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ABSTRACT
Many program optimizations and analyses, such as array-
bounds checking, termination analysis, depend on knowing
the size of a function’s input and output. However, size
information can be difficult to compute. Firstly, accurate
size computation requires detecting a size relation between
different inputs of a function. Secondly, size information
may also be contained inside a collection (data structure
with multiple elements). In this paper, we introduce some
techniques to derive universal and existential size properties
over collections of elements of recursive data structures. We
shall show how a mixed constraint system could support the
enhanced size type, and highlight examples where collection
analysis are useful.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Applicative (functional)
languages; D.3.4 [Processors]: Optimization; F.3.1 [Specifying
and Verifying and Reasoning about Programs]: In-
variants; F.3.2 [Semantics of Programming Languages]:
Program analysis

General Terms
Languages, Theory, Reliability

Keywords
Sized Type, Polymorphism, Mixed Constraints, Collection
Analysis, Fix-Point

1. INTRODUCTION
Programming languages play a crucial role in helping to

develop correct and efficient programs within reasonable ef-
forts. While strongly-typed languages, such as Haskell, ML
and Java, have come a long way in helping to eliminate
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type-based errors, many simple logical errors, such as bound
checks or pattern-matching failure, remain outside the reach
of classical type-systems. While the complete elimination
of such logical errors is undecidable, it is still beneficial to
detect as many scenarios as possible where checks can be
determined to be safe and hence be made redundant. It is
also useful to detect those scenarios in which checks are de-
termined as possibly unsafe, since these are the places where
closer scrutiny for bugs may be needed.

A number of proposals for more powerful type systems,
such as usage types [17], binding-time types [4] for partial
evaluation, and flow types[5], have been proposed. These an-
notated type systems are capable of capturing extra static
properties that could be propagated through type inference.
In an earlier work[2], we have proposed a sized type system
for capturing and propagating size information. These size
properties are relational in nature, where relationships be-
tween inputs, as well as relationships between input/output
may be captured by linear arithmetic formulae. To illustrate
the basic concepts behind sized types, consider the following
three simple functions (in Haskell syntax):

f(a, b, c) = (a+ b, a ∗ a, c)
tail xs = case xs of (y : ys) → ys
append(xs, ys) = case xs of

Nil →ys
(x : xs ′) →x : append(xs ′, ys)

Based on the type rules given in [2], we can denote the sized
types for each expression e using (e :: τ s.t. φ) where τ is
an annotated size type with size variables, while φ is a set
of constraints that holds for the size variables present in τ .
For example, if e is of Int type, its annotated type would be
Intv where v is the size variable of the annotated type.

In case e is a function, we denote its sized type using
e :: (τ1, .., τn) → τ ′ s.t. size φ1; inv φ2, where φ1 is a set
of constraint that holds between the size variables present in
the annotated type, while φ2 represents a size invariant that
holds for the size variables of parameters of the recursive
function. For example, the above functions can be given the
following sized types.

f :: (Inta , Intb , αc) → (Intr1, Intr2, αr3)
s.t. size r1 = a + b ∧ r3 =t c

tail :: [αd ]m → [αr ]n s.t. size n = m − 1 ∧ m > 0
append :: ([αd ]m , [αe ]n) → [αr ]p

s.t. size p = m + n ; inv m+ < m ∧ n+ = n

Note the use of integer size variables, e.g a, b, m, n, to
capture the sizes of the corresponding Int and List types,
while a polymorphic variable for f has to be captured by
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polymorphic size variable, c, where term equality, =t , is
supported, while some size variables, (e.g. d , e), of tail and
append are unconstrained. For practical reasons, formulae
for size predicates have been restricted to Presburger arith-
metic for which efficient constraint-solving technology (e.g.
Pugh’s Omega Calculator[16]) exists. Sized types are fairly
expressive, as they are able to capture a variety of static
properties, including:

• Input-output size relationships that are in Presburger
form. For example, the relationship between input a, b
and the first output, r1, of function f is captured by
r1 = a + b. The second output, r2 = a ∗ b of f , is not
captured since it is outside of Presburger form.

• Pre-conditions that should be satisfied to avoid run-
time errors. For example, the tail function requires
that input list be non-empty. This is specified by the
constraint m > 0.

• Invariant properties that describe relationships between
parameters (denoted by m+,n+) of an arbitary recur-
sive call, and the original arguments (denoted by m, n)
of the first recursive call. For example, the invariant
properties m+ < m and n+ = n captures the fact that
the first argument is decreasing (in size) across each re-
cursive step, while the second parameter is unchanged
(in size) for the recursive append function.

While a major contribution in our previous work was an
inference procedure for calculating a reasonably accurate
sized-type, our earlier proposal suffered from three major
deficiencies, namely:

• Type system is size- but not type-polymorphic.

• Size information of elements kept inside recursive data
structures are usually not captured.

• Higher-order programs are not properly handled since
function-type parameters were size monomorphic.

In this paper, we propose to address the first two defi-
ciencies by enhancing sized type rules with extra constraints.
These constraints are beyond arithmetic, but can be used to
propagate arithmetic properties. We shall propose the use
of polymorphic size variables to capture size structures, and
see how this simple mechanism is able to handle polymorphic
programs. Size structures are size terms containing size vari-
ables. For example, the size structure of [Inta ]n is denoted
by [a]n. We shall also show how the flow of elements inside
recursive data structures (also known as collection) can be
modelled with universal/existential arithmetic relations over
bags. These bag relations allow properties of collections to
be safely propagated in an interprocedural fashion.

