

k=1{π̂ik}nk
i=1) ⊆ {Xi}m

i=1

`def class c1〈Xi〉mi=1 extends (ĉk〈π̂ik〉nk
i=1)

s
k=1 where ψinv {(πi fi)

n
i=1 methi=1..q}

[INHC]

def= class c1〈Vi〉pi=1 extends c2〈π̂i〉qi=1..where..{fd∗ meth1..p}
(∃meth·meth∈ c2〈π̂i〉qi=1.. ∧ name(meth) = name(methi))

⇒ ` OverridesOK(methi,meth) i∈1..p

` InheritanceOK(def)

[OVERRIDE]

meth1 = t0 | t mn((ti vi)
p
i=1)〈V ∗〉 where ψ1 {e1}

meth2 = t̂0 | t mn((ti vi)
p
i=1)〈V ∗〉 where ψ2 {e2}

VL=vars(t̂0)−vars(t0) ` t0<:t̂0⇒ψ ∃VL·(ψ∧ψ2 =⇒ ψ1)

` OverridesOK(meth1,meth2)

[FIELDS]

class c1〈Vi〉ni=1 extends c2〈π̂i〉ri=1..{(π′i fi)
m
i=1..}

ρ=[Vi 7→τi]
n
i=1 ρ ` π′i⇒pτ ′i , i∈1..m ρ ` π̂i⇒pτ̂ ′i , i∈1..r

fields(c1〈τi〉ni=1) = [(τ ′i fi)]mi=1+fields(c2〈τ̂ ′i〉ri=1)

[GetType1]

τ=Γ(v)

τ=GetType(Γ, v)

[GetType2]

αt=GetType(Γ, v)
t=c〈τi〉ni=1 (τf)∈fields(c〈τi〉ni=1)

τ=GetType(Γ, v.f)

Figure 7. Variant Type Rules

[VAR−FIELD]

τ1=GetType(Γ, w) ` τ1<:τ⇒ψ

Γ;Q ` w :: τ, ψ

To retrieve the types of the variables and class fields, we use the
auxiliary [GetType ] rules from Figure 7. The current typeτ1 of w
is retrieved from the type environmentΓ. Further, the rule checks
thatτ1 is a subtype of the expected variant typeτ . This supports a
flow-out from the variablew.

For object creation, we ensure that each object is constructed
with an invariant type usingc 〈¯ti〉qi=1. A type is said to beinvari-
ant if each variance on its immediate fields is marked with¯. Note
that the views of nested fields, namelyt1, .., tq from c 〈¯ti〉qi=1,
may still be of variant types. Note that the variance of all class
fields (including those which require type promotion) returned by
fieldsis¯.

[NEW]

vars{ti}q
i=1⊆Q t0=c〈¯ti〉qi=1 (¯t′i fi)

p
i=1=fields(t0)

` ⊕t0<:τ⇒ψ0 Γ;Q ` vi :: ⊕t′i, ψi i = 1..p

Γ;Q ` new c〈ti〉qi=1(v1, .., vp) :: τ,
Vp

i=0 ψi∧cinv(t0)

For the purpose of constructing invariant types, the type variables
in {ti}q

i=1 must be instantiated fromQ. The class invariantcinv(t0)
captures the specified upper/lower bounds on fields that must be
satisfied for every object of the class. When such fields are updated,
we statically ensure that their bounds are never violated. Given an
instantiated class type, the rule [FIELDS ] returns the variant types
of the class fields using type promotion if necessary.

Local variable declarationv is marked for read-write access via
v :: ¯t as shown in the rule [LOCAL]. The rule for method call
[Call ] collects the flow-in for receiver and arguments, flow-out
for the result and the method precondition.

5.1 Modular Flow Verification

We design a variant type system that can be verified in a modular
fashion. Each method declaration is given suitable variant type
annotations for its parameters, result and receiver. A “may” flow
constraintψ is specified at the header of each method declaration.
This may-flowspecification captures all possible flows that may
occur in the method’s bodye. The type checking rule for a method
is formalised as follows:

[METHOD]

chkRecv(cn, t0) Γ={vi::⊕ ti}p
i=1+{this::⊕ t0}

ψ1=ψ∧Vp
i=0 cinv(ti)∧cinv(t) ψ1 6=false

Q={V ∗} vars(ψ)⊆Q vars(Γ, t)⊆Q
Γ;Q ` e :: ⊕t, ψ2 VI=vars(ψ2)−Q ψ1 =⇒ ∃VI ·ψ2

cn `meth t0 | t mn((ti vi)
p
i=1)〈V ∗〉 where ψ {e}

We first construct an initial assumed flow constraintψ1 that is de-
rived from the declared may-flow specificationψ, class invariants
for each parameter, and result

Vp
i=0cinv(ti)∧cinv(t), The initial as-

sumed flow constraint must be satisfiable, that is,ψ1 6=false. Fur-
thermore, we collect the flow constraint of the method body using
Γ;Q ` e : ⊕t, ψ2, whereψ2 captures all flows that may occur in
the method bodye. To prove the correctness of each declared flow
constraint, we perform a subtype entailment on the flow constraint
with VI as local type variables using:ψ1 =⇒ ∃VI ·ψ2. If this entail-
ment holds, we have successfully verified the flow specification of
a given method declaration. We also check ift0, the given type of
this , is compatible (no stupid cast) with the current class via the
predicatechkRecv(cn, t0) = cn〈¯t∗〉<:t0.

Method overriding is checked by the [Override ] rule. For
safe function subtyping, we require each overriding method to have
weaker or equalflow specification compared to the overwritten
method.



5.2 Soundness

The soundness of our type system can be proven by relating to
dynamic evaluation semantics of the form:

〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′]

where Π and $ denote runtime stack and heap, respectively.
This evaluation may yield three possible runtime errors, namely
E = Error-Null | Error-Cast | Error-Type . The second error is due to
cast operations guarded by runtime checks inserted by the compiler.
The third error is due to an object of the wrong type being writ-
ten into a location with some expected static type. For well-typed
programs, this last error can never happen. The progress theorem
states thatError-Type cannot occur while the type preservation the-
orem shows that the type of an expression is preserved with each
reduction step. We outline the two theorems below; details of proof
may be found in Appendices A, B and C.

THEOREM 1 (Progress).Let Γ be the environment mapping pro-
gram variables to ground types. IfΓ;Σ;Q ` e :: τ, ψ and
Γ;Σ;Q;ψ |= Π, $, then either:

• e is a value, or
• 〈Π,$〉 [e] ↪→ Error-Null | Error-Cast , or
• there existΠ′, $′, e′ such that〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′].

Note that the type rules are extended to include store typingΣ.
Γ;Σ;ψ |= Π, $ denotes a consistency relation that relates static and
dynamic semantics. The following theorem states the preservation
of type during dynamic evaluation.

