
An Expressive Framework for
Verifying Deadlock Freedom

Duy-Khanh Le, Wei-Ngan Chin, Yong-Meng Teo

Department of Computer Science, National University of Singapore
{leduykha,chinwn,teoym}@comp.nus.edu.sg

(Technical Report - June 2013)

Abstract. This paper presents an expressive specification and verifica-
tion framework for ensuring deadlock freedom of shared-memory con-
current programs that manipulate locks. We introduce a novel delayed
lockset checking technique to guarantee deadlock freedom of programs
with interactions between thread and lock operations. With disjunctive
formulae, we highlight how an abstraction based on precise lockset can be
supported in our framework. By combining our technique with locklevels,
we form a unified formalism for ensuring deadlock freedom from (1) dou-
ble lock acquisition, (2) interactions between thread and lock operations,
and (3) unordered locking. The proposed framework is general, and can
be integrated with existing specification logics such as separation logic.
Specifically, we have implemented this framework into a prototype tool,
called ParaHIP, to automatically verify deadlock freedom and correct-
ness of concurrent programs against user-supplied specifications.

Keywords: Concurrency, Deadlock, Specification, Verification.

1 Introduction

Concurrent software systems are often complex, error-prone, and require tremen-
dous efforts from programmers to make them work correctly [24]. Over the past
decade, verification has been viewed as one of the solutions to this challeng-
ing research problem on increasing the quality and reliability of (concurrent)
programs, as advocated by Tony Hoare [13]. However, understanding and rea-
soning about the correctness of concurrent programs is rather complicated due
to non-deterministic interleavings of concurrent threads [21]. These interleav-
ings may result in deadlocks [6], i.e. states in which each thread in a set blocks
waiting for another thread in the set to release a lock or complete its execution.
Deadlocks are common defects in software systems. Specifically, in Sun’s bug
report database at http://bugs.sun.com/, there are approximately 6,500 bug
reports out of 198,000 (∼ 3%) containing the keyword “deadlock” [27]. In this
paper, we propose an expressive framework for reasoning about the correctness
of concurrent programs with a focus on eliminating deadlocks.

Existing verification systems [11, 14, 22, 23] often use abstract predicates to
represent states of locks. For example, Gotsman et al. [11] use abstract predicate
Locked(x) to specify that the lock x is owned by the current thread. Hobor et
al. [14] use the predicate hold x R and Chalice [22, 23] uses holds(x) for the
same purpose. Intuitively, a lock is owned by a thread if it is in the set of locks

Administrator
Text Box
A version of this technical report has been accepted for publication at ATVA 2013

already acquired by the thread, i.e. the thread’s lockset. Interestingly, although
using predicates, previous works [11, 14, 22, 23] formulate their soundness proof
using the notion of lockset. Additionally, Haack et al. [12] show that lockset (or
rather lockbag) is necessary to reason about Java recursive locks. In retrospect,
one can say that lockset has proven to be an important abstraction for verifying
concurrent programs that manipulate locks.1 In this paper, we advocate the use
of precise locksets for explicitly reasoning about the presence or absence of locks,
empowering a more expressive framework for verifying deadlock freedom even
in the presence of interactions between thread operations (e.g. fork/join) and
lock operations (e.g. acquire/release). Due to the non-deterministic nature of
threads, sound reasoning of the interactions between thread and lock operations
is non-trivial.

int running;1

pthread t thread;2

mutex t mutex;3

4

void* timer(){5

int state;6

do{7

mutex lock(&mutex);8

state=running;9

mutex unlock(&mutex);10

.../*timing*/11

}while(state);12

}13

void main(){14

running = 0;/*init timer*/15

mutex lock(&mutex);16

running = 1;/*start timer*/17

pthread create(&thread,&timer);18

mutex unlock(&mutex);19

/*begin timed computation*/20

...21

/*end computation*/22

mutex lock(&mutex);23

running = 0;/*stop timer*/24

mutex unlock(&mutex);25

pthread join(thread);26

}27

Fig. 1. A program with interactions between thread and lock operations

Fig. 1 outlines a simplified2 C implementation of a timer used in NetBSD
operating system’s report database [1]. Though rather intricate due to the in-
teractions between lock and thread operations, the program is deadlock-free
because the two threads never wait for each other. However, if the programmer
does not release the lock before joining (e.g. line 25 is missing or line 25 and
26 are swapped), the interactions will cause a deadlock when the main thread
blocks waiting to join the child thread and the child thread also blocks wait-
ing to acquire the mutex being held by the main thread. For larger programs
with many (possibly non-deterministic) execution branches, these interactions
are not easy to follow [21]. With concurrent programs becoming mainstream in
this multicore era, we will increasingly require a more comprehensive solution
for constructing and verifying these intricate interactions.

In this paper, we propose an expressive verification framework to guarantee
deadlock freedom in the presence of such interactions. Our framework has the
following innovations:
1 See Appendix A for detailed comparison between abstract predicates and locksets.
2 In the original implementation, there is a conditional variable associated with the

mutex to more efficiently signal the timer thread to start and stop timing. As verify-
ing conditional variables is an orthogonal issue, we have omitted them for simplicity.

– Delayed lockset checking to help reason about the interactions between thread
and lock operations. Unlike the traditional verification approaches [11, 12, 14,
15, 22] that check pre-conditions of procedures entirely at fork points, this
technique allows lockset constraints in the pre-conditions to be delayed and
checked at join points instead. This prevents deadlocks due to the interac-
tions and also permits more programs to be declared as deadlock-free.

– Precise lockset reasoning, as opposed to ones based on abstract predicates
or approximated locksets, to ensure that deadlock-free pre-conditions on lock
acquisition and release can be guaranteed. Any uncertainty, if any, from static
program analysis is simply captured through the use of explicit disjunction.

– Combining lockset with the concept of locklevels in the literature [3, 22, 33]
to form an expressive framework for ensuring deadlock freedom, covering
various scenarios such as double lock acquisition, interactions between thread
and lock operations, and unordered locking.

– A prototype specification and verification system, called ParaHIP, to show
that the proposed framework has been successfully integrated with separa-
tion logic [31] for reasoning about concurrent programs.

The rest of this paper is organized as follows. Section 2 gives concrete exam-
ples that motivate our delayed lockset checking technique and show how precise
lockset reasoning can be systematically supported. Section 3 presents our speci-
fication logic for verification. Section 4 shows our verification rules and presents
our soundness guarantee on deadlock freedom. Section 5 discusses the imple-
mentation and experimental results of our prototype tool. Section 6 summarizes
related work. Section 7 concludes our paper.

2 Motivation and Proposed Approach

2.1 Precise Lockset Reasoning

As our proposal is language-independent, we have developed a core language
(described in Section 3) to capture the basic ideas. In the rest of the paper, we
shall express our examples using this core language. In our verification frame-
work, LS is a thread-local ghost variable3 capturing the set of locks held by a
thread. Lockset is a verification concept rather than a programming language
concept. Using lockset, verification rules for acquire and release operations on
non-recursive (mutex) locks4 can be defined as follows:

acquire(lock x)

requires x/∈LS
ensures LS′=LS∪{x};

release(lock x)

requires x∈LS
ensures LS′=LS−{x};

Note that we use primed notation to denote updates to variables. The primed
version LS′ of the variable LS denotes its latest value; the unprimed version LS
denotes its old value at the start of the respective procedure call. Using lockset,

3 Ghost variables are variables used for verification purpose. They do not affect pro-
gram correctness.

4 Cannot be acquired more than once; also called non-reentrant locks

void thread()

requires LS={} ensures LS′={};
{

lock l1 = new lock();

//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
func(l1); /*Error*/
release(l1);

}

void func(lock l1)

requires l1/∈LS ensures LS′=LS;
{

//{ l1/∈LS ∧ LS′=LS }
acquire(l1);

//{ l1/∈LS ∧ LS′=LS∪{l1} }
release(l1);

//{ l1/∈LS ∧ LS′=LS∪{l1}−{l1} }
//{ l1/∈LS ∧ LS′=LS }

}

Fig. 2. Deadlock due to double acquisition of a non-recursive lock

it is straightforward to prevent the deadlock due to acquiring a non-recursive
lock twice in the thread code of Fig. 2. In this sequential setting, our verification
reports an error because the pre-condition of the callee func (l1/∈LS) cannot
be satisfied by the current lockset of the caller (LS′={l1}). Additionally, the
release rule excludes the possibility of releasing a lock more than once.