For example, the tail and append functions have polymor-
phic collection from the elements of input and output list.
These elements can be related more precisely by bag rela-
tions, as shown in the following sized types (omitting the
invariant constraint for append).

tail :: [αa ]m → [αr ]n

s.t. size n = m − 1 ∧ m > 0 ∧ r .bag � a.bag
append :: ([αa ]m , [αb ]n) → [αr ]p

s.t. size p = m + n ∧ r .bag = a.bag � b.bag

Note that the notation b.bag is used to denote a collec-
tion of elements that are associated with size variable b. As
a shorthand we shall also use b$ to denote b.bag . Rela-
tions involving such bag relations are more expressive than
(instance) relations on their individual elements. A more
detailed comparison will be given later. ( The correspond-
ing instance relation for elements of append function would
be r = a ∨ r = b.) Bag relations also facilitate the prop-
agation of properties from one collection to another. As
an example, we can propagate universal property over bags
through the following propagation rule:

A$ � B$ ∧ (∀ x ∈ B$. P [x ]) ⇒ (∀ x ∈ A$. P [x ])

Note that P [x ] is a predicate formula over the x instance.
As another shorthand, we shall use ∀ B$. P [B ] to denote
∀ x ∈ B$. P [x ]. A corresponding propagation rule for exis-
tential property can be expressed as follows.

A$ � B$ ∧ (∃ A$. P [A]) ⇒ (∃ B$. P [B ])

The main contributions of this paper are:

• We make use of a mixed constraint system. This mixed
constraint system uses arithmetic constraint for size
analysis, bag constraint for collection analysis, and
term constraint to support type polymorphism. We
show how information from one class of constraints
may be utilized by another class of constraints. (Sec-
tion 3)

• We enhance a previous sized type system to support
type polymorphism in a relatively straightforward way.
(Section 4)

• We introduce the concept of collection analysis for re-
cursive data structures with multiple elements, such as
lists and arrays. This analysis allows us to determine
how size properties of elements may be propagated.
(Section 5)

• We highlight how fixed-point computation may be done
for collections of elements, and provide techniques that
could discover universal/existential properties over these
collections. (Section 5.2)

2. LANGUAGE AND SIZED TYPE
We apply our technique to a first-order typed functional

language with strict semantics. The language is defined in
Figure 1. Recursive functions in the language are confined
to self-recursion. No loss of generality results since mutual
recursion can be transformed to self-recursion through suit-
able tagging of its input/output values.

We only consider well-typed programs. We enhance the
type system with a mixed constraint syetem with two main
pieces of safety information, namely : (a) size relation and
(b) collection/bag relation. Together with the type system,
they are jointly called sized types.

A polymorphic function will have some type variables in
its type. We do not explicitly quantify these type variables,
as we do not need to handle conventional generalization of
type to type schemes. Nevertheless, it is understood that all
type variables occurring in a program are universally quan-
tified.

The syntax of sized types is depicted in Fig. 2. It is a pair
containing an annotated type and a formula. An annotated
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f ∈ Fun 〈Functions〉
x ∈ Var 〈Variables〉
c ∈ Con 〈Constructor Names〉
n ∈ Int 〈Integer Constants〉
e ∈ Exp 〈Expressions〉
e ::= x | n | c(e1, . . . , en)

| let x = e1 in e2 | f (e1, . . . , en)
| letrec f (x1, . . . , xn) = e1 in e2

| case e0 of {ci(x1i , . . . , xmi ) → ei}n
i=1

p ∈ Pat 〈Patterns〉
p ::= x | c(x1, . . . , xn)

Figure 1: The Language Syntax

Sized Type = (AnnType, FS)

Annotated Type Expressions:
t ∈ TVar 〈Type Variables〉
v ∈ V 〈Size Variables〉
α ∈ A 〈Basic Size Annotation〉
σ ∈ AnnType 〈Annotated Types〉
σ ::= τ | (τ1, . . . , τn) → τ
τ ::= tα | Intα | Boolα | [τ ]α | (τ1, . . . , τn)
α ::= v | 

UnAnnotated Type Expressions:
τ ::= t | Bool | Int | [τ ]

| (τ1, . . . , τn)
Size Term Extraction :

s ∈ S 〈Size Term Annotation〉
τ ≡ τ s

s ::= α | [s]α | (s1, . . . , sn)

Constraint Abstraction Store:
Σ ∈ CAStore

Σ ::= { (f :: (τ1
s1 , . . . , τn

sn ) → τn+1
sn+1 ,

Q(s1, . . . , sn+1) = Φ)∗ }
Formulae:

Φ ∈ FS 〈Formulae〉
Φ ::=φ | γ | Q(s1, . . . , sn+1) | ∃ v . Φ

| Φ1 ∨ Φ2 | Φ1 ∧ Φ2 | s1 =t s2
| ∃ v$ . Φ | ∀ v$ . Φ
| case {Φi → Φ′

i}n
i=1

Size Formulae:
φ ∈ F 〈Boolean Expressions〉
φ ::= True | False | ¬ b | a1 = a2

| a1 �= a2 | a1 < a2 | a1 > a2

| a1 ≤ a2 | a1 ≥ a2

a ∈ AExp 〈Arithmetic Expressions〉
a ::= n | v | n ∗ a | a1 + a2 | − a

n ∈ Z 〈Integer constants〉
Collection Formulae:

γ ∈ C 〈Collection Formulae〉
γ ::= v$ = se | v1$ � v2$
se ::= { } | {v} | se1 � se2 | v$

Figure 2: Syntax of Sized Types

type expression augments an ordinary type expression with
size variables; the relationship among these variables are
expressed in the associated formula.