THEOREM 2 (Preservation).Let Γ be an environment mapping
program variables to ground types. If

Γ; Σ;Q ` e :: τ, ψ

Γ;Σ;Q;ψ |= Π,$

〈Π,$〉 [e] ↪→ 〈Π̂, $̂〉 [ê]
then there existŝΓ, Σ̂ andQ̂ such that

Γ− diff(e, ê) = Γ̂− diff(ê, e)

Σ̂ ⊇ Σ

Γ̂; Σ̂; Q̂ ` ê :: τ, ψ̂

Γ̂; Σ̂; Q̂; ψ̂ ∧ ψ |= Π̂, $̂.

Functiondiff(e, e′) returns a list of local variables that appear ine
but note′ .

6. Casting and Cast Capture
While a key goal of a generic type system is to provide precise
information to eliminate unnecessary downcasts, there remains al-
ways the need for cast operations to support the class subtyping
mechanism. Furthermore, the introduction of generics and vari-
ance has complicated type casting as these operations must handle
type variables and nested variant types. For example, cast opera-
tions may target nested types, such asVector 〈¯Vector 〈⊕Num〉〉,
or those with type variables, such asVector 〈⊕X〉.

However, existing solutions that support casting in Java 1.5
are restricted in that they use cast checks on the outermost type
constructor only [37], and rely on unchecked warnings that may
cause runtime errors (e.g., when a cast to type variable occurs). The
only system that supports cast operations fully (but for parametric
types) was proposed by Viroli and Natali [39]. Their technique can
be adapted to handle arbitrary variant types.

In the presence of single inheritance, we can classify each cast-
ing relation fromt0 to t into three categories: (1) safe upcast if
`t0<:t, (2) downcast with runtime check if̀t<:t0, and (3) stupid

cast if¬(`t0<:t ∨ `t<:t0). However, in the presence of multiple in-
heritance with interfaces, a class and an interface may be unrelated
but a valid downcast is still possible if the actual type is a subtype
of the two. Though it is possible to identify stupid cast with a more
complex test, namely¬(∃X·X 6=⊥∧X<:t∧X<:t0), we avoid it for
simplicity. Instead, we only check to ensure that the type variables
used int have come fromQ. Our type rule to support a variant cast
operation is given below:

[CAST]

αt0=Γ(v) α<:⊕ vars(t)⊆Q
Γ;Q ` (t)v :: τ,⊕t<:τ

While casting is used to check a specific type for an object, we
often have to deal with objects of unknown types. For example,
we may have an object with a static typeList 〈ªA〉, and we may
be interested to know its actual invariant typeList 〈¯T〉, whereT
is an unknown type. To help identify the invariant type of a given
object, we introduce acast captureconstruct based on reflection
mechanism:{v1 = (t)v ; e} The following rule shows how to type
check the capture construct:

[CAPTURE]

αc〈τi〉ni=1 = Γ(v) α<:⊕ t=c〈¯Vi〉ni=1 {Vi}n
i=1 ∩Q={}

Γ;Q ` v1 :: ªt, ψ1 Q1=Q∪{Vi}n
i=1 Γ;Q1 ` e :: τ, ψ2

Γ;Q ` {v1 = (t)v; e} :: τ, ψ1∧ψ2

Note thatt is an invariant type of the formc〈¯Vi〉: c should have
the same class type asv, while thecaptured type variablesVi stand
for unknown types. EachVi can be used in the expressione with its
flow captured by the collected flow (ψ1∧ψ2).

The flow of captured type variables should not cause addi-
tional restriction or generalization at the method boundary. We next
present how the type system ensures the correct use of captured
type variables.

The actual typet obtained via reflection is guaranteed to be
more precise thanv ’s static type,Γ(v). We call this guaranteere-
flection assumption. For each method, a relationΓ ` e⇒C VC , ψC

collects captured type variables,VC , and their reflection assump-
tions,ψC as follows:

αt0=Γ(v) `t<:t0⇒ψ
X=vars(t) Γ ` e⇒CV, ψ1

Γ ` {v1 = (t)v; e} ⇒C V ∪X,ψ∧ψ1

The method judgement is modified to exclude captured type
variablesVC from the local type variablesVI . Additionally, the
expected flowψ1 is strengthened with reflection assumptionsψC .

[METHOD−WITH−CAPTURE]

chkRecv(cn, t0) Γ={vi::⊕ ti}p
i=1+{this::⊕ t0}

Γ ` e⇒CVC , ψC ψ1=ψ∧Vp
i=0 cinv(ti)∧cinv(t)∧ψC

Q={V ∗} vars(ψ)⊆Q vars(Γ, t)⊆Q ψ1 6=false
Γ;Q ` e :: ⊕t, ψ2 VI=vars(ψ2)−Q−VC ψ1 =⇒ ∃VI ·ψ2

cn `meth t0 | t mn((ti vi)
p
i=1)〈V ∗〉 where ψ {e}

The proper flow of captured type variables is then ensured by the
entailment from the above rule.

6.1 Cast Capture Examples

The cast capture mechanism can also be viewed as a downcast to
the object’s invariant type. Unknown types that are captured (via
reflection) may be used in the program code, as shown in the ex-
ample below:



void addNode(List 〈ªA〉 y, B z) where B<:A {
List 〈¯S〉 v; List 〈¯S〉 w;
{v = (List 〈¯T〉) y; w = new List 〈T〉();
w.val = z ; w.next = v.next ; v.next = w; } }

Though we do not know the exact type ofy , we can use a cast
capture on(List< ¯T>) to obtain its invariant type. Correspond-
ingly, the reflection assumption isA<:T . We use the captured type
T to build a List 〈¯T〉 node, writez to w.val , and also recon-
struct pointers for the linked list in a type-safe and yet generic way.
For this example, the initial assumed flow isψ1≡(B<:A ∧A<:T) ,
wherebyB<:A is from the flow specification andA<:T is the re-
flection assumption. This initial assumed flow implies the collected
flow constraint∃S·ψ2, whereψ2≡(S<:T ∧T<:S ∧B<:S) . Hence,
modular verification holds for this example.

The same cast capture mechanism may also be used to capture
an unknown invariant type, enabling a swap of elements within the
same collection – without knowledge of its type. Consider:

void swapVec(Vector 〈~〉 v,int i, int j) {
Vector 〈¯S〉 w;
{w = (Vector 〈¯T〉) v;
S v1 = w.elementAt(i);
S v2 = w.elementAt(j);
w.setElementAt(v2,i); w.setElementAt(v1,j); } }

Note that input parameterv uses a bivariant typeVector< ~>,
which can be used to support an argument of an arbitraryVector
object. The initial assumed flow isψ1≡true , while the collected
flow is ∃S·ψ2, whereψ2≡(S<:T ∧T<:S) . Hence, the entailment
ψ1 =⇒ ∃S·ψ2 holds.