In each given program, there can be many locking scenarios across different
execution branches. Each branch could potentially have a different lockset. The
following code fragment shows a simple example where locksets at two branches
are LS′={x} and LS′={}, which are clearly different:

//{ LS′={} }
if (b) { acquire(x);//{ LS′={x} } } else { //{ LS′={} } }
For static analysis, we often perform some approximation. For example, one

may over-approximate on the lockset, by using LS′={x} as the post-state of the
above code fragment. However, this approach would fail to detect the definite
presence of the lock x for safe release. Another approach is to under-approximate
on the lockset by using LS′={}, but this approach fails to detect the definite ab-
sence of the lock for safe acquisition. Thus, one plausible solution is to combine
the two approximations by capturing both may-hold and must-hold locksets, si-
multaneously. However, this approach would be more complex due to the use of
two locksets. In this paper, we propose a simpler solution that would mandate
the use of precise locksets in our verification/analysis. For approximation, we
propose to use disjunctive formulae to capture uncertainty and also allow pro-
gram states, other than lockset, to be over-approximated. In the above example,
we can ensure precise lockset by using either b∧LS′={x} ∨ ¬b∧LS′={} or even
LS′={x}∨LS′={} as its post-state, but never LS′={x}, since we always ensure
that each lockset is precisely captured and never approximated. This principle
allows us to support precise reasoning on locksets for verifying deadlock freedom.

2.2 Delayed Lockset Checking

Fig. 3 shows two programs that pose challenges for existing verification systems.
The programs are challenging because they express rich interactions between
fork/join concurrency and lock operations. The traditional way of verification
[11, 12, 14, 15, 22] cannot sufficiently handle these scenarios because it performs
the check for the pre-condition of the forkee only at the fork point. This could

void func(lock l1)

requires l1/∈LS ensures LS′=LS;
{ acquire(l1); release(l1); }

void main()

requires LS={} ensures LS′={};
{
lock l1 = new lock();

//{ LS′={} }
int id = fork(func,l1);/*DELAY*/
//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
/*Potentially deadlocked when join*/
join(id); /*CHECK, error*/
release(l1);

}

(a) Potentially deadlocked

void func(lock l1)

requires l1/∈LS ensures LS′=LS;
{ acquire(l1); release(l1); }

void main()

requires LS={} ensures LS′={};
{lock l1 = new lock();

//{ LS′={} }
acquire(l1);

//{ LS′={l1} }
int id = fork(func,l1);/*DELAY*/
//{ LS′={l1} }
release(l1);

//{ LS′={} }
join(id);/*CHECK, ok*/
//{ LS′={} }
}

(b) Deadlock-free

Fig. 3. Examples of programs exposing interactions between thread and lock operations

incorrectly verify the program in Fig. 3a as deadlock-free and reject the deadlock-
free program in Fig. 3b. The well-known technique [3, 22, 33] which requires
threads to acquire multiple locks in a specific order to avoid deadlocks could not
directly handle complications due to fork/join concurrency. In this paper, we
propose delayed lockset checking technique that is capable of preventing deadlock
scenarios (such as that presented in Fig. 3a) and proving more programs (such
as that described in Fig. 3b) to be deadlock-free.

This technique is based on the following observation. At a fork point, a verifier
is unaware of future operations performed by a main (or parent) thread; the only
information it knows of is future locking operations executed by a child thread
thanks to the use of lockset. For example, a constraint l1/∈LS in the pre-condition
of a child thread implies that the child thread is going to acquire the lock l1.
Therefore, in order to ensure that the child thread will finally be able to acquire
the lock (and thus avoid deadlocks), the main thread should not be holding the
lock while waiting for the child thread at its join point. In other words, when
forking a child thread, lockset constraints in its pre-condition are not checked at
the fork point but are delayed to be checked at its join point instead.

The deadlock in Fig. 3a can be prevented by deferring the lockset constraint
l1/∈LS of the child thread to its join point. At the join point, the constraint is
checked and the verification reports an error because the constraint is unsatisfi-
able (LS′={l1} at the join point). Similarly, the program in Fig. 3b is ensured
as being deadlock free because the lockset constraint l1/∈LS is delayed from the
fork point and is satisfiable at the join point (LS′={}). Note that, although main
and child threads have different locksets, a constraint l1/∈LS in pre-conditions
of a child thread indicates its intention to acquire the lock l1, hence this con-
straint can be soundly checked against the lockset of the main thread to prevent
deadlocks. Besides, it is unsound to check lockset constraints at any satisfiable

points in the middle of the fork point and the join point. For example, in a
scenario similar to Fig. 3b, after forking a child thread, the main thread releases
the lock. At this point, the lockset constraint is satisfiable. However, the main
thread could later acquire the lock again and wait for the child thread to join.
This scenario still suffers a potential deadlock. As a result, it is only sound to
check delayed lockset constraints at just the join points.

In summary, the main benefit of our delayed lockset checking technique is
to facilitate more expressive deadlock verification in the presence of interactions
between parent/child threads and lock operations.

2.3 Combining Lockset and Locklevel

Another type of deadlocks occurs when threads attempt to acquire the same set
of locks in different orders (unordered locking). An example of such a scenario is
shown in Fig. 4. Locklevel is a well-known handle to prevent deadlocks due to
unordered locking [3, 22, 33]. Intuitively, each lock in a program is associated with
a ghost field mu representing the lock’s level. For example, l1.mu denotes the
locklevel of lock l1. With it, deadlocks can be prevented indirectly by ensuring
that locks are acquired in a strictly increasing order of locklevels. To check that
locks are acquired in the specified order, a ghost variable waitlevel is used to
capture the maximum level currently acquired by a thread, i.e. waitlevel is the
maximum level among locklevels of all locks in current thread’s lockset LS. A
thread can acquire a lock only if its current waitlevel waitlevel′ is lower than
the lock’s level. Using locklevels, the deadlock in Fig. 4 can be prevented. The
verification system reports an error when the child thread attempts to acquire
lock l1 whose locklevel is lower than the current waitlevel of the child thread.

In the pre-condition of the func procedure (Fig. 4), we use the specification
[ω#ψ] to capture the fact that the waitlevel constraint ω and the lockset con-
straint ψ are mutually exclusive, i.e. the former is checked in sequential settings,
while the latter is a check needed to be delayed in concurrent settings. This

void main()

requires LS={} ensures . . . ;
{lock l1,l2 = new lock();

assume(l1.mu <l2.mu);

//

{
LS′={}∧l1.mu<l2.mu
∧waitlevel′=0

}
int id = fork(func,l1,l2);

//

{
LS′={}∧l1.mu<l2.mu
∧waitlevel′=0

}
acquire(l1);

//

{
LS′={l1}∧l1.mu<l2.mu
∧waitlevel′=l1.mu

}
acquire(l2);

//

{
LS′={l1, l2}∧l1.mu<l2.mu
∧waitlevel′=l2.mu

}
...}

void func(lock l1,lock l2)

requires [waitlevel<l1.mu # l1/∈LS∧l2/∈LS]
∧ l1.mu<l2.mu

ensures . . . ;
{

//

{
waitlevel′<l1.mu ∧ l1.mu<l2.mu
∧ LS′=LS }

}
acquire(l2);

//

{
waitlevel′=l2.mu ∧ l1.mu<l2.mu
∧ LS′=LS ∪ {l2} }

}
acquire(l1); /*Error*/
. . .
}

Fig. 4. A potential deadlock due to unordered locking

provides a single mechanism for procedure declarations so that each procedure
could be either forked as a child thread or invoked as a normal procedure call.