In this paper, we consider only three basic types: lists of
the form (e1 : e2) and [ ], integers, and booleans of values
False and True. While the array data type is omitted in this
paper, its inclusion is straightforward. (Note that values of
Bool , [τ ] and (τ1, .., τn) are special cases of constructors of
the form c(e1, .., en).) The annotated type for lists is [ τ ]v ,
where v describes the length of the list; for integers, it is
Intv , where v captures the integer value; for booleans, it is
Boolv , where v can be either 0 or 1, representing the values
False and True respectively. Occasionally, we omit writing
size variables in the annotated type when these variables are
unconstrained.

Given an annotated type τ , we denote its corresponding
unannotated type by the notation τ ; while its corresponding
size-term extraction can be captured using τ s . The purpose
of this extraction is to gather all size information associated
with an expression at a place. Using size term extraction, we
separate the unannotated type from the associated size in-
formation. For instance, the annotated sized type [[Intv ]u ]w

can be re-expressed as τ s where τ = [[Int ]] and s = [[v ]u]w .
We associate a constraint abstraction Q to each function.

Q(s1, . . . , sn+1) = Φ defines the constraint between the size
of the function’s input and output. Note the parameters as-
sociated with Q : s1, . . . , sn denotes the size terms (or we
may call it size patterns) of the associated function’s in-
puts, and sn+1 denotes that of the output. Φ is a formulae
expressed in terms of only the free variables occurring in Q ’s
parameters.

We maintain a constraint abstraction store (denoted by
Σ ) to keep size information about functions: the annotated
size type of a function and its corresponding constraint ab-
straction.

Size formulae in constraint abstraction are basically Pres-
burger formulae. We shall use the term “formulae” and
“constraint” interchangeably. Note that arithmetic expres-
sions used in formulae are restricted to affine functions of
the variables. For example, 2 ∗ v is legal, but v ∗ v is
not. When X = {v1, . . . , vn} ⊆ V, we write ∃ X . φ or
∃ v1 . . . vn . φ as a short hand for ∃ v1 . . . . . ∃ vn . φ.

We view the part of our constraint system that handles
Presburger formulae as a cylindric algebra [10], where con-
straints are identified modulo logical equivalence. Cylindric
algebra provides an algebraic-style reasoning about the for-
mulae. Our cylindric algebra, P, is a boolean algebra where
existential quantification (∃ X ) is the (idempotent) projec-
tion operation, ∨ and ∧ are the meet (denoted by � P) and
the join (denoted by �P) operator respectively, ¬ is the com-
plement, and False and True are bottom and top elements,
respectively. The algebra has the following cylindrification
properties[14, 15].

P1. φ � P ∃ v .φ

P2. φ � P ψ implies ∃ v . φ � P ∃ v .ψ

P3. ∃ v . (φ ∧ ∃ v . ψ) = P (∃ v .φ) ∧ (∃ v .ψ)

P4. ∃ v . ∃ w . φ = P ∃ w . ∃ v .φ.

In the above, � P denotes logical entailment. We say that
φ entails ψ, written φ � P ψ, if ψ is a logical consequence
of φ. Also, φ = P ψ if and only if φ � P ψ and ψ � P φ;
in this case, we say φ and ψ are logically equivalent.
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The other part of the constraint system involves size term.
Basically, it identifies two size terms: s1 =t s2.

Collection formulae capture the containment of informa-
tion flown from input to output. A collection/bag can be
empty ({ }); or it can contain a single size information cap-
tured by a size variable; or it can be composed by merging
size variables from two sources. v$ is a bag variable, and
it can be assigned a collection information, as in v$ = se.
The relation v1$ � v2$ expresses that elements available in
v1$ are drawn from those in v2$.

Free variables in a bag formula can be quantified both uni-
versally and existentially. We shall discuss these properties
in detail later.

3. TYPE SYSTEMS

v$ = {v} ∧ Φ(v)

∀ v$ . Φ(v)
[∀-I]

v$ = {v} ∧ Φ(v)

∃ v$ . Φ(v)
[∃-I]

v$ = v′$ � v′′$ ∧ ∀ v′$ . Φ′(v′)
∧ ∀ v′′$ . Φ′′(v′′)

∀ v$. Φ′(v) ∨ Φ′′(v)
[UP-1]

v1$ � v$ ∧ ∀ v$ . Φ(v)

∀ v1$ . Φ(v1)
[UP-2]

v$ = { }
∀ v$ .

[UP-3]

v1$ � v$ ∧ ∃ v1$ . Φ(v1)
∃ v$ . Φ(v)

[UP-4]

Figure 3: Uniform Property Rules

The type rules are formulated under the theory of Pres-
burger arithmetic and uniform property. The former is well
understood from the literature; the latter is the construc-
tion of a theory for uniform properties, which are either
universally or existentially quantified. Figure 3 depicts the
set of rules for introducing and propagating these uniform
properties about bags. The set of type rules are shown in
Figures 4 and 5. Γ is a type environment associating pro-
gram variables to their annotated types, while Σ maintains
the association of function names with its annotated types
and its corresponding constraint abstraction. The type judg-
ment Γ ,Σ �UP e :: (τ s ,Φ) means that an expression e has
the annotated type (τs,Φ) under the theories of Presburger
arithmetic and uniform property if all its free variables have
their annotated types given by the annotated type environ-
ment Γ, and all the constraint abstractions occurring in Φ
have their formulae defined in the store Σ.

A variable has constraint True when it is within the scope
of its definition. The size of an integer is the integer itself.
The size of booleans are defined as 0 and 1, for the values
False and True respectively.