An example of a method that does not type check is presented
below:

Vector 〈⊕Y〉 foo1(Vector 〈~〉 v) {
Vector 〈¯S〉 w; {w = (Vector 〈¯T〉) v; w } }

The initial assumed flow isψ1≡true while the collected flow is
ψ2≡T<:Y . Note that neitherT (captured type variable) norY (global
type variable) are existentially quantified fromψ2. The entailment
ψ1 =⇒ ∃S·ψ2 does not hold, since the captured type variableT in-
troduces an additional flow at method boundary. As another exam-
ple, the following definition type checks as the collected flow from
the method’s body (after elimination of the local type variableS) is
ψ2≡true :

Vector 〈~〉 foo2(Vector 〈~〉 v) {
Vector 〈¯S〉 w; {w = (Vector 〈¯T〉) v; w } }

7. Implementation
We built a prototype for our variant parametric type system and
carried out initial experiments to validate its feasibility. Our system
was built using the Glasgow Haskell compiler [27], with a con-
straint solver (for handling subtyping constraints) implemented us-
ing Constraint Handling Rules (CHR) [13].

Our constraint solver employs a two-step algorithm to prove the
non-structural subtype entailment of the form∀VG·(ψ1 =⇒ ∃VI ·ψ2).
Note thatψ1, ψ2 are conjunctions of subtyping constraints , while
VG andVI are sets of type variables. Even though the entailment
from the [METHOD] rule may contain disjunctions, it can be re-
duced to entailments of the above form.

1. We eliminate the local type variablesVI (based on their upper
and lower bounds) fromψ2 to obtainψ′2=

Vn
i=1Xi<:Yi using

techniques similar to [32, 38].

To support the language’s semantics a local type inference sim-
ilar to [30, 23] is employed to identify appropriate instantiated
types for local type variables or type parameters.

2. The resulting entailment∀VG·(ψ1 =⇒ Vn
i=1Xi<:Yi) is equiv-

alent to
Vn

i=1(∀VG·(ψ1 =⇒ Xi<:Yi)). Each entailment can
be proven by contradiction using the falsity of the formula
∀VG·(ψ1∧notsub(Xi, Yi)), wherenotsub(t1, t2) represents nega-
tion of subtyping relation.

Our constraint solver implements the variant subtyping rules
(from Figure 3). Its deduction mechanism detects falsity based on
pair of constraints of the formt1<:t2 andnotsub(t1, t2). Our algo-
rithm is a sound approximation of the subtype entailment problem.

The deduction mechanism can be further extended by the tech-
niques ofcase analysisand inductive proving. However, from our
experience working with large sets of Java library and application
codes that have been annotated and checked with variant paramet-
ric types, we have yet to encounter real examples which require
such extensions.

8. Experimental Results
To test the utility of our flow-based variant type system, we eval-
uated our prototype on a set of Java applications1 as used in [10,
14]. These applications make use of library classes from pack-
agejava.util , which we annotated with our variant paramet-
ric types. We counted each method declaration with flow specifi-
cation, each class declaration with type parameters and each cast
capture as a line of annotation. On average, these annotations con-
stituted about 5.5% of the source code, which may be considered a
reasonable price to pay for better reuse of type safe generic code.
Due to modular type checking, the time needed to verify type-safe
generic code was less than one second for each library code and less
than 30 seconds for each application code. We expect that the time
can be reduced by using a specialised constraint solver. Currently,
our prototype is based on a meta constraint handling system writ-
ten in CHR (which compiled to a Prolog program under IC-Parc’s
ECLiPSe system [2]).

Library Prog. Java 1.4 Java 1.5 VPT
Lines Casts Casts Warnings Casts Warnings

AbstractList 909 1 1 0 0 0
AbstractSet 162 1 1 0 0 0
ArrayList 623 2 8 9 1 0
HashMap 1103 7 9 20 3 0
HashSet 231 2 4 3 1 0
Hashtable 1154 10 14 31 7 0
LinkedList 814 2 4 5 2 0
Properties 925 8 8 1 0 0
Vector 1062 2 9 9 0 0
Total 6983 35 58 78 14 0

Figure 8. Results for Library Code

Figures 8 and 9 show the experimental results for representative
classes from thejava.util package and application code (in
terms of remaining casts). We counted the number of casts in Java
1.4 code (non-generic), Java 1.5 (annotated with wildcards) and our
system (VPT - annotated with variant parametric types). The Java
1.5 compiler could not statically check some operations (especially
those related to raw types and casts to type variables), and issued
unchecked warnings since these operations cannot be verified by
JVM runtime. Therefore, it is the programmer’s responsibility to
ensure that all unchecked operations are in fact safe.

1 For more details:www.junit.org, www.cs.princeton.edu/
∼appel/modern/java/JLex/, www.cs.princeton.edu/
∼appel/modern/java/CUP/, www.spec.org/osg/jvm98/,
vpoker.sourceforge.net, telnetd.sourceforge.net .



Application Prog. Java 1.4 Java 1.5 VPT
Lines Casts Casts Warnings Casts Warnings

DB 842 19 1 0 0 0
JUnit 5886 54 30 1 15 0
VPoker 6792 36 8 0 6 0
JLex 7260 69 12 3 0 0
Jess 10639 95 34 0 12 0
TelnetD 11314 46 8 0 6 0
JavaCup 11468 543 98 2 65 0
Total 54201 862 191 6 104 0

Figure 9. Results for Application Code

To summarize, our method can eliminate a significant portion
(on average 87.9%) of the casts from non-generic Java 1.4 applica-
tion code and 45.5% of the casts from wildcard-generic Java 1.5 ap-
plication code. We have also made improvements for library code
by eliminating about 60% casts from non-generic Java 1.4 code
and about 75.8% casts from the wildcard-generic Java 1.5 code.
Since our system fully supports casting for variant types, we can
verify the unsafe operations for which the Java 1.5 compiler gener-
ates unchecked warnings. Note that Java 1.5 libraries contain more
casts than Java 1.4 libraries do, since Java 1.4 containers are based
on Object type instead of generic types. As expected, Java 1.4
application code requires more downcasts compared to Java 1.5
code.

Figure 10. Remaining Casts for Application Code

Figure 10 shows a chart that visualises the percentage of re-
maining casts in each benchmark written in Java 1.4, Java 1.5 and
our VPT. Java 1.4 which contains the casts from the original appli-
cation code serves as reference.

Note that the casts eliminated using our type system measure
the improvement in program safety. Current Java implementation
(which translates parametric programs viatype erasure) would re-
introduce casts at the bytecode level. While such re-admitted casts
may cause runtime overheads, they are known to be type safe and
will never fail at runtime. Obviously, a better solution is to support
variant parametric type at the bytecode level and we look forward
to this scenario.

9. Extensions
In this section, we present some features omitted in the main pre-
sentation for brevity.

The hierarchy of primitive types forms a separate lattice from
reference types. Furthermore, it isnot the case that⊥<:p<:Object
for each primitive typep. Due to such differences, primitives are
excluded from use as type arguments for generic classes in Java
1.5. Furthermore, the type erasure algorithm for the parametric
program will transform each parametric field into anObject type
for backwards compatibility. This is invalid if primitive types are
used as type arguments.