In summary, precise lockset, delayed lockset checking, and locklevel are com-
plementary and combining them is essential to form an expressive framework
for verifying various deadlock scenarios such as double acquisition, interactions
between fork/join and acquire/release, and unordered locking.

3 A Specification Logic for Deadlock Freedom

In this section, we present a specification logic that can be used to verify deadlock
freedom. We show how our approach, based on precise lockset abstraction, can
be integrated with the locklevel idea from Chalice [22]. We also present a
specification formalism to unify constraints on lockset, locklevel and waitlevel
into a single specification and to allow each procedure to be used internally or
as the entry point of a newly-forked thread.

P ::= proc∗ Program
proc ::= pn(([ref] t v)∗) spec∗ { s } Procedure declaration
spec ::= requires Φpr ensures Φpo; Pre/Post-conditions

t ::= int | bool | void | lock Type
e ::= v | k | e1=e2 | e1 6=e2 | . . . Expression

s ::=

v = fork(pn,v∗) | join(v)
| lock v = new lock(v)
| acquire(v) | release(v)
| s1; s2 | pn(v∗) | if e then s1 else s2
| . . .

Statement

Fig. 5. Programming Language with Annotations and Concurrency

Programming Language We consider an imperative core language (Fig. 5)
with fork/join concurrency for dynamic thread creation and non-recursive locks.
The language is relative straightforward; its details are described in Appendix B.

3.1 Integrating Specification with LockLevels

In our specification logic, a lockset variable LS captures a set of locks held by
the current thread. Like Chalice [22], each lock in a program has an immutable
ghost field mu representing the lock’s level. Locklevels are implemented as nat-
ural numbers and operators =, < and > are used over locklevels. The lowest
(bottom) locklevel is denoted as 0. A waitlevel variable can be derived from
the lockset and locklevels. As a reminder, waitlevel is the maximum level among
locklevels of all locks in current thread’s lockset LS. Levels of locks in a program
are strictly positive while a bottom locklevel denotes the waitlevel in case of
empty lockset. Using lockset as an abstraction, constraints on waitlevel can be
expressed in terms of constraints on lockset and locklevels as follows:

waitlevel<x
def
= (LS={} ⇒ 0<x) ∧ (LS6={} ⇒ ∀v∈LS · v.mu<x)

waitlevel>x
def
= (LS={} ⇒ 0>x) ∧ (LS6={} ⇒ ∃v∈LS · v.mu>x)

waitlevel=x
def
= (LS={} ⇒ 0=x)∧

(LS6={} ⇒ ∀v∈LS · v.mu≤x ∧ ∃u∈LS · u.mu=x)

Logic formula Φ ::=
∨

(∃v∗ · µ[(and τ)∗])
Main thread formula µ ::= ` ∧ π
Child thread formula τ ::= thread=v ∧ γ ;{w∗} π

Lock formula ` ::= [
∧
ω #

∧
ψ]

Delayed formula γ ::=
∨

(
∧
ψ ∧ π)

Waitlevel formula ω ::= waitlevel=αt | waitlevel<αt | waitlevel>αt

Lockset formula ψ ::= v ∈ LS | v /∈ LS
Pure formula π ::= α | β | π1 ∧ π2 | π1 ∨ π2 | ¬π | ∃v · π | ∀v · π | true

Set term βt ::= LS | {} | {v} | βt1 ∪ βt2 | βt1 ∩ βt2 | βt1−βt2
Set formula β ::= βt1 < βt2 | βt1 = βt2

Arithmetic term αt ::= k | v | v.mu | k× αt | αt1 + αt2 | −αt
Arithmetic formula α ::= αt1 = αt2 | αt1 6= αt2 | αt1 < αt2 | αt1 ≤ αt2

v,w ∈ Variables k ∈ Integer constants

Fig. 6. Grammar for Specification Language

3.2 Specification Formalism

Fig. 6 shows our specification logic. In the specification, Φ is a logic formula
in disjunctive normal form. Each disjunct in Φ consists of a thread formula µ
for a main (or parent) thread and a list of thread formulae τ (separated by
the and keyword) to represent child threads. Each disjunct expresses the state
of the main executing thread µ at a program point and the final states of its
child threads τ . A main thread formula µ consists of a lock formula ` and a
pure formula π. A lock formula ` consists of waitlevel formulae ω, and lockset
formulae ψ. ω and ψ are self-explanatory.

A lock formula [
∧
ω #

∧
ψ] presents our mechanism for each procedure’s

dual use, namely for both sequential and concurrent execution. The formula
captures both waitlevel formula

∧
ω and lockset formula

∧
ψ that are mutually

exclusive. The former is checked for sequential procedural calls, while the latter
must be delayed and checked at join points of forked threads. We provide both
specifications in a unified format to cater to the differences in semantics for
both sequential and concurrent computations. In sequential settings, e.g. when
invoking a normal procedure call, the pre-condition of a procedure is an assertion
that has to be fulfilled by the caller. If one or more constraints about lockset
and waitlevel in the pre-condition are not met, verification fails. In concurrent
settings and due to the ownership semantics of locks (see §10.1.2 of [4]), each
new child thread does not inherit any locks from its parent thread. Hence, it has
empty lockset and bottom waitlevel. Thus, constraints on waitlevel need not be
checked here. Nevertheless, the constraints on lockset indicate the intention of
the child thread and must be “delayed for checking” at its join point instead.

A child thread formula τ represents the final state of a child thread. It consists
of a constraint thread = v capturing the thread’s identifier v, a delayed formula
γ, and a pure formula π capturing the thread’s post-state (i.e. its effects after
finishing its execution). The formula τ denotes the fact that when a child thread
with identifier v is joined and its delayed formula γ is satisfied, then its effects π
will be visible to the calling thread. The annotation ;{w∗} also captures a list
of variables w∗ that must be passed to the child thread when it is forked.

The formula γ illustrates our support for delayed lockset checking. Each dis-
junct in γ consists of delayed lockset constraints

∧
ψ and a pure formula π to

more precisely capture additional constraints for the corresponding delayed lock-
set constraints to hold. At each join point, only disjuncts whose pure formula is
satisfied are candidates for delayed lockset checking.

Lastly, a pure formula π consists of standard equality/inequality, Presburger
arithmetic and set constraints. Additionally, it is straightforward to enhance
our specification logic with permissions to ensure data-race freedom by using
separation logic [31] and variables as resource [30]. However, for simplicity of
presentation, this paper shall focus on just the framework for deadlock freedom
and ignore all issues pertaining to data-races.

