Chapter 10 Projects

1. [after §10.4] Demographic Projections ***:

The rate of growth (or decrease) in world population depends on the average number of children each person has and the average child-bearing age. In the long run, the average individual standard of living decreases as the number of people increases and world resources decrease. This project demonstrates these effects. Here is the code for the top-level class (the driver) in this program:

/***

* Demographics.java

* Dean & Dean

*

* Population effects on resources and income.

***/

import java.util.Scanner;

public class Demographics

{

 public static final int YOUNGEST_ADULT = 20;

 public static final int YOUNGEST_SENIOR = 60;

 public static final int MAXIMUM_AGE = 100;

 public static final double TAX_RATE = 0.3;

 public static final double LOSS_RATE = 0.3; // by government

 public static final double SUSTAINABLE_PRODUCTION = 25.0E12;

 public static final double INITIAL_RESOURCES = 2.0E15;

 public static void main(String[] args)

 {

 Scanner stdIn = new Scanner(System.in);

 double adultExtractionExpense;

 int years; // simulation steps

 int outputYear; // first output step

 People youth;

 People adults;

 People seniors;

 Government government;

 Environment environment;

 People.initialize(MAXIMUM_AGE);

 System.out.print("Each adult's annual unsustainable " +

 "extraction in dollars(3000?): ");

 adultExtractionExpense = stdIn.nextDouble();

 // create and initialize objects

 youth = new People(0, TAX_RATE, 0.0);

 adults = new People(YOUNGEST_ADULT, TAX_RATE,

 adultExtractionExpense);

 seniors = new People(YOUNGEST_SENIOR, TAX_RATE, 0.0);

 government = new Government(LOSS_RATE);

 environment = new Environment(

 SUSTAINABLE_PRODUCTION, INITIAL_RESOURCES);

 // input simulation parameters

 System.out.print("Enter number of years to simulate: ");

 years = stdIn.nextInt();

 System.out.print(

 "Enter first year to output economics: ");

 outputYear = stdIn.nextInt();

 // simulate

 for (int year=0; year<years; year++)

 {

 People.simulate(youth, adults, seniors);

 government.govern(youth, adults, seniors, environment);

 if (year >= outputYear) // print output

 {

 System.out.println("year " + year);

 System.out.printf("youth= %.1f billion\n",

 youth.getPopulation() / 1.E9);

 System.out.printf("adults= %.1f billion\n",

 adults.getPopulation() / 1.E9);

 System.out.printf("seniors= %.1f billion\n",

 seniors.getPopulation() / 1.E9);

 System.out.printf("total= %.1f billion\n",

 People.getTotalPopulation() / 1.E9);

 System.out.printf("Consumption: $%,.0f trillion\n",

 (youth.getIncome() + adults.getIncome() +

 seniors.getIncome())/1.E12);

 System.out.printf("Taxes: $%,.0f trillion\n",

 government.getTaxes()/1.E12);

 System.out.printf("Resources: $%,.0f trillion\n",

 environment.getCurrentResources()/1.E12);

 }

 } // end for year

 } // end main

} // end class Demographics
The following sample sessions illustrate the effects.
First sample session:
Youngest child-bearing age (15?): 15
Oldest child-bearing age (40?): 40
Children per year in child-bearing years (0.16?): 0.16
Annual unsustainable extraction in $/person (3000?): 3000
Enter number of years to simulate: 2
Enter first year to output economics: 1
year 1

youth= 3.2 billion
adults= 2.0 billion
seniors= 0.0 billion
total= 5.2 billion
Consumption: $31 trillion
Taxes: $13 trillion
Resources: $1,977 trillion
Second sample session:
Youngest child-bearing age (15?): 15
Oldest child-bearing age (40?): 40
Children per year in child-bearing years (0.16?): 0.16
Annual unsustainable extraction in $/person (3000?): 3000
Enter number of years to simulate: 100
Enter first year to output economics: 99
year 99

youth= 4.6 billion
adults= 3.6 billion
seniors= 0.2 billion
total= 8.4 billion
Consumption: $30 trillion
Taxes: $13 trillion
Resources: $815 trillion
Third sample session:
Youngest child-bearing age (15?): 15
Oldest child-bearing age (40?): 40
Children per year in child-bearing years (0.16?): 0.12
Annual unsustainable extraction in $/person (3000?): 1500
Enter number of years to simulate: 100
Enter first year to output economics: 99
year 99