We now show how primitive types can be used as type argu-
ments for generic classes in our system. First, we need to add two
constraints to distinguish reference and primitive types, as shown
below:

ψ ::= · · · | ref(t) | prim(t)
As these two families of types are disjoint, we add the following
CHR irrevocable rule:

ref(t) ∧ prim(t) ⇔ false

Second, we need to consider primitive types in the new variant
subtyping mechanism. In the new subtyping hierarchy,~t denotes
any type (reference or primitive) while⊕Objectandª⊥ denote only
reference types (that are still equivalent, namely⊕Object≡ª⊥).
The subtyping relation is changed accordingly:⊕Object<:~t still
holds while~t<:⊕ Object does not hold anymore. Furthermore,
we allow⊥<:t andt<:Objectif and only if t is not a primitive type.
To support these changes, we modify the main variant subtyping
rules from Figure 3 to the following:

α 6=~
` αt<:⊕Object⇒ref(t)

α 6=~
` αt<:ª⊥⇒ref(t)

α1 6= ~ ¬(α1<:⊕)
` Object<:t2⇒ψ

` α1t1<:⊕t2⇒ψ∧ref(t1)

α1 6= ~ ¬(α1<:ª)
` t2<:⊥⇒ψ

` α1t1<:ªt2⇒ψ∧ref(t1)

`⊥<:t⇒ref(t) `t<:Object⇒ref(t)

`t<:⊥⇒t<:⊥∧ref(t) `Object<:t⇒Object<:t∧ref(t)

Programmers often make use of theinstanceof test on the
runtime type of an object prior to some operations. Due to flow
and path insensitivity, the type system is currently unable to take
advantage of such runtime testing of types. To help eliminate more
cast operations, our compiler translates each program fragment of
the form:

if v.instanceof(t) then e1 else e2

to use a special program construct with freshv0 variable:

if v.instanceof(t) then let v 0::t=v in [v 7→v0]e1
else e2

This construct is part of our core intermediate language, and it is
generated prior to type checking. It is valid on the proviso that any
assignment intov is a subtype of the more specifict . A type rule
corresponding to the new language construct is shown below:

[LET−INSTANCEOF]

e1 ≡ (let v0 :: t = v in e)
Γ′=Γ+{v0::¯t} Γ′;Q ` e::τ, ψ1 Γ;Q ` e2::τ, ψ2

Γ;Q ` if v.instanceof(t) then e1else e2 :: τ, ψ1∧ψ2



Flow-sensitivity may also cause some loss in type precision
(such that some downcasts cannot be statically verified) when the
same local variable is used for objects with different variant para-
metric types. To rectify this, we could use Static Single Assignment
(SSA) intermediate form [8] which is known to give better flow-
sensitive analysis results. Conversion of programs to SSA form can
be handled in a preprocessing step, prior to type checking.

These techniques for incorporating path and flow sensitivity are
quite standard, and were also explored in [41].

10. Conclusion
Software reuse has received much research interest for its boost
to software development and maintenance productivities. Recently,
generic type has become a main thrust in supporting software reuse.
In reusing Java code, several works have proposed for refactoring
legacy Java programs into those that use generic versions of popular
container classes [10, 11, 14, 40].

Other works try to achieve precise Java type inference results in
the presence of parametric polymorphism and data polymorphism
in order to reduce the redundant cast operations [31, 1, 41]. The
precision typically comes at the price of a whole program analysis.
Every time when an application code is analysed, the reachable
library code must also be re-analysed.

Variant parametric types attempt to increase language expres-
sivity and code reuse by introducing another subtyping scheme,
based on the notion of variance. This idea originated from the struc-
tured virtual types proposed by Thorup and Torgersen [35]. Their
work is the first to link access rights and covariant subtyping to
the fields of each use of a class rather than the class itself. Igarashi
and Viroli extended this concept to support contra- and bi-variance
[17]. They also formalised the variant type system by mapping it
into a correspondingexistential typesystem [17, 18] for Feather-
weight Java. While Igarashi and Viroli’s design faithfully models
the existential type system, it has been found to be too restrictive
by the designers of Java 1.5. One improvement made in Java 1.5 is
to allow each wildcard type to be opened without a corresponding
close operation. This provides more flexibility for writing generic
code, but weakens the link to the traditional pack/unpack mech-
anism of the existential type system. Hence, even though a full-
scale language system has been implemented, the soundness of the
wildcard type system is still under development (as of [36]). Other
than Java, a recently developed language Scala [24] supports vari-
ance for parametric polymorphism. In contrast with our approach,
Scala uses variance atdeclaration-site. However, an earlier version
of Scala has experimented with the use-site variance mechanism
that is consistent with the original system of Igarashi and Viroli but
without the flexibility of the wildcard capture. This was considered
to be too restrictive before the authors abandoned the approach.
Recently, generic types of C# [12] were extended withdeclaration-
sitevariance following the design adopted for the language Scala.

Theoretical foundations of the variance have also been stud-
ied in the context of typedλ-calculi, where type operators are
equipped with a polarity property [6, 33, 9]. These foundations have
even been extended to handle higher-order functions, but are closer
in nature to declaration-site variance, and have mostly been for-
malised in only a theoretical setting, without practical implementa-
tions.

In our paper, we have proposed a new approach based on flow
analysis to support the variant parametric type system. We lever-
age prior knowledge that has been accumulated for flow analy-
sis and entailment for non-structural subtyping constraints. Pals-
berg and O’Keefe [25] show the equivalence of flow analysis
and non-structural subtyping. Subtype entailment is known to be
hard even for simple subtyping constraints. Rehof and Henglein
determined the complexity of structural subtype entailment: for

simple types, it is coNP-complete [15] and for recursive types it
is PSPACE-complete [16]. Furthermore, they showed that non-
structural subtype entailment is PSPACE-hard and is conjectured
PSPACE-complete [16]. Su et al. [34] show the decidability of the
first-order theory of non-structural subtyping with unary function
symbols. Algorithms for non-structural subtype entailment (sound,
but incomplete) were developed in Pottier [32], Trifonov and Smith
[38]. While the decidability of non-structural subtype entailment
remains an open problem, we use sound techniques based on these
previous algorithms.

Our new approach is practically driven and can give better
generic types. We have also augmented it with intersection types to
support Java-like multiple (interface) inheritance. We have built a
prototype system based on a set of syntax-directed type rules. This
prototype is supported by a constraint-solver for variant subtyp-
ing, customised using CHR. Furthermore, our system supports full
casting for variant types. Through a new cast capture mechanism,
we can use reflection to handle objects with unknown types in a
type-safe way. Experimental evaluation indicates that more down-
casts can be eliminated by our approach, even when it is compared
against the state-of-the-art type system from Java 1.5. Our flow-
based approach to variant parametric type system is another step
towards better genericity for type-safe OO programs.
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A. Dynamic Semantics
The dynamic operational semantics of Variant CoreJava is de-
scribed in small steps. Notations used are defined as follows.