For illustration, consider the following logic formula:

∃v1, v2, tid · l16=null ∧ l1.mu=v1 ∧ v1>0 ∧ l2 6=null ∧ l2.mu=v2 ∧ v2>0
∧ id=tid ∧ LS′={l2} ∧ b

and thread=tid∧((l1/∈LS′∧b∧l1 6=null)∨(l2/∈LS′∧¬b∧l26=null));{l1,l2,b}true

The formula represents a program state where there are two concurrent threads:
a main thread currently holding the lock l2 and a child thread with identifier
tid. The child thread has a disjunctive delayed formula which precisely captures
two locking scenarios: the child thread either acquires the lock l1 if the boolean
condition on variable b holds or acquires the lock l2 if the condition does not
hold. Suppose that the main thread is going to join the child thread. The main
thread, knowing that b holds, can exclude the deadlock scenario that the child
thread potentially attempts to acquire the lock l2. Hence it is deadlock-free to
join the child thread. Note that due to our assumption on data-race freedom,
the boolean condition on variable b is consistent in both threads.

4 Verification Rules

Proof rules for forward verification are presented in Fig. 7. They are formalized
using Hoare’s triples of the form {Φpr}P{Φpo}: given a program P beginning in a
state satisfying the pre-condition Φpr, if it terminates, it will do so in a state sat-
isfying the post-condition Φpo. In the figure, we only focus on key statements that
are related to concurrency and lockset: procedure call, fork/join, conditional, and
lock operations. In our framework, each program state ∆µ[(and ∆τ)∗] consists
of the current state ∆µ of a main (or parent) thread and a list of final states ∆τ

of child threads. Here final states of child threads refer to post-states of child
threads after they finish execution and their delayed formulae that need to be
checked at join points. When joined, the post-state of a child thread will be
visible and merged into the state of the main thread if its delayed formula is
satisfied. For simplicity of presentation, when discussing the rules for fork/join,
we present a program state ∆µ and ∆τ consisting of two threads (a thread
main ∆µ and a child thread ∆τ). Additionally, because other rules only affect
the main thread, it is sufficient to present only state of the main thread ∆µ.

In order to invoke a procedure call (CALL) in a sequential setting, a main
thread should be in a state ∆µ that can entail the pre-condition Φpr of the

procedure pn. For brevity, we omit the substitutions that link actual and formal
parameters of the procedure prior to the entailment. We also omit the treatment
of pass-by-ref parameters which can be handled by applying permissions on vari-
ables [20, 30]. After the entailment, the main thread subsumes the post-condition
Φpo of the procedure into its state. Note that the operator ∧{w∗,LS,waitlevel} is
a “composition with update” operator [28] to capture effects of executing the
procedure on its parameters w∗, LS, and waitlevel.

The auxiliary function partLS is used in concurrent settings to partition a
formula into a delayed formula γ (which will be “delayed for checking”) and
a pure formula π. In case of a disjunctive formula, the corresponding delayed
formula is also in a disjunctive form. This is to ensure that deadlock-free pre-
conditions on lock acquisition can be more precisely guaranteed when “delayed
checking”. The auxiliary function removeLS removes constraints that are related
to lockset and waitlevel because they are irrelevant in concurrent settings. The
semantics of removeLS is straightforward, hence it is not presented.

The rules for fork and join demonstrate the delayed lockset checking tech-
nique. A fork creates a new thread executing concurrently with the main thread.

partLS([
∧
ω #

∧
ψ] ∧ π)

def
= (
∧
ψ ∧ π1, π1) where π1 := removeLS(π)

partLS(Φ1 ∨ Φ2)
def
= (γ1 ∨ γ2, π1 ∨ π2)

where (γ1, π1) := partLS(Φ1) and (γ2, π2) := partLS(Φ2)

partLS(µ and τ)
def
= (π and τ, γ) where (γ, π) := partLS(µ)

AUX

def(pn) := pn(w∗) requires Φpr ensures Φpo; { s } ∆µ ` Φpr
{∆µ} pn(w∗) {∆µ ∧{w∗,LS,waitlevel} Φpo}

CALL

def(pn) := pn(w∗) requires Φpr ensures Φpo; { s }
(γpr, πpr) := partLS(Φpr) (, πpo) := partLS(Φpo)
∆µ ` πpr fresh(id) ∆1

µ := ∆µ ∧{v} v′=id
∆τ := thread=id ∧ γpr ;{w∗} πpo
{Φpr ∧ LS={}} s {Φpo ∧ LS′={}}
{∆µ} v := fork(pn,w∗) {∆1

µ and ∆τ}

FORK

∆µ ` γpr
{∆µ and thread=v ∧ γpr ;{w∗} πpo} join(v) {∆µ ∧{w∗} πpo}

JOIN

{∆µ ∧ b} s1 {∆1
µ} {∆µ ∧ ¬b} s2 {∆2

µ}
{∆µ} if b then s1 else s2 {∆1

µ ∨∆2
µ}

COND

fresh(l)

{∆µ} lock l = new lock(v) {∆1
µ ∧ l 6=null ∧ l.mu=v ∧ l /∈ LS′} NEWLOCK

∆µ ` waitlevel<l.mu

{∆µ} acquire(l) {∆µ ∧{LS} LS
′=LS ∪ {l}} ACQUIRE

∆µ ` l ∈ LS

{∆µ} release(l) {∆µ ∧{LS} LS
′=LS−{l}} RELEASE

Fig. 7. Forward Verification Rules for Concurrency

When forking a new child thread (FORK), because lockset and waitlevel are lo-
cal to each thread, the state of the main thread needs not entail constraints
related to waitlevel and lockset in the pre-condition Φpr of the child thread.
However, the main thread should be in a state that can entail the formula πpr.
The delayed formula γpr is delayed for checking at a join point. Afterwards, a
new thread ∆τ with a fresh identifier id carrying the delayed formula γpr and
the post-state πpo of the corresponding forked procedure is created. The main
thread keeps the identifier of the child thread in its new state ∆1

µ via the return
value v of the fork call. Note that constraints related to lockset and waitlevel in
the post-condition Φpo are also omitted (resulted in πpo) because they are only
local to the child thread and are irrelevant to the context of the main thread
after the child thread is joined. Lastly, to guarantee the ownership semantics of
locks, the FORK rule checks if the forked procedure with an empty lockset in
its pre-condition will finally end up with an empty lockset in its post-condition.
Alternatively, this check could be done during the verification of each forkable
procedure without breaking information hiding at call sites.

Joining a child thread with an identifier v (JOIN) requires that the state ∆µ

of the main thread must entail the child thread’s delayed formula γpr. The main
thread then merges the post-state of the child thread πpo into its state and the
child thread disappears from the program state after joined.

The rule for conditionals (COND) illustrates our support for precise lockset
reasoning. We capture precise lockset by using disjunction in the post-state of
the conditional statement. Together with disjunctive delayed formulae supported
by the function partLS in FORK rule, the use of explicit disjunction in this rule
enables more precise reasoning on locksets to ensure deadlock freedom.

Other verification rules are relatively straightforward. The NEWLOCK rule
creates a new lock l with a locklevel v. Without specifying a locklevel, a lock
is assumed to have an arbitrary non-zero locklevel. We assume that locklevel is
immutable during a lock’s lifetime. The ACQUIRE rule ensures that locks are
acquired in an increasing oder of locklevels (waitlevel<l.mu). This additionally
implies that l/∈LS (but not vice versa). After acquiring the lock l, it is added to
the thread’s lockset LS. Reversely, a thread must hold a lock (l∈LS) in order to
release it (RELEASE). After releasing the lock l, it is removed from the thread’s
lockset LS. The ACQUIRE and RELEASE rules respectively ensure that a lock is
not acquired or released more than once. The rest of verification rules used in
our framework only operate in sequential settings, therefore they are standard
as described in [28].

Theorem 1 (Soundness) Given a program with a set of procedures P i and
their corresponding pre/post-conditions (Φipr/Φ

i
po), if our verifier derives a proof

for every procedure P i, i.e. {Φipr}P i{Φipo} is valid, the program is deadlock-free.