youth= 1.4 billion
adults= 1.5 billion
seniors= 0.1 billion
total= 3.1 billion
Consumption: $25 trillion
Taxes: $11 trillion
Resources: $1,458 trillion
These 100-year results suggest the following: Suppose each child-bearing couple has 0.16 * (40 ‑ 15) = 4 children, and each adult extracts from nonrenewable environmental resources at a rate of $3,000 per year. Then, the population will increase from 5.2 billion to 8.4 billion, resources will decrease from $1,977 trillion to $815 trillion, and the standard of living (consumption per person) will decrease from ($31 trillion / 5.2 billion) ≈ $5,000 per person per year to ($30 trillion / 8.4 billion people) ≈ $3,600 per person per year. On the other hand, suppose each child-bearing couple were to have only 0.12 * (40 – 15) = 3 children, and each adult extracted from nonrenewable environmental resources at a rate of only $1500 per year. Then, the population would decrease from 5.2 billion to 3.1 billion, nonrenewable resources would decrease from $1,977 trillion to $1,458, and the individual standard of living would improve to ($25 trillion / 3.1 billion people) ≈ $8,000 per person per year. With a lower population, there would be more sustainable resources per person.

Here is a UML class diagram for the other classes driven by the class just defined:

[image: image1]

[image: image2]
Government class:

The constructor initializes the lostFraction. For each of the three groups of people, the govern method calculates a distribution using the following algorithm:

group distribution ←

 (total distribution) * (group population fraction)

Then it calls the earn method in the people class for each group with the corresponding group distribution value as the first argument. It accumulates taxes by summing the values returned by youth, adults, and seniors calls to the earn method and it updates total distribution for the next year with this algorithm:

total distribution ←

 (total taxes) * (1.0 – lostFraction)

People class:

The constructor initializes youngest age, tax rate, and individual extraction expense.

The earn method computes:

extractionExpense ←

 individualExtractionExpense * groupPopulation

Then it passes its population fraction and extraction expense to the produce method in the Environment class and gets back a total production, which is the sum of sustainable production and nonrenewable resource extraction with value added to the latter. Each group’s gross income is what it produces plus what’s been distributed to it by the government. This group’s taxes are gross income times the tax rate, and the net income is gross income minus taxes. The earn method returns the computed taxes.

The initialize method is a class method. It instantiates the population array and assigns a reference to it to a class variable. Then it steps through each population by age and initializes it with the following rule:

if (age < maxAge/2)

 population[age] ← (long) ((1.0 - 0.02 * age) * 2 x 108)

else

 population[age] ← 0

While doing this, the method accumulates an initial value for totalPopulation. Then the method asks the user for values of youngest child-bearing age, oldest child-bearing age and the fertility rate in this age range.

The simulate method computes aging and death in one year by implementing the following algorithm:
for age from max age to age 1

 ageFactor ← age / 100.0

 mortality ← M0 + M1*ageFactor + M4*(ageFactor)4
 population[age] ← population[age-1] * (1.0-mortality)

Then it adds new births with the following algorithm:
population[0] ← 0

for age from youngest to oldest child-bearing age

 population[0] ← population[0] +

 0.5 * population[age] * primeFertility;

Then it accumulates the number of people in each age group and recomputes the total number of people. It also determines the fraction of people in each age group. Finally, it uses its youth, adults, and seniors reference-variable parameters to reset the total number of people and the population fraction in each of the three population objects.

Environment class:

The constructor initializes sustainableProduction, initialResources, and currentResources (= initialResources). The produce method is called by each of the three groups of people. It computes:

extraction ← yieldFactor * extractionExpense *

 (currentResources / initialResources);

This produce method reduces currentResources by the amount of the computed extraction. Then it returns:

extraction + (this group's populationFraction) *

 (total sustainableProduction)
2. [after §10.6] Dice-Throwing Simulator **:

Write a complete program that simulates the rolling of two dice. More specifically, it simulates a user-specified number of rolls and then prints a histogram of the number of rolls for each possible pair value. In other words, it prints a histogram for the number of times that two was thrown, the number of times that three was thrown, and so on, all the way up to the number of times that twelve was thrown. Use a frequency array to keep track of the number of times each pair value is thrown. For example, the frequency[2] element holds the number of times two is thrown. The frequency[3] element holds the number of times three is thrown.

As part of your program, write a DiceSimulation class that implements these methods:

· newSimulation ─ This method clears out the frequency array (assigns all elements to zero), prompts the user for the number of rolls, and then simulates the rolls.