Locations: ι ∈ Location

Primitives: k ∈ prim = int ] bool ] float

] null ] void

Values: δ, ν ∈ Value= (TyPrim× prim) ] Location

Subs: µ, ρ ∈ Subs= TVar→fin Type

Store: $ ∈ Store= Location→fin ObjVal

Variable Env: Π ∈ VEnv= Var→fin Value

Object values: η ∈ ObjVal = Type× (Fd→fin Value)

Type: t ∈ Type

TyPrim consists of primitive types. A typet maintained at run-
time does not contain any variant information. If need be, it will be
treated as one with invariant annotation¯. A runtime environment
Π is a finite map from program variables to their associated values.



A value can be a location referencing an object or a pair containing
a primitive value and a primitive type.

A runtime store$ is a finite map from locations to object values.
An object value is comprised of its type and its field values. We
write η.f to denote the value of the fieldf of an objectη. When the
object is referred by its locationι, we also writeι.f to refer to the
value of its fieldf .

We overload the functiontypeto accept (1) primitive value and
return the primitive type; (2) location and return the type of the
dereferenced object; (3) object and return the object type; and (4)
object field and return the field type.

The variable environmentΠ is such a stackable mapping. We
write Π[ν/v] to denote an update of the value of the latest variable
v in Π to ν. We writeΠ + {v 7→ ν} to denote an extension ofΠ
to include a binding ofν to v, while Π − {v∗} removes a subset
of the mappings. Similar notations are used for the update and en-
hancement of object values and stores. In the case of store, we also
provide an abbreviated notation$[ν/ι.f ] =df let (t, ξ) = $(ι) in
$[(t, ξ[ν/f ])/ι]. Given an object value,η = (t, ξ), we haveFlds(η)
=df ξ.

We require some intermediate expressions for the dynamic se-
mantics to follow through. Our syntax is thus extended from the
original expression syntax as follows:

e ::= · · · | η | ι | ν | retd(v∗, e) | retm(Q, v∗, τ, e)

The expressionretd(v∗, e) is used to capture the result of eval-
uating a local block, andretm(Q, v∗, τ, e) captures the result of
method invocation. The set of variablesv∗ occurring in both result
structures contain the local names and method parameters when en-
tering local body and method body respectively. They are dropped
at the end of the local/method body’s evaluation.τ captures the
type of the result of method invocation, whereasQ captures the set
of type variables declared in the method header.Q is an instrument
used to facilitate our soundness proof.

The dynamic evaluation rules are of the following form.

〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′]

We shall formulate the rules using an exception-style semantics
with three possible errors, namely

E = Error-Null | Error-Cast | Error-Type .
Whenever one such error is raised, the evaluation aborts. This
error occurrence can be stated using〈Π,$〉 [e] ↪→ E. The small-step
dynamic call-by-name semantics is formalised in Fig 11, together
with some auxiliary functions in Fig 12.

B. Soundness of Type System
Before formulating the soundness, we extend the static semantics
of the language to include those intermediate expressions given in
Sec A. In the process, we require introduction of astore typing
to describe the type of each location. This ensures that objects
created in the store during run-time are type-wise consistent with
that captured by the static semantics. Store typing is conventionally
used to link static and dynamic semantics. In our case, it is denoted
by:

Σ ∈ StoreType= Location→fin Type

Judgements in the static semantics will be extended with store
typing, as follows:

Γ;Σ;Q ` e :: τ, ψ

[ELFm]

v∗ ⊆ dom(Γ) Q′ ⊆ Q
Γ;Σ;Q ` e :: τ, ψ ` τ<:τ1⇒ψ1

Γ;Σ;Q ` retm(Q′, v∗, τ, e) :: τ1, ψ ∧ ψ1

[ELFd]

Γ; Σ;Q ` e :: τ, ψ

Γ;Σ;Q ` retd(v∗, e) :: τ, ψ

[LOC]

τ = Σ(ι) ` τ<:τ1⇒ψ

Γ;Σ;Q ` ι :: τ1, ψ

[OBJ]

(t, ξ) = η ` ¯ t<:τ⇒ψ

Γ;Σ;Q ` η :: τ, ψ

[VALUE]

` ¯ t<:τ⇒ψ

Γ;Σ;Q ` (t, δ) :: τ, ψ

Figure 13. Type Rules for Intermediates

The static semantics for these intermediate expressions is shown in
Figure 13.

The soundness of our static semantics relies on the following
consistency relationship between the static and dynamic semantics,
defined as follows:

dom(Π) = dom(Γ) dom($) = dom(Σ) VL = vars(ψ)−Q

∀v ∈ dom(Π) · ∀ρ1 ∈ Subs· ∃ρL ∈ Subs·
(dom(ρL) = VL ∧ ρ = ρ1 ◦ ρL ∧ (ρ(ψ) ⇒

(Π(v) ∈ prim⇒ type(Π(v))<:ρ(Γ(v)))∧
(Π(v) ∈ Location⇒

type($(Π(v)))<:ρ(Γ(v))))))

Γ;Σ;Q;ψ |= Π, $

In the above relation,ρL is a ground substitution of local type
variables occurring in the constraintψ, and the composition of
substitutions is recursively defined as:(ρ1 ◦ ρ2)(v) = if (v ∈ dom)
thenρ2(v) elseρ1(v).

The following theorem states the progress of well-typed expres-
sions.

THEOREM 1 (PROGRESS) Let Γ be an environment mapping pro-
gram variables to ground types. IfΓ;Σ;Q ` e :: τ, ψ and
Γ;Σ;Q;ψ |= Π, $, then either

• e is a value, or

• 〈Π,$〉 [e] ↪→ Error-Null | Error-Cast , or

• there existΠ′, $′, e′ such that〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′].
A proof of Theorem 1 can be found in Appendix C.1.

The next theorem states that each well-typed expression pre-
serves its type under reduction with a runtime environment and a
store which are consistent with the compile-time counterparts.

THEOREM 2 (PRESERVATION) Let Γ be an environment mapping
program variables to ground types. If

Γ;Σ;Q ` e :: τ, ψ

Γ;Σ;Q;ψ |= Π, $

〈Π,$〉 [e] ↪→ 〈Π̂, $̂〉 [ê]

then there existŝΓ, Σ̂ andQ̂ such that

Γ− diff(e, ê) = Γ̂− diff(ê, e)

Σ̂ ⊇ Σ

Γ̂; Σ̂; Q̂ ` ê :: τ, ψ̂

Γ̂; Σ̂; Q̂; ψ̂ ∧ ψ |= Π̂, $̂.