With list, its elements constitute the collection informa-
tion. The size of an empty list is its length – zero; its col-
lection is an empty set. The size of the (:) operation is one
more than its second operand, and its collection is formed by
merging the collection information of both operands. Note
that its first operand contains a singleton bag.

The annotated type of a let-expression contains the for-
mula resulting from the conjunction of the corresponding
formulae for local abstraction and the let-body. Note that
the constraint associated with the local variable is not used
during the computation of the let-body; this avoids dupli-
cation of constraint at each occurrence of the variable.

In definition of a recursive function f (rule [Rec]), we com-
pute the constraint associated with the function. The com-
puted constraint for e1, Φ, differs from the eventual con-
straint for f , Φf , only in the set of free size variables. In-
deed, all intermediate size variables in Φ will be eliminated
via existentially quantification. It is easy to verify that Φ
⇒ Φf , and thus the type rule does compute a fixed point
for the constraint of the recursive function. Notation wise,
we note that the size-term extractions of the parameters and
result of f are represented by si . Lastly, function ι takes in
either an annotated type or a formula, and returns the set of
free size variables occurred in its argument. It is extended
naturally to operate on type environment.

The formula for function application expresses the ap-
plication of constraint abstraction Q to the size variables
associated with the arguments. The type variables of the
function’s type are first instantiated with respect to the ar-
guments, and the function’s annotated type is then properly
instantiated to match the application arguments. These are
performed by operations eqP and subs, the detail of which
are described in the next section. Then, the constraint ab-
straction Q is invoked with the set of size terms, which rep-
resent the instantiated arguments and return result. Lastly,
the formulae associated with the arguments are also cap-
tured in the resulting formula.

The formula of case-expression maintains the relation be-
tween the test and consequence of each branch. This is
captured by the case-formula. Expressed in the usual logic
formulation, we have

case {Φpi → Φi}n
i=1

def
=

�n
i=1{Φpi ∧ Φi}.

In the type rule, function eqC takes in two annotated
types (with identical underlying type) and equates the cor-
responding size variables occurring in them. Function sizeR
replaces all size variables occurred in an annotated type by
fresh names.

To formulate the soundness of the type system, we first
specify the notion the satisfiability with respect to the se-
mantics of the program. Given a denotational value d with
type τ , let S be the formula expressing the size and container
information of d. Then,

Satisfiability Given a denotational value d of
an annotated type τ , we say d satisfies a con-
straint Φ under τ if S(d :: τ) ⇒ ∃V.Φ, where
V = ι(Φ) − ι(τ).

Soundness of type system can thus be expressed as follows:
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Γ(x) = τ

Γ,Σ �UP x :: (τ, T rue)
[Var]

Γ,Σ �UP n :: (Intv, v = n) [Con]

Γ,Σ �UP [ ] :: ([τs]v, v = 0 ∧ v1 =t s ∧ v1$ = { })
where v1 is a fresh variable

[List-Nil]

Γ, Σ �UP e1 :: (τs1,Φ1) Γ, Σ �UP e2 :: ([τs2]n2, Φ2)

Γ, Σ �UP (e1 : e2) :: ([τs3]n3,Φ3)

where Φ3 = Φ1 ∧ Φ2 ∧ n3 = n2 + 1 ∧
v1 =t s1 ∧ v2 =t s2 ∧ v3 =t s3 ∧
v3$ = (v1$ � v2$) ∧ v1$ = { v1 }

v1, v2, v3 are fresh variables

[List-Cons]

Γ,Σ �UP False :: (Boolv , v = 0) [Bool-False]

Γ,Σ �UP True :: (Boolv , v = 1) [Bool-True]

Figure 4: Type Rules – Part 1

Type Soundness Theorem Given an expres-
sion e of type τ , for some τ . If [],Σ �UP e :: (τ,Φ),
then for any monomorphic instance of e with de-
notation d, d satisfies Φ under τ .

The proof is an extension of our previous proof about sized
type [1]. We are currently finalizing the proof detail.

4. TYPE POLYMORPHISM
One of the most important aspects of program analyses is

that they be property polymorphic, with the ability to infer
different properties for a definition f at separate uses of f .
While related, this aspect is in fact orthogonal to the issue
of polymorphism in the underlying type. Recent work [18,
12, 6] have suggested that extension to type polymorphism
is not necessarily straightforward.

In this section, we highlight how type polymorphism is
handled by our enhanced sized type system. Specifically,
our approach allows the instantiation of type variables at the
point of function application. Here, the type of an argument
is likely to be more specific than that of the parameter for
the polymorphic function. Under this scenario, we must
collect all type instantiation that has taken place. We use
eqP τa τp , where τa represents the argument type, and τp is
a possibly polymorphic parameter type, so as to capture a
set of type scheme instantiations.

eqP τ tα ⇒{t = τ}
eqP τa τ b ⇒{ } if τ = Int ∨ τ = Bool
eqP ([τ ]a) ([τ ′]b) ⇒(eqP τ τ ′)
eqP (τ1, .., τn) (τ ′1, .., τ

′
n) ⇒ �n

i=1(eqP τi τ
′
i )

Given that D = eqP τa τp , we may now apply a substitution
to convert the polymorphic type of the function τ to its in-
stantiated equivalent τ ′ using subs D τ ⇒ (τ ′, φ). In this
operator, new size variables are introduced for each type in-
stantiation (via the new operation.) The constraint φ relates
the new size variables with existing ones.

subs D tα ⇒
if (t = τ) ∈ D then let τ s = new τ in (τ s , α=ts)
else (tα,True)

subs D Inta ⇒ (Inta ,True)
subs D Boolb ⇒ (Boolb ,True)
subs D (τ1, .., τn) ⇒ ((τ ′1, .., τ