Proof. Intuitively, for each program state, there is a wait-for graph correspond-
ing to it. We prove that a program that has been successfully verified by our
framework will never get stuck due to deadlocks, i.e. there does not exist a state
whose wait-for graph contains a cycle. The full proof is given in Appendix C. ut

5 Implementation and Preliminary Comparison

We have implemented our framework into a prototype tool, called ParaHIP5.
Currently, ParaHIP can automatically verify different deadlock scenarios and
several motivating concurrent programs presented in the literature [11, 14, 15].
In addition, our tool can handle programs with forking of recursive procedures
(such as the well-known parallel Fibonacci program) and unbounded number
of locks by using shape predicates. We also support intricate nested and non-
lexical fork/join concurrency by allowing thread identifiers to be passed between
threads. Such a program is outlined in Appendix D.

To demonstrate the expressiveness of our framework, we did a comparison
with Chalice [22, 23], a well-known framework for verifying deadlock freedom,
in terms of deadlock/deadlock-freedom scenarios that can be proven by the re-
spective frameworks. The benchmark programs cover various scenarios such as
double lock acquisition, interactions between thread and lock operations, and
unordered locking. One scenario (e.g. double acquisition) is representative of
many real-world programs. Therefore, although the scenarios are small, they
can be considered as a core benchmark for evaluating expressiveness of deadlock
verification systems. The sets of benchmark programs written for both Chalice
and ParaHIP are available for online testing in our project website.

The comparison results are presented in Table 1. Compared with Chal-
ice, ParaHIP allows more deadlocks to be prevented and also permits more
programs to be declared as deadlock-free. The experimental results were very
surprising because Chalice appears unsound. We communicated this issue with
Chalice’ developers and confirmed that Chalice’s technical framework is in-

5 The tool is available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/parahip/.

Table 1. A comparison between Chalice and ParaHIP. A tick (3) indicates that the
corresponding scenario can be verified correctly by the respective verification frame-
work. A cross (7) indicates otherwise. A prefix “disj” indicates that the corresponding
scenario requires disjunctive formulae to precisely capture different execution branches.

No Scenario Chalice ParaHIP Comments

1 no-deadlock1 7 3 Chalice cannot prove that this program
is deadlock-free

2 no-deadlock2 3 3

3 no-deadlock3 7 3 Chalice cannot prove that this program
is deadlock-free

4 deadlock1 7 3 Chalice verifies this deadlock scenario as
deadlock-free

5 deadlock2 3 3

6 deadlock3 3 3

7 disj-no-deadlock 3 3

8 disj-deadlock 7 3 Chalice verifies this deadlock scenario as
deadlock-free

9 ordered-locking 3 3

10 unordered-locking 3 3

deed sound but its implementation does not properly consider programs with
interactions between thread and lock operations [26]. Due to space limitations,
we refer interested readers to Appendix E and project website for detailed com-
parison and benchmark programs.

6 Related Work

This section presents related works on specification and verification of deadlock
freedom in shared-memory concurrency. Note that our framework currently sup-
ports only partial correctness. Hence, we do not consider non-termination due to
infinite loops or recursion. Proving (non-)termination [2, 7] and livelock freedom
[29] is orthogonal to our framework, and could be separately extended.

In the context of concurrency verification, several recent frameworks have
been proposed to reason about programs with non-recursive locks and dynamically-
created threads [11, 14], recursive locks [12], and low-level languages [8], all based
on separation logic [31]. However, they focus on verifying partial correctness and
ignore the presence of deadlocks. Haack et al. [12] use locksets (but not pre-
cise locksets) when verifying partial correctness of concurrent programs manip-
ulating Java recursive locks. However, their approach does not ensure deadlock
freedom. Verifast [15], a state-of-the-art verifier, also ignores deadlocks when
verifying correctness of concurrent programs. Chalice [22, 23], a verification
framework based on implicit dynamic frames [32], is capable of preventing dead-
locks. Initially, Chalice uses locklevels and is able to prevent deadlocks due to
double acquisition and unordered locking [22]. Later development on Chalice
[23] has proposed a technique to prevent deadlocks in programs that use both
message passing via channels, and locking. Although it could encode join oper-
ations as send/receive over channels, there are programs (such as the program
fork-join-as-send-recv in our website) where it is impossible for the encoding
to find proper levels assigned to the channels for proving deadlock freedom [26].
Our delayed lockset checking technique can enable proving deadlock freedom in
the presence of interactions between fork/join and acquire/release based on pre-
cise lockset as an abstraction. Using the technique, we are able to prove more
programs deadlock-free than previous work. We also showed how to incorporate
locklevels into our technique to form an expressive framework for specifying and
verifying deadlock freedom of concurrent programs.

Besides verification frameworks, there are other approaches to detect or pre-
vent deadlocks in concurrent programs. They can be classified into dynamic and
static approaches. There are many systems that detect deadlocks dynamically
- see [5, 16, 25] to name just a few recent works on this topic. Dynamic sys-
tems have the advantage that they can check unannotated programs. However,
they cannot guarantee the absence of deadlocks due to insufficient test cover-
age. Static approaches such as those based on static analysis [27, 34] and type
systems [3, 9, 10, 33] can ensure the absence of certain types of deadlocks. These
systems have the advantage that fewer annotations are required. However, they
tend to be less expressive than specification logics. Type systems such as [3, 33]
use locklevels to enforce a locking order while others use lock capabilities [10]
and continuation effects [9] to verify programs with no natural ordering on the

locks acquired. Nevertheless, existing systems [3, 9, 10, 33] do not ensure the ab-
sence of deadlocks due to interactions between thread and lock operations. It
is interesting to apply our delayed lockset checking technique to enhance the
capability of these type systems.

Deadlock-freedom has also been studied in other contexts, and notably in the
setting of message-passing process algebra [17–19]. The notion of locklevels in our
approach is similar to obligation and capability levels in these type systems [17–
19]. However, they have only been applied in the context of π-calculus while our
framework ensures deadlock freedom for a shared-memory concurrent language
with dynamic creation of threads and locks. Although fork/join/acquire/release
operations and shared variables could be encoded as send/receive operations
over channels, such an encoding would be non-trivial [17, 35].

7 Conclusion

In this paper, we presented an expressive deadlock-freedom verification frame-
work for concurrent programs. A novel delayed lockset checking technique is
introduced to cover deadlock scenarios due to interactions between thread and
lock operations. We described an abstraction based on precise lockset to sup-
port verification for deadlock freedom. We then showed how our technique can
be integrated with locklevels to form a formalism for verifying different deadlock
scenarios such as those due to double acquisition, interactions between thread
and lock operations, and unordered locking. Lastly, we implemented the pro-
posed framework into ParaHIP, a prototype verifier based on separation logic
reasoning, for specifying and verifying deadlock freedom and partial correctness
of concurrent programs.

Acknowledgement. We thank Peter Müller for his insightful discussions about
Chalice, and the anonymous reviewers for comments. This work is supported
by MOE Project 2009-T2-1-063.

References

1. NetBSD Problem Report 42900. http://gnats.netbsd.org/42900.

2. M. F. Atig, A. Bouajjani, M. Emmi, and A. Lal. Detecting Fair Non-termination
in Multithreaded Programs. In CAV, pages 210–226, 2012.

3. C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for safe programming:
preventing data races and deadlocks. In OOPSLA, pages 211–230, 2002.

4. D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

5. Y. Cai and W. K. Chan. MagicFuzzer: Scalable Deadlock Detection for Large-scale
Applications. In ICSE, pages 606–616, 2012.