[D-Const]
k has typet

〈Π, $〉 [k] ↪→ 〈Π, $〉 [(t, k)]

[D-Var-FD ]

w = v|v.f ν = read(Π, $,w)

〈Π, $〉 [w] ↪→ 〈Π, $〉 [ν]

[D-If-true ]

Π(v) = (Bool, true)

〈Π, $〉 [if v then e1 else e2] ↪→ 〈Π, $〉 [e1]

[D-Assign-1]
〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′]

〈Π, $〉 [w = e] ↪→ 〈Π′, $′〉 [w = e′]

[D-Assign-2]
(Π′, $′) = upd(Π, $,w, ν)

〈Π, $〉 [w = ν] ↪→ 〈Π′, $′〉 [(void, ())]

[D-If-false]

Π(v) = (Bool, false)

〈Π, $〉 [if v then e1 else e2] ↪→ 〈Π, $〉 [e2]

[D-Blk-1]

〈Π, $〉 [e1] ↪→ 〈Π′, $′〉 [e′1]
〈Π, $〉 [{t v = e1 ; e2}] ↪→ 〈Π′, $′〉 [{t v = e′1; e2}]

[D-Blk-2]

subType(type(ν), t) Π′ = Π + {v 7→ ν}
〈Π, $〉 [{t v = ν; e2}] ↪→ 〈Π′, $〉 [retd(v, e2)]

[D-While-true ]

Π(v) = (Bool, true)

〈Π, $〉 [while v do e] ↪→ 〈Π, $〉 [e ; while v do e]

[D-While-false]
Π(v) = (Bool, false)

〈Π, $〉 [while v do e] ↪→ 〈Π, $〉 [(void, ())]

[D-Ret-d-1]
〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′]

〈Π, $〉 [retd(v∗, e)] ↪→ 〈Π′, $′〉 [retd(v∗, e′)]

[D-Ret-d-2]
Π′ = Π− (v∗)

〈Π, $〉 [retd(v∗, ν)] ↪→ 〈Π′, $〉 [ν]

[D-Ret-m-1]
〈Π, $〉 [e] ↪→ 〈Π′, $′〉 [e′]

〈Π, $〉 [retm(Q, v∗, t, e)] ↪→ 〈Π′, $′〉 [retm(Q, v∗, t, e′)]

[D-Ret-m-2]
subType(type(ν), t) Π′ = Π− (v∗)

〈Π, $〉 [retm(Q, v∗, t, ν)] ↪→ 〈Π′, $〉 [ν]

[D-Seq-1]
〈Π, $〉 [e1] ↪→ 〈Π′, $′〉 [e′1]

〈Π, $〉 [e1; e2] ↪→ 〈Π′, $′〉 [e′1; e2]

[D-Cast]
〈Π, $〉 [v] ↪→ 〈Π, $〉 [ν]

chkCast(type(ν), t)

〈Π, $〉 [(t) v] ↪→ 〈Π, $〉 [ν]

[D-Capture]

〈Π, $〉 [v] ↪→ 〈Π, $〉 [ν] t0 = type(ν)
ρ = match(t, t0) (Π′, $′) = upd(Π, $, v1, ν)

〈Π, $〉 [{v1 = (t) v; e}] ↪→ 〈Π′, $′〉 [ρ(e)]

[D-Seq-2]

〈Π, $〉 [δ; e2] ↪→ 〈Π, $〉 [e2]

[D-New]

class c〈Xi〉qi=1 · · · where ψ { · · · } ∈ P ι = fresh()
µ = [ti/Xi]

q
i=1 νi = read(Π, $, vi) ∀i ∈ {1..p}

chk(µ(ψ)) t′i = type(νi) ∀i ∈ {1..p}
subType(c〈t′i〉qi=1, c〈ti〉qi=1)

η = (c〈ti〉qi=1, {fi 7→ νi}p
i=1) $′ = $ + {ι 7→ η}

〈Π, $〉 [new c〈ti〉qi=1(v1..p)] ↪→ 〈Π, $′〉 [ι]

[D-Call]
νi = Π(v′i) ∀i ∈ {0..q} c〈t′i〉mi=1 = type(ν0)
t0 | tmn((ti vi)i=1..q)〈V ∗〉 where ψ eb ∈ mtds(c)

µ = [t∗/V ∗] chk(µ(ψ)) Π′ = Π + [ν0/this][νi/vi]
q
i=1

subType(type(νi), µ(ti)) ∀i ∈ {0..q}
V ′ = {this} ∪ {vi}q

i=1 e = retm(V
∗, V ′, µ(t), µ(eb))

〈Π, $〉 [v′0.mn(v′1, .., v′q)〈t∗〉]↪→〈Π′, $〉 [e]

Figure 11. Dynamic Semantics

read(Π, $, v) = Π(v);
read(Π, $, v.f) =

ι = Π(v);
if $(ι) = null throw Error-Null ;
$(ι).f ;

chk(φ) =
if ¬(` φ) throw Error-Type ;
true;

chkCast(t1, t2) =
if ¬(` t1<:t2) throw Error-Cast ;
true;

upd(Π, $, v, νs) =
ν = Π(v);
if ¬(` type(νs)<: type(ν))

throw Error-Type ;
(Π[νs/v], $);

upd(Π, $, v.f, νs) =
ι = Π(v);
if $(ι) = null throw Error-Null ;
νf = $(ι).f ;
if ¬(` type(νs)<: type(νf )) throwError-Type ;
(Π, $[νs/$(ι).f ]);

subType(t1, t2) =
if ¬(` t1<:t2) throw Error-Type ;
true;

match(tv, t) = [t/tv ];
match(c〈t∗v〉, c〈t∗〉) = [t∗/t∗v];
match(t′, t) = throw Error-Type ;

Figure 12. Dynamic Semantics:Auxiliary Definitions



Functiondiff(e, e′) returns a list of local variables that appears ine
but note′ :

diff(e, e′) =df let lst = local(e)
lst1 = local(e′)
n = length(lst)− length(lst1)

in (take(n, lst) ¢ n ≥ 0 ¤ [ ])
take(n, lst) =df ([ ] ¢ n ≤ 0 ¤ [head(lst)] ++take(n− 1, tail(lst)))
x¢ b¤ y =df if b thenx elsey

Functionlocal(e) returns a list of sets of local variables. It is defined
as follows:

local(e) =df casee of
retm(Q, v∗, τ, e) → local(e) ++ [{v∗}]
retd(v∗, e) → local(e) ++ [{v∗}]
w = e → local(e)
(t v = e1; e2) → local(e1)
otherwise → ∅

Note thatΓ− [ ] =df Γ, Γ− ([s] ++ S) =df (Γ− s)− S. The proof
is simple: by induction over the depth of type derivation of expres-
sione. A proof of Theorem 2 can be found in Appendix C.2.

C. Proofs of Theorems
C.1 Proof of Theorem 1 (Progress)

By induction over the depth of type derivation for expressione.

Cases[NULL,VOID,VALUE, LOC,OBJ]. Trivial.

Case[VAR−FIELD]. We deal with expressionw. As w = v | v.f
is well-typed, the evaluation rule[D-Var-FD ] is followed, the
evaluation either reports anError-Null or advances one step
yielding a value.