′
n), ∧n

i=1 φi)
where ∀ i . (τ ′i , φi) = subs D τi

subs D ([τ ]a) ⇒ ([τ ′]a , φ)
where (τ ′, φ) = subs D τ

subs D ((τ1, .., τn) → τn+1) ⇒
((τ ′1, .., τ

′
n) → τ ′n+1,∧n+1

i=1 φi)
where∀i ∈ {1, ..,n + 1}.(τ ′i , φi) = subs D τi

As a simple example of how type polymorphism is han-
dled, consider:

fst :: ((Aa ,Bb) → Am , m = a)
fst (a, b) = a

When fst is applied to the expression: e :: ((Intn ,E c),F d),
n = 2) we can obtain its type instantiation by relating the
size of the argument to the size of its corresponding param-
eter, namely: eqP ((Intn ,E c), F d) (Aa ,Bb). This yields
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Γ,Σ �UP e1 :: (τ1, Φ1) Γ ∪ { x :: τ1},Σ �UP e2 :: (τ2, Φ2)

Γ,Σ �UP (let x = e1 in e2) :: (τ2, Φ2 ∧ Φ1)
[Let]

Γ ∪ Γ′, Σ ∪ Σf �UP e1 :: (τn+1, Φ)
Γ, Σ ∪ Σf �UP e2 :: (τ ′, Φ′)

Γ, Σ �UP ( letrec f(x1, . . . , xn) = e1 in e2) : (τ ′, Φ′)

where Σf = { (f :: (τ1, . . . , τn) → τn+1, Q(s1, . . . , sn+1) = Φf ) }
Γ′ =

�n
i=1 {xi :: τi}

Φf = ∃ V . Φ

V = ι(Φ) − (
�n+1

i=1 ι(τi) ∪ ι(Γ))

[Rec]

(f :: (τp1, . . . , τpn) → τp(n+1), Q(sp1, . . . , sp(n+1)) = Φf ) ∈ Σ

Γ,Σ �UP ei :: (τai
sai , Φi) ∀ i ∈ {1, . . . , n}

Γ,Σ �UP f (e1, . . . , en) :: (τ ′, (Q(s′p1, . . . , s
′
pn, s

′) ∧ Φ′))

where ((τ ′p1

s′p1 , . . . , τ ′pn
s′pn) → τ ′

s′
) = subs D ((τp1, . . . , τpn) → τp(n+1))

D =
�n

i=1 {eqP τai
sai τpi}

Φ′ = ∧n
i=1{s′pi =t sai ∧ Φi}

[App]

Γ, Σ �UP e0 :: (τ0,Φ0)

Γi, [ ] �UP pi :: (τ0, Φpi) ∀ i ∈ {1, . . . , n}
Γ ∪ Γi, Σ �UP ei :: (τi,Φi) ∀ i ∈ {1, . . . , n}

Γ, Σ �UP case e0 of (pi → ei)
n
i=1 :: (τ ′, case {(Φ0 ∧ Φpi) → Φ′

i}n
i=1)

where Φ′
i = (eqC τ ′ τi) ∧ Φi

τ ′ = sizeR τ1

[Case]

Figure 5: Type Rules – Part 2

D = {A = (Int ,E ),B = F}. Using this type substitution,
we can now obtain an instantiated type using

subs D ((Aa ,Bb)→Am)
This gives a renamed sized type

((Intp ,E q),F b) → (Intr ,E s)
and a size constraint a =t (p, q) ∧ m =t (r , s). Together
with the original size constraint m = a, we can now ob-
tain the size constraint p = r ∧ q = s, showing how the two
components of the polymorphic type have flowed from input
to output.

Polymorphic typing introduces equality constraints be-
tween polymorphic size variables and the instantiated size
structures. Their resolution can be handled by term uni-
fication which allows the size relation to be transformed to
Presburger formulae, where possible.

5. COLLECTION ANALYSIS
Collection refers to a bag of elements that occur inside a

recursive data structure1, such as a list or an array. Proper-
ties of collections are crucial in a number of scenarios. For
example, indexes are stored as elements of lists inside sparse
matrices. The ability to propagate size properties for collec-
tions is essential for safety checking should the indexes be

1a data structure with repeated elements

retrieved for array accesses. Collection analysis helps us de-
termine the kind of size properties that can be propagated.

Consider a list of size-annotated type [ta ]n , where the el-
ements have underlying type t . The size variable n denotes
the length of the list, while a captures the size property of
elements of type t . To represent the collection of elements of
type t , we use notation a.bag (or a$ in short). This bag no-
tation is superior to alternative notation based on instance
relation. For example, given [1, 2, 3] :: [Inta ]n we can either
capture the size relation of elements using either bag relation
a$ = {1, 2, 3} or instance relation (a = 1 ∨ a = 2 ∨ a = 3).
While the instance relation only specifies the possible values
of the elements, the bag relation allows us to capture both
possible as well as definite elements of each bag. In general,
for any given relation of the form minbag � a$ � maxbag ,
minbag denotes the definite elements of a$, while maxbag
captures the possible elements. For information to be as
precise as possible, minbag should be as large as possible,
while maxbag should be kept as small as possible.

As another example, consider the expression:
(case e of True → [1, 2];False → [2, 3]) :: [Inta ]n

The instance relation, (a = 1 ∨ a = 2 ∨ a = 3) helps to cap-
ture the possible size values of the above. However, bag rela-
tion a$ = {1, 2} ∨ a$ = {2, 3} is more informative with pos-
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sible and definite values captured. Possible values are useful
for universal properties, while definite values are related to
existential properties. In particular, the above bag relation
can be simplified to {2} � a$ � {1, 2, 3}, from which the
following size properties are derivable,

(∃a$.a = 2) ∧ (∀a$.1 ≤ a ≤ 3).