· additionalRolls ─ This method prompts the user for the number of rolls that should be added to the current dice-rolling simulation. It then simulates the additional rolls.

· printReport ─ This method prints the dice-rolling simulation results.

As always, you should:

· Limit your use of class variables and instance variables – only use them if appropriate.

· Use appropriate modifiers for your methods. The modifiers we’ve discussed are private, public, static, and final.

· Use helper methods if appropriate.

· Mimic the sample session precisely. In particular, note the window’s title, the prompt text, the result-message text, and the button labels.

Provide a driver class that tests your DiceSimulation class. Your driver class should contain this main method:

public static void main(String[] args)

{

 Scanner stdIn = new Scanner(System.in);

 String choice; // user's choice of action

 boolean done = false; // user's quit flag

 DiceSimulation diceSimulation = new DiceSimulation();

 System.out.println(

 "Welcome to the dice throwing simulator!\n");

 do

 {

 System.out.println(

 "Options: (n)ew simulation, (a)dditional rolls," +

 " (p)rint, (q)uit");

 System.out.print("Enter n, a, p, or q ==> ");

 choice = stdIn.nextLine();

 switch (choice.charAt(0))

 {

 case 'n': case 'N':

 diceSimulation.newSimulation();

 break;

 case 'a': case 'A':

 diceSimulation.additionalRolls();

 break;

 case 'p': case 'P':

 diceSimulation.printReport();

 break;

 case 'q': case 'Q':

 done = true;

 break;

 default:

 System.out.println("Invalid selection.");

 } // end switch

 } while (!done);

} // end main

Sample session:

Welcome to the dice throwing simulator!

Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> x
Invalid selection.

Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> N
How many dice rolls would you like to simulate? 200
Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> a
How many additional rolls? 100
Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> p
DICE ROLLING SIMULATION RESULTS

Each "*" represents 1% of the total number of rolls.

Total number of rolls = 300.

 2: ***

 3: *******

 4: ********

 5: ***********

 6: *************

 7: *******************

 8: ***************

 9: ********

10: **********

11: *****

12: *

Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> a
How many additional rolls? 10000
Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> p
DICE ROLLING SIMULATION RESULTS

Each "*" represents 1% of the total number of rolls.

Total number of rolls = 10300.

 2: ***

 3: *****

 4: ********

 5: ***********

 6: **************

 7: *****************

 8: **************

 9: ***********

10: *********

11: ******

12: **

Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> n
How many dice rolls would you like to simulate? 100
Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> p
DICE ROLLING SIMULATION RESULTS

Each "*" represents 1% of the total number of rolls.

Total number of rolls = 100.

 2: ***

 3: ***

 4: ***********

 5: ***********

 6: ********

 7: ******************

 8: ****************

 9: **********

10: *************

11: *****

12: **

Options: (n)ew simulation, (a)dditional rolls, (p)rint, (q)uit

Enter n, a, p, or q ==> q
3. [after §10.6] Simulated Annealing ─ the Traveling Salesman Problem ***:
Sometimes there are problems that are formally “intractable”. That is, the theoretical amount of time required to find the best possible solution increases exponentially with the number of elements in the problem. A typical intractable problem requires evaluation of every permutation (sequential arrangement) of some particular set of elements. It’s intractable because it takes a number of looping steps that is approximately equal to the factorial of the number of the elements. To give you a feeling for this, suppose the system has 10 elements. The total number of permutations (10!) is 3,628,800. Suppose the system has 25 elements. The total number of permutations (25!) is 1.5 x 1025. That’s what “intractable” means. As the number of elements increases, an exhaustive search quickly becomes impossible.

Nevertheless, living creatures “solve” intractable problems all the time. Evolution itself is a grand example of an on-going intractable problem-solving activity. A few billion years ago, when the earth was young and hot, a few organic molecules found ways to reproduce. Reproduction was the key to life, because it enabled each subsequent generation to start with proven patterns that already worked in some way for their parents. In a biological reproductive process called meiosis, genomes cross and rearrange their DNA components. This crossing makes each offspring’s arrangement slightly different from its parent’s arrangement. But for that offspring to be viable (able to live), that difference had to be relatively small. Thus, offspring are different from their parents, but only slightly different. After each new creature comes into existence, it is tested. The poorer ones die off, the better ones survive, and their slightly better arrangements establish the patterns for the next generation. This was Darwin’s great discovery.