Case[ASSIGN]. We deal with expressionw = e. From type rule,
we haveΓ;Σ;Q ` e :: ⊕ t, ψ. By induction hypothesis,
either (i) e is a valueν, or (ii) 〈Π, $〉[e] ↪→ Error, or (iii)
〈Π, $〉[e] ↪→ 〈Π′, $′〉[e′].
Subcase (i): Let the runtime type ofν be t̂, and that ofw bet1.
Then, we havē t̂<: ⊕ t and¯ t1<: ª t, which implies
t̂<: t <: t1. Hence, theupd function at [D-Assign-2] will not
throwError-Type exception, and proceed to update the runtime
environmentΠ or the runtime store, as described in[D-Assign-2].

Subcase (ii): This will result in the execution of〈Π,$〉[w = e]
aborted withError.

Subcase (iii): This will result in the execution of the assignment
to reach〈Π,$〉[w = e′], via [D-Assign-1].

Case[SEQ]. We haveΓ;Σ;Q ` e1 :: ~ t, ψ. By induction hypoth-
esis, either (i)e1 is a valueν, or (ii) 〈Π, $〉[e1] ↪→ Error, or
(iii) 〈Π, $〉[e1] ↪→ 〈Π′, $′〉[e′1].
Subcase (i): The execution proceeds to reach〈Π, $〉[e2] un-
conditionally, according to[D-Seq-2].

Subcase (ii): The execution will be aborted withError excep-
tion.

Subcase (iii): The execution proceeds to reach〈Π′, $′〉[e′1; e2],
according to[D-Seq-1].

Case[LOCAL]. Given thatΓ;Σ;Q ` {t v = e1 ; e2} :: τ, ψ1∧ψ2.
We haveΓ;Σ;Q ` e1 :: ⊕ t, ψ1. By induction hypothesis,
either (i) e1 is a valueν, or (ii) 〈Π, $〉[e1] ↪→ Error, or (iii)
〈Π, $〉[e1] ↪→ 〈Π′, $′〉[e′1].
Subcase (i): Let the runtime type ofν be t̂0 and the runtime
type of v be t̂. As the consistency relation holds between the
static and the dynamic semantics, we have for all ground sub-
stitutionρ, ` ρ(ψ1)⇒ t̂ = ρ(t). Sincè ρ(ψ1) ⇒ ¯t̂0<:⊕ t,
subType(type(ν), t̂) = subType(t̂0, t̂) = true. Hence, the execu-

tion will proceed to the state〈Π′,$〉[retd(v, e2)] according to
[D-Blk-2].

Subcase (ii). The execution will throw the correspondingError
exception.

Subcase (iii). The execution will proceed to〈Π′, $′〉[{t v =
e′1; e2}] according to[D-Blk-1].

Case[NEW]. Given Γ;Σ;Q ` new c〈ti〉qi=1(v1, .., vp) :: τ, ψ, let
t̂i (for all i = 1..q) and t̂vi (for all i = 1..p) be the runtime
types of type arguments and value arguments tonew. Then we
have, for all ground substitutionρ, ` ρ(ψ) ⇒ ∧q

i=1(t̂i=ρ(ti))
and` ρ(ψ) ⇒ ∧p

i=1(t̂vi<:ρ(Γ(vi))). Furthermore,̀ ρ(ψ) ⇒
ρ(Γ(vi))<:t′i, for all i. Hence, both calls tochk andsubType
at runtime do not fail, and the execution proceeds to the state
〈Π, $′〉[ι], whereι is the location referencing the new object.

Case[COND]. GivenΓ;Σ;Q ` if v then e1 else e2 :: τ, ψ and
Γ(v)<: ⊕ Bool, the runtime value ofv will either betrue,
false, or null (). In the first two subcases, the execution pro-
ceeds to next state according to the rules[D-If-true ] and[D-If-false]
respectively. In the last subcase, there is no corresponding dy-
namic rule, and exceptionError-Null will be thrown.

Case[WHILE]. Given Γ;Σ;Q ` while v do e :: τ, ψ and
Γ(v)<: ⊕ Bool, the runtime value ofv will either betrue,
false, or null (). In the first two subcases, the execution pro-
ceeds to next state according to the rules[D-While-true ] and
[D-While-false] respectively. In the last subcase, there is no cor-
responding dynamic rule, and exceptionError-Null will be
thrown.

Case[ELFd,ELFm]. We haveΓ;Σ;Q ` e :: τ, ψ as the premise of
the static semantics. By induction hypothesis, either (i)e is a
valueν, or (ii) 〈Π, $〉[e] producesError, or (iii) 〈Π, $〉[e] ↪→
〈Π′, $′〉[e′].
Subcase (i): Let the runtime type ofν be t̂ν and that of return
value bêt then for all ground substitutionρ we havè ρ(ψ) ⇒
ρ(τ) = ¯t̂. Also, we have` ρ(ψ) ⇒ t̂ν<:ρ(τ). Hence,
the call tosubTypein the rule[D-Ret-2] returnstrue, and the
execution proceeds to〈Π′, $〉[ν] accordingly.

Subcase (ii): The execution will throw the correspondingError
exception, as no rule applies.

Subcase (iii): The execution step to the new state following rule
[D-Ret-1].

Case[CAST]. Any type mismatch during cast will be captured by
chkCastandError-Cast exception will be thrown. Otherwise,
casting will succeeds and the execution proceeds to the next
state〈Π,$〉[(t, ι)].

Case[CAPTURE]. We haveΓ;Σ;Q ` {v1 = (t)v; e} :: τ, ψ1 ∧ψ2.
From its premise, we havet = c〈¯ Vi〉ni=1. Executing the
expressionv either yields anError exception or returns a value
ν. We consider the case whereν is returned. Lett0 be the type
of ν as declared in the runtime environment. The use of flow
symbol¯ in t implies thatmatch(t, t0) succeeds and produces
ρ only whenρ(t) = t0. Hence, by rule[D-Capture], the execution
proceeds to the state〈Π′, $′〉[ρe]. Updating ofv1 does not fail,
similar with [ASSIGN].

Case[CALL]. Given Γ;Σ;Q ` v′0.mn(v′1, .., v
′
q)〈t∗〉 : τ, ψ. Let

the runtime type arguments be〈t̂∗〉 and the value arguments
have typet̂v′i for i = 0..q. Also, the ground substitutionµ
in [D-Call] is an instance ofρ in [CALL], which makesψ true.
Thus, we have,̀ µ(ψ) ⇒ t̂v′i<:µ(τ ′i), i = 0..q, and `
t̂0<:µ(t0). Hence, the call tosubTypein [D-Call] yields true,



and the execution proceeds to the state〈Π,$〉[e] according to
[D-Call]. ut

C.2 Proof of Theorem 2 (Preservation)

The proof for Theorem 2 requires several lemmas.

LEMMA 3 (Type Substitution).If Γ;Σ;Q ` e :: τ, ψ, then for all
substitutionρ such that̀ ρ(ψ), we haveρ(Γ); ρ(Σ);Q ` ρ(e) ::
ρ(τ), ρ(ψ).