5.1 Examples
To highlight the expressive power of collection analysis,

let us consider two examples below.

part(a, xs) = case xs of
Nil → (Nil ,Nil)
(x : xs ′) → let (c, d) = part(a, xs ′) in

case (x < a) of
True → (x : c, d)
False → (c, x : d)

exist(a, xs) = case xs of
Nil → False
(x : xs ′) → case (a == x ) of

True → True
False → exist(a, xs ′)

The function part is the partition operation where an in-
put list, xs is being split into two portions based on whether
each element is smaller-than or larger-or-equal-to a given
pivot element, a. The sized type for this function is as fol-
lows:

part :: (Inta , [Intx ]m) → ([Inty ]n , [Intz ]p)
size m = n + p ∧ x$ = y$ � z$

∧ (∀ y$. y < a) ∧ (∀ z$. a ≤ z )

If we look at the collection formula, x$ = y$ � z$, we
can see that the output bags of y$ and z$ are obtained from
the input bag, x$. This relation can be used to propagate
universal size properties of x$ to the output bags, y$ and
z$. Furthermore, our sized type system is able to deduce
two universal properties, (∀ y$. y < a) and (∀ z$. a ≤ z ),
over the output collections of y$ and z$ via size information
propagated by the case selector.

The function exist is used to determine if a value a exists
in the collection of list xs. Its output is a boolean result
which indicates the existence of the given value. In this
case, the property obtained is directly related to boolean
output, r , as shown by the following sized type:

exist :: (Inta , [Intb ]m) → Boolr

size (r = 0 ∧ (∀ b$.b �= a))
∨ (r = 1 ∧ (∃ b$.b = a))

If r = 0, we can deduce that all elements of input bag b$
is not equal to a. If r = 1, we can deduce that at least one
element of b$ is equal to a. Again, these uniform properties
are propagated by the case selector with the help of fix-point
analysis, that is described next.

5.2 Fix-Point Computation
Sized type inference is decidable and precise in the absence

of recursion. The presence of recursive function typically
requires least fix-point to be computed for its sized type.
Due to infinite lattice domain, such fix-point computation
are often approximated in a conservative way using both
hulling and widening operations. Fix-point approximation
typically yields an upper-bound to the least fix-point. Our
procedure for fix-point analysis involves the following main
steps.

1. Build a constraint abstraction for the recursive func-
tion. This can be achieved via the sized type rules,
gathering the constraint relations of input/output size
variables.

2. Extract both the base and recursive cases from the
constraint abstraction.

3. Obtain the first approximation of fix-point (from base
case).

4. Derive the next approximation with the help of the
recursive step, combined with the previous approxi-
mation. Apply hulling and widening, as appropriate.

5. Repeat Step 4, until a fix-point is detected.

The algorithm starts with an approximate fix-point based
on the base case. It then repeatedly applies the recursive
step until a fix-point is detected. To illustrate this fix-point
computation, let us use the following running example.

repl(xs, c) = case xs of Nil → Nil
(x : xs ′) → c : repl(xs ′, c + 1)

Note that an output list is generated from the accumu-
lative parameter (named c). We expect the following sized
type from the above example:

repl :: ([Inta ]n , Intc) → [Intb ]m

size m = n ∧ (∀ b$.c ≤ b ≤ c + n)
inv (c < c+ ≤ c + n) ∧ (0 ≤ n+ < n) ∧ (a+$ � a$)

There are two size relations, as can be seen from the above
sized type. The first size information is meant to relate the
size variables of both the input and the output. This is
achieved via the bottom-up fix point method which begins
with the first approximation using the base case. The sec-
ond size information is meant to describe an invariant re-
lationship between the parameters of an arbitrary recursive
call with those of the initial recursive function call. This
invariant relation must be obtained via a top-down fix-point
method which does not make use of the base case in its com-
putation. It begins with a one-step relation, and gradually
refining until fix-point for an arbitrary recursive call is ob-
tained.

Let us provide a detailed description of the bottom-up
method first. This method starts off with the base case as
its first approximation, namely:

U0(I ,O) = Base(I ,O)

where I ,O denotes the size variables of input and output
sets respectively. After that, we obtain the next approxima-
tion with the help of recursive step, as follows:

Ui+1(I ,O) = (∃ I ′,O ′. Rec(I ,O , I ′,O ′) ∧ Ui(I
′,O ′))

∨ Ui(I ,O)

where Rec(I ,O , I ′,O ′) describes a one-step recursive rela-
tion between the set of input/output size variables. This
step is repeated until a fix-point is detected. In order for the
fix-point computation to converge, both hulling and widen-
ing operations may be required. We stop when the following
fix-point subsumption condition holds, where ⇒ denotes
logical implication.