6. E. G. Coffman, M. J. Elphick, and A. Shoshani. System Deadlocks. ACM Com-
puting Surveys, 3(2):67–78, 1971.

7. B. Cook, A. Podelski, and A. Rybalchenko. Proving Program Termination. CACM,
54(5):88–98, 2011.

8. M. Fu, Y. Zhang, and Y. Li. Formal Reasoning about Concurrent Assembly Code
with Reentrant Locks. In TASE, pages 233–240, 2009.

9. P. Gerakios, N. Papaspyrou, and K. F. Sagonas. A Type and Effect System for
Deadlock Avoidance in Low-level Languages. In TLDI, pages 15–28, 2011.

10. C. S. Gordon, M. D. Ernst, and D. Grossman. Static Lock Capabilities for Deadlock
Freedom. In TLDI, pages 67–78, 2012.

11. A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local Reasoning for
Storable Locks and Threads. In APLAS, pages 19–37, 2007.

12. C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s Reentrant Locks.
In APLAS, pages 171–187, Berlin, Heidelberg, 2008.

13. Tony Hoare. The Verifying Compiler: A Grand Challenge for Computing Research.
JACM, 50:63–69, January 2003.

14. A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle Semantics for Concurrent
Separation Logic. In ESOP, pages 353–367, Berlin, Heidelberg, 2008.

15. B. Jacobs and F. Piessens. Expressive Modular Fine-grained Concurrency Speci-
fication. In POPL, pages 271–282, New York, NY, USA, 2011.

16. P. Joshi, M. Naik, K. Sen, and D. Gay. An Effective Dynamic Analysis for Detecting
Generalized Deadlocks. In FSE, pages 327–336, 2010.

17. N. Kobayashi. Type-based Information Flow Analysis for the Pi-calculus. Acta
Informatica, 42(4-5):291–347, 2005.

18. N. Kobayashi. A New Type System for Deadlock-Free Processes. In CONCUR,
pages 233–247, 2006.

19. N. Kobayashi and D. Sangiorgi. A Hybrid Type System for Lock-Freedom of Mobile
Processes. TOPLAS, 32(5), 2010.

20. D.K. Le, W.N. Chin, and Y.M. Teo. Variable Permissions for Concurrency Verifi-
cation. In ICFEM. Springer, 2012.

21. E. A. Lee. The Problem with Threads. Computer, 39:33–42, May 2006.
22. K. R. M. Leino and P. Müller. A Basis for Verifying Multi-threaded Programs. In

ESOP, pages 378–393, Berlin, Heidelberg, 2009.
23. K. R. M. Leino, P. Müller, and J. Smans. Deadlock-Free Channels and Locks. In

ESOP, pages 407–426, 2010.
24. S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes: a Comprehensive

Study on Real World Concurrency Bug Characteristics. In ASPLOS, pages 329–
339, New York, NY, USA, 2008.

25. Z. D. Luo, R. Das, and Y. Qi. Multicore SDK: A Practical and Efficient Deadlock
Detector for Real-World Applications. In ICST, pages 309–318, 2011.

26. P. Müller. Personal communication, March 2013.
27. M. Naik, C.-S. Park, K. Sen, and D. Gay. Effective Static Deadlock Detection. In

ICSE, pages 386–396, 2009.
28. H.H. Nguyen, C. David, S.C. Qin, and W.N. Chin. Automated Verification of

Shape and Size Properties via Separation Logic. In VMCAI, Nice, France, 2007.
29. J. Ouaknine, H. Palikareva, A. W. Roscoe, and J. Worrell. Static Livelock Analysis

in CSP. In CONCUR, pages 389–403, 2011.
30. M. Parkinson, R. Bornat, and C. Calcagno. Variables as Resource in Hoare Logics.

In LICS, pages 137–146, Washington, DC, USA, 2006.
31. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In

LICS, Copenhagen, Denmark, July 2002.
32. J. Smans, B. Jacobs, and F. Piessens. Implicit Dynamic Frames. TOPLAS, 2012.
33. K. Suenaga. Type-Based Deadlock-Freedom Verification for Non-Block-Structured

Lock Primitives and Mutable References. In APLAS, pages 155–170, 2008.
34. A. Williams, W. Thies, and M. D. Ernst. Static Deadlock Detection for Java

Libraries. In ECOOP, pages 602–629, 2005.
35. J.M. Wing. FAQ on Pi-calculus. In Microsoft Internal Memo, 2002.

A Lockset as an Abstraction

While most previous works [11, 14, 22, 23] use abstract predicates for reasoning
about concurrent programs manipulating locks, we advocate the use of explicit
locksets. Though monadic predicates are logically equivalent to sets, they are
not always realised as such for two reasons. Firstly, we often avoid the use of
negation for predicates, such as ¬Locked(x), since such operator may be difficult
to implement and may have to rely on the concept of negation as failure, as used
in Prolog. Secondly, the application of frame rule [31] makes it more difficult to
reason about the absence of a given predicate. Thus it is harder to reason about
absence of locks using predicates to avoid deadlocks. In contrast, with lockset,
if a callee is going to acquire a non-recursive lock x, it is simpler to check if a
given lock is not in the current thread’s lockset (denoted by LS), by using x/∈LS
in the pre-condition of the callee. Nevertheless, such check can be considered as
sound only if the given lockset is precise and not an approximation, as explained
in Section 2.

B Programming Language

In this section, we describe the imperative core language presented in Section 3.
Our language supports fork/join concurrency for dynamic thread creation and
non-recursive locks. A program consists of a list of procedure declarations proc.
Each procedure proc is annotated with pairs of pre/post-conditions (Φpr/Φpo)
written in our specification logic (Section 3.2). A parameter can be passed by
value or by reference (ref). The programming language supports primitive types
(such as int, bool, and void), and lock type lock. Key statements for concurrency
consist of fork/join for thread management and lock operations. A fork receives
a procedure name pn and a list of parameters v∗, spawns a new thread executing
the procedure, and returns a unique thread identifier as an integer. A join re-
quires a thread identifier to join the thread back. lock v = new lock(v) creates
a new lock with a ghost argument representing its locklevel. acquire(v) and
release(v) attempt to acquire and respectively release the lock v. The seman-
tics of other program statements (such as procedure calls pn(v∗), conditionals,
loops, assignments) are standard as can be found in well-known languages such
as C/C++.

C Soundness Proof

In this section, we outline a proof to show that the proposed framework guaran-
tees deadlock freedom with respect to the language described in Fig. 5. Deadlocks
are well-known and one of the most cited definitions of deadlocks is by Coffman
et al. [6]. Four conditions must hold for a deadlock to occur: (1) “mutual ex-
clusion”, (2) “no preemption”, (3) “wait for”, and (4) “circular wait”. In our
framework, the first three deadlock conditions hold: use of (mutex) locks (con-
dition 1), a lock cannot be preempted until it is released (condition 2), threads
may have to wait when acquiring a lock or joining another thread (condition 3),
and we ensure deadlock freedom by breaking the “circular wait” (condition 4).

Our proof is inspired by the proof for deadlock freedom made by Leino et
al. [23]. In contrast to their proof which focuses on lock operations and channel
send/receive, our proof focuses on lock operations and thread fork/join instead.
As a reminder, there is a wait-for graph corresponding to each program state. We
prove that for each program that has been successfully verified by our framework,
there does not exist a state whose wait-for graph contains a cycle.

Definition 1 (Well-formness) A program is well-formed if the following con-
ditions hold:

– Procedure names are unique within a program. Procedure parameters are
unique within a procedure. Free variables in the body of a procedure are the
procedure parameters.

– A normal procedure call or a fork statement mentions only procedure names
defined in the program text. The number of actual parameters and formal
parameters are equal.