The proof is by induction on a derivation ofΓ;Σ;Q ` e :: τ, ψ.
The next lemma, calledassumption weakening lemma, states

that the static judgment remains valid despite a variation of its
assumption. This assumes the store typeΣ to have unbounded
mapping of locations to types. However, the type environmentΓ
takes the form of stackable mapping between variables and types,
and is allowed to grow (by pushing in new mappings) and shrink
(by popping out mappings from stack). The lemma states that such
change to type environment preserves the type judgment, if the
change are properly constrained.

LEMMA 4 (Assumption Weakening). Given that the following
judgment holds:

Γ; Σ;Q ` e :: τ, ψ

Let Γ̂, Σ̂ andQ̂ be such that:

vars(e) ⊆ dom(Γ) ∩ dom(Γ̂)

Q ⊆ Q̂ ∨ Q̂ ⊆ Q

vars(ψ)−Q = vars(ψ)− Q̂

∃v∗ · (Γ− {v∗} = Γ̂) ∨ (Γ̂− {v∗} = Γ)

Σ̂ ⊇ Σ

Then, there existŝψ such that̀ ψ̂ ⇔ ψ and

Γ̂; Σ̂; Q̂ ` e :: τ, ψ̂

The call vars(e) returns all program variables occurring ine,
whereasvars(ψ) returns all (type) variables occurring inψ.

Proof of Lemma 4: By structural induction on the static semantics
of the formΓ;Σ;Q ` e :: τ, ψ. For anyΓ̂, Σ̂ andQ̂, we say that they
satisfy the premises of the Lemma if the following holds:

vars(e) ⊆ dom(Γ) ∩ dom(Γ̂)

Q ⊆ Q̂ ∨ Q̂ ⊆ Q

vars(ψ)−Q = vars(ψ)− Q̂

∃v∗ · (Γ− {v∗} = Γ̂) ∨ (Γ̂− {v∗} = Γ)

Σ̂ ⊇ Σ

Cases[NULL,VOID, LOC,OBJ,VALUE]. Trivial.

Case[VAR−FIELD]. We deal with expressionw, wherew = v | v.f .
For anyΓ̂, Σ̂ andQ̂ satisfying the premise of the lemma, we see
thatΓ(v) = Γ̂(v). Hence,̂Γ; Σ̂; Q̂ ` w : τ, ψ.

Case[ASSIGN]. We deal with expressionw = e. We havêΓ; Σ̂; Q̂ `
e :: ⊕t, ψ̂ for αt=GetType(Γ̂, w)=GetType(Γ, w). The desired
result is then derived by induction hypothesis.

Cases[LOCAL, SEQ,COND,WHILE,CAST,CAPTURE,ELFd,ELFm].
By induction hypothesis.

Case[NEW]. The result holds becauseΓ(vi) = Γ̂(vi), for all i =
1..p.

Cases[CALL]. The result holds becauseΓ(v′i) = Γ̂(v′i) for all i =
1..q. ut

Proof of Theorem 2 This can be proven by induction over the
depth of type derivation of expressione.

Cases[NULL,VOID, LOC,OBJ,VALUE]. Vacuously true.

Case[VAR−FD]. This can be proven by settinĝΓ, Σ̂ andQ̂ to Γ, Σ
andQ respectively.

Case[ASSIGN]. There are two rules by which one-step derivation
can be applied:

Subcase[D-Assign-1]: By induction hypothesis, there existsΓ′,
Σ′ andQ′ such thatΓ′; Σ′;Q′ ` e′ :: ⊕ t′, ψ′ and which
satisfies the premise of the theorem. Since⊕ t′<:⊕ t, we thus
haveΓ′; Σ′;Q′ ` e′ :: ⊕ t, ψ′∧ψ′′, wherè ⊕ t′<:⊕ t⇒ ψ′′.
The desired result can then be proven by settingΓ̂, Σ̂ andQ̂ to
Γ′, Σ′ andQ′ respectively.

Subcase[D-Assign-2]: Consider the assignment to a variablev.
Given thatupd(Π,$,w, ν) returns successfully(Π′, $′), it
must be the case thattype(ν)<:type(Π′(v)). The desired result
can then be proven by settinĝΓ, Σ̂ and Q̂ to Γ, Σ andQ
respectively. Similar argument applies to the assignment to a
field.

Case[SEQ]. There are two rules by which one-step derivation can be
applied:

Subcase[D-Seq-1]: By induction hypothesis, there existsΓ′, Σ′

andQ′ that establishes the consistency relation at the hypoth-
esis. We elect̂Γ, Σ̂ andQ̂ to beΓ′, Σ′ andQ′ respectively to
obtain the desired result.

Subcase[D-Seq-2]: By setting Γ̂, Σ̂ and Q̂ to be Γ, Σ andQ
respectively.

Case[COND]. There are two rules by which one-step derivation can
be applied:[D-If-True ], [D-If-False]. Both can be proven by setting
Γ̂, Σ̂ andQ̂ to Γ, Σ andQ respectively.

Case[WHILE]. Similar as the argument for case[COND].

Case[LOCAL]. There are two rules to consider:

Subcase[D-Blk-1]: By induction hypothesis.

Subcase[D-Blk-2]: SincesubType(type(ν), t), Γ′ andΣ used in
[LOCAL] remain consistent withΠ′ and$ in this subcase. We
setΓ̂, Σ̂ andQ̂ to Γ′, Σ andQ respectively.

Case[CAST]. This can be proven by settinĝΓ, Σ̂ andQ̂ to Γ, Σ and
Q respectively.

Case[CAPTURE]. The argument for one-step derivation[D-Capture]
is similar to that for case[D-Assign-2], except for the assignment
of runtime type information ofν to the type variables occurring
in t. This assignment proceeds successfully because of the
premise of[CAPTURE]. We set Γ̂, Σ̂ and Q̂ to Γ, Σ and
Q respectively. It suffices to show that̂Γ; Σ̂; Q̂ ` ρ(e) ::

τ, ψ̂. This is true by applying Type Substitution Lemma to the
following premise of[CAPTURE]: Γ;Σ;Q ` e :: τ, ψ2.

Case[NEW]. We setΓ̂ = Γ, Σ̂ = Σ + {ι 7→ ¯ c〈¯ ti〉qi=1} and
Q̂ = Q.

Case[CALL]. The fact that̂τ , as obtained from[ELFm], is a subtype
of τ obtained from[CALL], is established from the result of
[ELFm] and the constraintρ(⊕ t) <:τ occurred inψ in the
premise of[CALL]. Finally, by assumption weakening rule, we
set Γ̂ = Γ + {vi :: ⊕t̂i}q

i=1 + {this :: ⊕t̂0, Σ̂ = Σ,
Q̂ = Q ∪ {V ∗}.

Case[ELFd,ELFm]. There are two subcases for consideration:

Subcase[D-Ret-d-1, D-Ret-m-1]: By induction hypothesis.

Subcase[D-Ret-d-2, D-Ret-m-2]: By induction hypothesis and the
Assumption Weakening Lemma. ut