∃ I ′,O ′. Rec(I ,O , I ′,O ′) ∧ Ui(I
′,O ′) ⇒ Ui(I ,O)
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In the case of our running example, the constraint ab-
straction that can be derived is:

Qrepl ((a,n, c), (b,m)) ⇐ case {
a$ = {} ∧ n = 0 → b$ = {} ∧ m = 0
a$ = {a ′} � a ′′$ ∧ n = n ′ + 1 →

b$ = {c} � b′′$ ∧ m = m ′ + 1
∧ Qrepl((a

′′,n ′, c + 1), (b′′,m ′)) }
From here, we can derive the following base and recursive

relations:

repl0((a,n, c), (b,m))
⇐ a$ = {} ∧ n = 0 ∧ b$ = {} ∧ m = 0

replr((a,n, c), (b,m), (a ′′,n ′, c′), (b′′,m ′))
⇐ ∃ a ′.a$ = {a ′} � a ′′$ ∧ n = n ′ + 1

∧ b$ = {c} � b′′$ ∧ m = m ′ + 1 ∧ c′ = c + 1

The first approximation is the base case relation itself.
The second approximation to the fix-point is obtained as
follows:

repl0((a,n, c), (b,m))
⇐ a$ = {} ∧ n = 0 ∧ b$ = {} ∧ m = 0

repl1((a,n, c), (b,m))
⇐ (∃ a ′′,n ′, c′, b′′,m ′.

replr((a,n, c), (b,m), (a ′′,n ′, c′), (b′′,m ′)) ∧
repl0((a ′′, n ′, c′), (b′′,m ′))) ∨ repl0((a,n, c), (b,m))

⇐ (hulling)
n = m ∧ 0≤n≤1 ∧ ∀ b$ . b = c

After that, a second approximation is obtained by the
following steps which involves both a hulling and a widening
operation:

repl2((a,n, c), (b,m))
⇐ (∃ a ′′,n ′, c′, b′′,m ′.

replr((a,n, c), (b,m), (a ′′,n ′, c′), (b′′,m ′)) ∧
repl1((a ′′, n ′, c′), (b′′,m ′))) ∨ repl1((a,n, c), (b,m))

⇐ (hulling)
n = m ∧ 0≤n≤2 ∧ ∀ b$ . c≤b < c + n

⇐ (widening)
n = m ∧ 0≤n ∧ ∀ b$ . c≤b < c + n

The hulling operation merges the disjunction together,
while the widening operation omits an increasing constraint
n ≤ 2. As a result of this step, we have now reached a fix-
point which could be checked via the fix-point subsumption
condition.

The top-down fix-point method is used to capture sized
relationship between the parameters of an arbitrary recur-
sive call with those of the original recursive call. In this
step, our first approximation is a one-step recursive relation
which relates the parameter of one recursive call with the
next call:

U0(I , I
′) = RecI (I , I ′)

After that, we obtain the next approximation, as follows:

Ui+1(I , I
′) = (∃ A. RecI (I ,A) ∧ Ui(A, I

′)) ∨ Ui(I , I
′))

This step is repeated until fix-point is detected. We stop
when the following fix-point subsumption condition holds:

∃ A. RecI (I ,A) ∧ Ui(A, I
′) ⇒ Ui(I , I

′)

With the repl example, the one step relation is obtained
by omitting the output of the recurrence, as follows:

replr((a,n, c), (a ′′,n ′, c′))
⇐ ∃ a ′. a$ = {a ′} � a ′′$ ∧ n = n ′ + 1

Following the top-down fix-point procedure, we can obtain
the following approximated fix-point for the repl function.

replr ′((a,n, c), (a ′,n ′, c′))
⇐ (c < c′ ≤ c + n) ∧ (0 ≤ n ′ < n)

∧ (a ′$ � a$)

6. DISCUSSION
We shall now look at two additional techniques that can

make our collection analysis more accurate.

6.1 Bijective Relation
Often, two or more collections may be related to one an-

other in a one-to-one (and onto) bijective relation. A classic
example is the map function which produces an output for
every element of its input collection. Under this scenario, we
introduce a special notation ∀ a$↔r$. P [a, r ] where a$, r$
are two collections that are related in a bijective relation-
ship. Such a relationship is more expressive as it implies
both (∀ a$ ∃ r$. P [a, r ]) and (∀ r$ ∃ a$. P [a, r ]). An exam-
ple of such bijective relation is shown below:

addone(xs) = case xs of Nil →Nil
(x : xs ′) →(x + 1) : addone(xs ′)

addone :: ([Inta ]m) → [Intr ]n

size m = n ∧ (∀ a$↔r$ . r = a + 1)

where the input collection a$ is in a bijective relation with
the output bag r$.

Note that for such bijective relation to hold, a strictly
1-to-1 and onto mapping between elements of two or more
collections is essential. As a counter-example, consider:

addone ′(xs) = case xs of [x ] →Nil
(x : xs ′) →(x + 1) : addone ′(xs ′)

While this function is also a (injective) mapping, it is not
based on a bijective mapping since there are more elements
in the input collection than the output collection. Due to
this, we can only obtain the following size relation.

addone ′ :: ([Inta ]m) → [Intr ]n

size m = n + 1 ∧ m > 0 ∧ (∀ r$ ∃ a$ . r = a + 1)

By extending the uniform property rules with two more
rules in Figure 6, our type system can automatically gener-
ate such bijective relations in its sized type.

6.2 Locally Instantiated Collection
The elements of our collection can be locally instantiated

inside quantified relation. Such local instantiation of col-
lection can help us capture more precise relation between
collections and their elements. This is made possible by the
polymorphic handling of size structures.