– Free variables in pre/post specifications are the procedure parameters plus
lockset variable LS and waitlevel variable waitlevel.

A thread can be in one of three states: running, done, and aborted. Our
verification framework ensures that no thread ends up in an aborted state. A
program state is non-aborting if neither of threads are in an aborted state. A
program state is final if all threads are in a done state.

Definition 2 (Thread State) A thread state σ is one of the following states:

– run(s, Γ) stating that the thread is running with remaining statement s and
environment Γ . For brevity, Γ is assumed to be a partial function from object
names to object references and from stack variables to values. Environment
Γ resembles stack and heap in programs.

– done stating that a thread has completed its execution.

– aborted stating a thread has performed an illegal operation.

Definition 3 (Program State) A program state Ψ consists of:

– L representing a partial function from locks to locklevels. Thus, L(o) denotes
the locklevel of lock o. A lock is already allocated if o ∈ dom(L).

– T representing a set of threads. Each thread is a tuple (ι, σ, κ, ls) consisting
of thread identifier ι, thread state σ, set of locks κ which the thread intends
to acquire since the beginning of its execution, and set of locks ls currently
held by the thread.

Definition 4 (Execution) Execution of a program starts in the initial program
state: (∅, (, run(s, ∅), ∅, ∅))

Fig. 8 shows the small-step operational semantics. A premise marked with

box denotes the fact that threads must block and wait for the premise to
become true. For example, a thread can only acquire a lock which is not held by
any thread. A premise marked with light gray indicates conditions that need to
hold, otherwise the thread has performed an illegal operation and it transitions
to an aborted state. For example, a thread will abort if it attempts to release a
lock without holding it. Our framework ensures that the premises in light gray
hold, i.e. threads cannot transition to aborted states. The rules presented require
that a thread starts and completes its execution with an empty lockset.

In Fig. 8, def(pn) denotes the definition of the procedure pn in the program,
eval(e, Γ) denotes the evaluation of the expression e in the environment Γ ,
delayed(Φ, Γ) denotes the set of locks that a thread intends to acquire since the
beginning of its execution (i.e. the delayed lockset). delayed(Φ, Γ) is defined in
Definition 5 based on the thread’s pre-condition Φ and an environment Γ . Note
that at run-time, we know which disjuncts are satisfiable.

Definition 5 (Delayed Lockset) Let Φ be a specification (described in Sec-
tion 3.2) whose free variables are in dom(Γ). The delayed lockset of Φ is defined
as follows:

delayed(Φ1 ∨ Φ2, Γ) = delayed(Φ1, Γ) ∪ delayed(Φ2, Γ)

delayed(Φ, Γ) =

{
delayed aux(Φ, Γ) if Φ is SAT under Γ
∅ otherwise

delayed aux([
∧
ω #

∧
ψ] ∧ π, Γ) = delayed aux(

∧
ψ, Γ)

delayed aux(ψ1 ∧ ψ2, Γ) = delayed aux(ψ1, Γ) ∪ delayed aux(ψ2, Γ)
delayed aux(x ∈ LS, Γ) = {Γ (x)}

Definition 6 (Wait-for Graph) Each program state (L, { (ι1, σ1, κ1, ls1), . . . ,
(ιn, σn, κn, lsn) }) forms a directed wait-for graph whose nodes are the threads
in the program state. This graph contains an arc from thread (ιt1 , σt1 , κt1 , lst1)
to thread (ιt2 , σt2 , κt2 , lst2) if one of the following conditions holds:

– Thread t1 blocks waiting for thread t2 to release a lock. In other words, σt1
is run(acquire(x); s, Γt1) ,Γt1(x) ∈ lst2 , and σt1 cannot go to an aborted
state.

– Thread t1 blocks waiting for thread t2 to terminate. In other words, σt1 is
run(join(ιt2); s, Γt1), and σt1 cannot go to an aborted state.

Each program state Ψ has a corresponding directed wait-for graph. A deadlock
occurs if the wait-for graph contains a cycle. Theorem 2 states that an arc in the
graph between t1 and t2 implies that t1’s waitlevel is smaller than t2’s waitlevel
or lockset ls1 of t1 does not contain the lock that t2 is waiting to acquire while t1
is waiting for t2 at a join point. Theorem 3 states that, for each program state,
there is always a thread that is able to make progress. Following from Theorem 3,
Theorem 4 states the main soundness theorem for deadlock-freedom.

Theorem 2 (Arc in Wait-for Graph) If the wait-for graph corresponding to
a non-aborting program state has an arc from (ιt1 , σt1 , κt1 , lst1) to
(ιt2 , σt2 , κt2 , lst2), then one of the following properties holds:

o /∈ dom(L) typeof(o) = lock Γ (w) = level

level>0 Γ ′ = Γ [v 7→ o] L′ = L[o 7→ level]

(L, {(ι, run(v = new lock(w); s, Γ), κ, ls)} ∪ T)→
(L′, {(ι, run(s, Γ ′), κ, ls)} ∪ T)

(L, {(ι, run(if true then s1 else s2; s, Γ), κ, ls)} ∪ T)→
(L, {(ι, run(s1; s, Γ), κ, ∅)} ∪ T)

(L, {(ι, run(if false then s1 else s2; s, Γ), κ, ls)} ∪ T)→
(L, {(ι, run(s2; s, Γ), κ, ∅)} ∪ T)

eval(e, Γ) = b

(L, {(ι, run(if e then s1 else s2; s, Γ), κ, ls)} ∪ T)→
(L, {(ι, run(if b then s1 else s2; s, Γ), κ, ∅)} ∪ T)

def(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
s′1 = [v1/w1, . . . , vn/wn]s1

(L, {(ι, run(pn(v1, . . . , vn); s, Γ), κ, ls)} ∪ T)→
(L, {(ι, run(s′1; s, Γ), κ, ls)} ∪ T)

def(pn) := pn(w1, . . . , wn) requires Φpr ensures Φpo; { s1 }
∀i ∈ {1, . . . , n} • Γ (vi) = oi fresh(ι1) Γ ′ = [v 7→ ι1]
Γ1 = [w1 7→ o1, . . . , wn 7→ on] κ1 = delayed(Φpr, Γ

′)

(L, {(ι, run(v = fork(pn,v1, . . . , vn); s, Γ ′), κ, ls)} ∪ T)→
(L, {(ι, run(s, Γ), κ, ls)} ∪ {(ι1, run(s1, Γ1), κ1, ∅)} ∪ T)

∃(ι1, (done, Γ), ,) ∈ T • Γ (v) = ι1

(L, {(ι, run(join(v); s, Γ), κ, ls)} ∪ T)→ (L, {(ι, run(s, Γ), κ, ls)} ∪ T)

Γ (x) = o ∀(, , , lst) ∈ T • o /∈ lst ls′ = ls ∪ {o}

o /∈ ls ∀l ∈ dom(L) • l ∈ ls⇒ L(l) < L(o)

(L, {(ι, run(acquire(x); s, Γ), κ, ls)} ∪ T)→ (L, {(ι, run(s, Γ), κ, ls′)} ∪ T)

Γ (x) = o o ∈ ls ls′ = ls− {o}
(L, {(ι, run(release(x); s, Γ), κ, ls)} ∪ T)→ (L, {(ι, run(s, Γ), κ, ls′)} ∪ T)

ls = ∅
(L, {(ι, run(skip, Γ), κ, ls)} ∪ T)→ (L, {(ι,done, κ, ∅)} ∪ T)

Fig. 8. Small-step operational semantics for well-formed programs

– max{L(o) | o ∈ lst1} < max{L(o) | o ∈ lst2}
– σt1 equals run(join(ιt2); s, Γt1), and lst1 ∩ κt2 = ∅

Proof. Since there is an arc from t1 to t2, t1 cannot go into an aborted state.
We consider two cases:

– Acquire. If the first statement of t1 is acquire(x) and Γ is t1’s environment
with Γ (x) = o, then it follows from the premise that

∀l ∈ dom(L) • l ∈ lst1 ⇒ L(l) < L(o) or max{L(l) | l ∈ lst1} < L(o)

Because o ∈ lst2 , this implies L(o) ≤ max{L(l) | l ∈ lst2}. The first property
holds.