For example, consider the allsplit function which returns
all possible ways of splitting an input list into two sublists.

allsplit(xs) = case xs of
Nil →(Nil ,Nil)
(x : xs ′) →let zs = allsplit(xs ′)in

(Nil , x : xs ′) : addelem(a, zs)
allsplit :: [αa ]m → [([α], [α])d ]n
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∧n
i=1 {vi$ = {vi}} ∧ Φ(v1, . . . , vn, v

′)
∀ (v1$ ↔ · · · ↔ vn$) . Φ(v1, . . . , vn, v

′)
[∀-Bi]

(v1$ = v′1$ � v′′1 $) ∧ · · · ∧ (vn$ = v′n$ � v′′n$) ∧
∀ v′1$ ↔ · · · ↔ v′n$ . Φ′(v′1, . . . , v

′
n) ∧

∀ v′′1 $ ↔ · · · ↔ v′′n$ . Φ′′(v′′1 . . . , v
′′
n)

∀ v1$ ↔ · · · ↔ vn$ . Φ′(v1, . . . , vn) ∨ Φ′′(v1, . . . , vn)
[UP-5]

Figure 6: Uniform Property Rules for Bijective Relation

size m + 1 = n ∧
(∀ d$. ∃ b, n1, c,n2. d = ([b]n1, [c]n2)
∧ n1 + n2 = m ∧ a$ = b$ � c$)

With locally instantiated collection for d$, our type sys-
tem is able to relate inner collections, b$ and c$, to the
outer collection a$ via a$ = b$ � c$. Furthermore, the lo-
cally instantiated size variables n2, n1 are also related to
the outer size variable m by n2 + n1 = m. This is so be-
cause the collection a$ has been splitted via different ways
into each element pair of the collection, d$. Without locally
instantiated collection, sized formulation would be much less
precise.

For another example, consider the addelem function which
is an auxiliary function for allsplit . This function takes a list
of pairs and adds an element a to the first component of each
pair.

addelem(a, xs) = case xs of
Nil →Nil
((x , y) : xs ′) →(a : x , y) : addelem(a, xs ′)

addelem :: (αa , [([α], β)d ]m) → [([α], β)g ]n

size m = n ∧ (∀ d$ ↔ g$. ∃ b,n1, c, e, n2, f .
d = ([b]n1, c) ∧ g = ([e]n2, f ) ∧
c =t f ∧ e$ = b$ � {a} ∧ n2 = n1 + 1)

Our type system is able to detect that each pair of input
from d$ is bijectively related to another pair of elements
from collection g$. Such a bijective relation is more precisely
captured when the elements of collections d$ and g$ suit-
ably instantiated to size structures ([b]n1, c) and ([e]n2, f )
respectively. Furthermore, this universal property is able to
state that c =t f and that each e$ is made up of b$ merged
with singleton {a}. As illustrated here, collection relation
that are nested (with suitable local instantiation) can allow
more precise size analysis to be captured.

7. RELATED WORK
One of the earliest work which captures size informa-

tion through a type-checking mechanism was proposed by
Hughes, Pareto and Sabry [11]. Instead of type-checking,
we have proposed a systematic inference method for calcu-
lating the size relationships of functions. Furthermore, by
assigning a logical constraint to each expression, we are able
to express size information more accurately in at least two
ways: Firstly, their method determines only one bound of
the size, fixing the other bound at either 0 (for data types)
or ω (for co-data types). On the contrary, we are able to
infer tighter bounds by determining both the lower and up-
per bounds. Secondly, their method still falls in the domain

of independent attribute analysis, as opposed to relational
analysis. On the other hand, we have not yet considered
the handling of lazy languages, and thus unable to prove
certain correctness aspects of reactive systems (for example,
productivity).

Size information can also be captured using dependent
types. This technique is advocated by Xi and Pfenning [19,
20]. Their type-checking framework is parameterized with
constraint domains, of which size information can be de-
scribed by a domain of natural numbers with linear equality
and inequality constraints. While this has the advantage
that analysis efficiency can be controlled by the sophisti-
cation of the constraint domain, it requires insightful type
annotations from programmers.

Research into the inference of linear constraints dates back
to 1970’s, with the seminal work of Cousot and Halbwachs
on imperative languages [3]. Halbwachs has applied linear
constraints to synchronization analysis of reactive systems
[8, 9]. There, a constraint is described by a set of linear
inequalities, and an effective widening operation is employed
to obtain fixed point of polyhedra. However, separate size
information for nested data structures is not captured.

The work by Le Metayer [13] aims to verify uniform prop-
erties among elements in a data structures using abstract in-
terpretation technique. These properties are expected to be
provided by programmers. His method was able to demon-
strate the verification of orderedness of elements in the out-
put of a sorting program. Properties between input and
output can also be verified, but this can be done only if the
input re-appears at the output.

In another dimension, we may also compare our sized
analysis with other constraint-based type analyses, such as
those for binding-time analysis [4], usage analysis[18], and
flow analysis[5]. While the handling of type polymorphism
is not so straightforward, the methods used in [18, 6, 12]
are essentially the same with the need to instantiate type
variables; and the need to maintain suitable relationships
between existing and the newly instantiated annotations.
To achieve lower time-complexity, a number of researchers
have recently proposed clever ways to avoid the duplication
of constraints when a polymorphic type is instantiated. The
concept of instantiation constraint was used in [5], while [7]
provided constraint abstractions.

In this paper, we have shown how a mixed constraint sys-
tem could be utilized on an enhanced type system where
collections can be handled in a systematic way. Scalable
constraint-solving techniques for this new class of analyses
remains a future research topic.
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8. CONCLUSION
We have presented an enhanced sized typing, its formal

rules and associated techniques to support systematic in-
ference. Our type system make use of a mixed constraint
system, with arithmetic constraints for size properties, bag
constraints to model flow of components, and term equality
constraints for polymorphism. The different constraint sys-
tems work together to allow more accurate size information
to be propagated.

Our preliminary implementation of sized type inference
(for a first-order language) via the Omega Calculator has
gone very well. Based on our new proposal, we have sys-
tematically found the sized types for a wide range of ex-
amples, with reasonable performance. We are currently ex-
tending the system to support collection analysis through
mixed constraint solving techniques.
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