– Join. The delayed lockset checking ensures that t1 is not holding any locks
that t2 is going to acquire, that is, lst1 ∩κt2 = ∅. The second property holds.

ut

Theorem 3 (Deadlock Freedom) If a program state Ψ is non-final and non-
aborting, then Ψ is not stuck.

Proof. By proving that there is always a thread that is able to make progress,
i.e. the graph corresponding to Ψ contains a non-final thread t that has no
outgoing arc. If the first statement s1 of t is neither acquire nor join, then t
can make progress. If s1 is an acquire(x), then no other thread holds the lock
x (otherwise t would have an outgoing arc). Hence, t can acquire x. If s1 is
join(id), the thread with identifier id has completed its execution (otherwise t
would have an outgoing arc). Therefore, t can make progress. ut

Theorem 4 (Soundness) Given a program with a set of procedures P i and
their corresponding pre/post-conditions (Φipr/Φ

i
po), if our verifier derives a proof

for every procedure P i, i.e. {Φipr}P i{Φipo} is valid, the program is deadlock-free.

Proof. It follows from Theorem 3 that each program that has been successully
verified by our framework never gets stuck due to deadlocks. ut

D Verification Example

In this section, we apply the rules presented in Section 4 to verification of a
deadlock-free program with intricate non-lexical fork/join operations (Fig. 9). A
main thread, after forking a child thread thread1, creates another thread thread2

and allows thread2 to join with thread1. The fork and join operations of thread1

is non-lexical because they are in different scopes (or more precisely in different
threads). This makes the program intricate and difficult to verify it as deadlock-
free. As a small experiment, we gave this small program to three colleagues in
our research lab and asked them whether it is deadlock-free. Interestingly, all of
them pondered on the program in more than fifteen minutes but neither of them
could figure out that the program is deadlock-free in the first attempt.

We apply our verification framework to this program and prove that it is in-
deed deadlock-free. In order to support this kind of non-lexical fork/join concur-
rency, our framework allows threads to be transferred between callers and callees
during the entailments. The formal treatment of the entailments is orthogonal
to the contributions of this paper and is omitted for simplicity. Intuitively, when
forking the thread thread2, the main thread transferred the thread with thread
identifier tid1 to thread2. Afterwards, the main thread adds thread2 into its
set of concurrent threads. Because a thread can only be transferred from one

void thread1(lock l)

requires [waitlevel<l.mu # l /∈LS] ∧ l 6=null

ensures LS′=LS;
{ acquire(l); release(l); }

void thread2(lock l,int tid1)

requires l/∈LS ∧ l 6=null

and thread=tid1 ∧ l /∈LS′ ∧ l 6=null ;{l,tid1} true
ensures LS′=LS;
{

//

{
l/∈LS ∧ l 6=null ∧ LS′=LS
and thread=tid1 ∧ l /∈LS′ ∧ l 6=null ;{l} true

}
join(tid1);/*CHECK, ok*/
// { l /∈LS ∧ l 6=null ∧ LS′=LS }

}

void main()

requires LS={} ensures LS′={};
{

lock l = new lock();

// { ∃v1 · l 6=null ∧ l.mu=v1 ∧ v1>0 ∧ l /∈LS′ ∧ LS′={} }
int tid1 = fork(thread1,l);/*DELAY*/

//

{
∃v1, v2 · l 6=null ∧ l.mu=v1 ∧ v1>0 ∧ tid1=v2 ∧ LS′={}
and thread=v2 ∧ l /∈LS′ ∧ l 6=null ;{l} true

}
acquire(l);

//

{
∃v1, v2 · l 6=null ∧ l.mu=v1 ∧ v1>0 ∧ tid1=v2 ∧ LS′={l}
and thread=v2 ∧ l /∈LS′ ∧ l 6=null ;{l} true

}
int tid2 = fork(thread2,l,tid1);/*DELAY*/

//

{
∃v1, v2, v3 · l 6=null ∧ l.mu=v1 ∧ v1>0 ∧ tid1=v2 ∧ tid2=v3 ∧ v26=v3 ∧ LS′={l}
and thread=v3 ∧ l /∈LS′ ∧ l 6=null ;{l,tid1} true

}
release(l);

//

{
∃v1, v2, v3 · l 6=null ∧ l.mu=v1 ∧ v1>0 ∧ tid1=v2 ∧ tid2=v3 ∧ v26=v3 ∧ LS′={}
and thread=v3 ∧ l /∈LS′ ∧ l 6=null ;{l,tid1} true

}
join(tid2);/*CHECK, ok*/
// { ∃v1, v2, v3· l 6=null∧l.mu=v1∧v1>0∧tid1=v2∧tid2=v3∧v2 6=v3∧LS′={} }

}

Fig. 9. Proof outline of a deadlock-free program with non-lexical fork/join concurrency

thread to another thread, our semantics ensures that only one thread can per-
form a join. The transfer of threads together with the delayed lockset checking
technique guarantee deadlock freedom in the presence of non-lexical fork/join
concurrency.

E Comparison

Table 1 shows the comparison between Chalice and ParaHIP. Compared with
Chalice, ParaHIP allows more deadlocks to be prevented (more sound) and
also permits more programs to be declared as deadlock-free (more complete).

Specifically, Chalice is unable to correctly verify 4 out of 10 scenarios that ex-
press intricate interactions between thread and lock operations. The last column
in the table briefly explains the reason behind. The sets of benchmark programs
written for both Chalice and ParaHIP are available for aniline’s testing in
our project website6.

The experimental results were very surprising because Chalice appears un-
sound. We communicated this issue with Chalice’ developers and confirmed
that Chalice’s technical framework is indeed sound but its implementation does
not consider programs with interactions between thread and lock operations [26].
Hence, the question to investigate is whether Chalice could be extended to han-
dle those scenarios? To the best of our knowledge, Chalice technical framework
could, under the hood, encode fork/join as send/receive over channels, assign lev-
els to the channels, and require that threads acquire locks and wait on channels
in a strictly increasing order of (locks’ and channels’) levels (Section 4.4 of [23]).
With this encoding, Chalice becomes sound and it can automatically elimi-
nate the false negatives in the programs deadlock1 and disj-deadlock. However,
it still does not correctly verify the programs no-deadlock1 and no-deadlock3

as deadlock-free. To be more expressive, Chalice could be extended to allow
programmers to explicitly annotate appropriate levels to thread identifiers and
require that threads acquire locks and join threads in a strictly increasing or-
der of (locks’ and thread identifiers’) levels [26]. With this extended help from
programmers, Chalice could correctly verify all programs in Table 1. However,
there are still programs (such as the program fork-join-as-send-recv in our
project website) where it is impossible to find appropriate levels to assign to
the thread identifiers for proving deadlock freedom [26]. That program can be
verified as deadlock-free in our framework without requiring extended help from
programmers. In summary, compared with Chalice, our framework is more
expressive in handling interactions between fork/join and lock operations. It ad-
vocates the use of precise locksets and introduces the delayed lockset checking
technique to more expressively prove deadlock freedom.

6 http://loris-7.ddns.comp.nus.edu.sg/˜project/parahip/.