A simpler version of this process occurs whenever a hot chunk of metal cools slowly. The slow cooling process is called annealing. When a metal cools slowly, there is time for the atoms to arrange themselves in a relatively low-energy configuration. It’s not a perfect configuration, but it’s much more stable than a purely random one. The computer algorithm that emulates this process is called simulated annealing. Here’s the algorithm, in five steps:

1. Start with a set of components and a set of constraints which they must satisfy. Then use a random algorithm to organize those components in some way that meets those constraints.

2. Devise a mathematical expression for your goal, like an expression for the a totalEnergy you want to minimize.

3. Create a temperature variable whose units are the same as the units of the goal energy. The initial value of this temperature variable should be approximately equal to the range of variation of the totalEnergy, consistent with constraint satisfaction. Let the starting temperature be the standard deviation of the intercity distance.

4. Determine a number of cooling steps that you can afford – the more iterations, the better. Theoretically, the number of iterations should be of order log(num) x num4, where num is the number of elements in the set. Practically, you can let the number of iterations be equal to the third or forth power of the number of elements in your set. The higher power costs more, and it gives a better answer.

5. In each iteration, do the following:

a) Tentatively generate a slight variation to the current arrangement.

b) Calculate the change in energy, like this:

 change = newArrangementEnergy –
 currentArrangementEnergy;

Insert change into this function:

 fermi = 1.0 / (1.0 + Math.exp(change / temperature);

c) Compare a number generated by Math.random() with the value of fermi. If the random number is less than fermi, accept the change. Otherwise discard it.

You can apply this algorithm to many different kinds of problems. For example, electrical engineers regularly use simulated annealing to arrange components on integrated-circuit chips. These chips have millions of components, and the possible number of arrangements is astronomical. Thus, it’s not feasible to search for the best of all possible arrangements. But simulated annealing finds a very good arrangement in a reasonable time.

The integrated-circuit-component-placement problem is beyond the scope of this text, but you can use simulated annealing to get a good approximate solution to the famous “Traveling-Salesman Problem”. Suppose a salesman must visit every one of 25 different cities exactly once and then return to the starting city. The objective is to minimize the total distance traveled. In general, you won’t be able to find the very best solution, but you can find a reasonably good one, and with 25 different cities you can find it about (25)! / 254 ≈ 4 x 1019 times(!!!) faster than you could find it with an exhaustive search. That’s efficiency!

In step 1, identify and locate a set of cities to visit. Initially, put the cities in a random sequence.

In step 2, establish the goal of minimizing the total distance traveled (energy consumed) in making one circuit through all cities.

In step 3, define a “temperature” which starts as the standard deviation of the distances between cities in step 1’s initial random sequence of cities.

In step 4, plan to hold the temperature constant for a number of iterations equal to the number of cities. Then decrement the temperature by an amount equal to the initial temperature times the reciprocal of the cube of the number of cities, and repeat until the temperature equals zero. This makes the total number of iterations equal to the fourth power of the number of cities.

In step 5a, slightly change the current travel itinerary by reversing the order in which the salesman visits a single pair of cities. For example, suppose the current sequence is A, B, C, D, E, … . In one particular iteration, you might reverse the order in which the salesman visits cities C and D, to get this sequence: A, B, D, C, E, … .
Here’s a suggested UML class diagram:

[image: image3]
The City class describes an individual city. It should have a class named constant, RADIUS, which is the average radius of the earth at sea level in kilometers. Its instance variables should be the city’s name, the north latitude in degrees, and the east latitude in degrees. Use negative values to specify south latitude and west latitude. Have the constructor initialize the instance variables. Have the toString method return the concatenated values of the three instance variables with appropriate spaces, as shown in the sample session below. Have the getDistance method return the great-circle sea-level distance between the calling city and the argument city. In a three-dimensional coordinate system, the x, y, and z positions of any city are given by the formulas:

x ← cos(latitude) * cos(longitude)

y ← cos(latitude) * sin(longitude)

z ← sin(latitude)

The straight-line (through the earth) distance between any two cities is the square root of the sum of the squares of the differences of the three distance components. The great-circle distance is given by:

2.0 * RADIUS * arcsin(0.5 * straight-line-distance)
The Link class describes a trip between any two cities. The prev instance variable should be the origination city. The next instance variable should be the destination city. The distance instance variable should be the great-circle distance between them. The constructor should initialize the two City input variables and initialize distance by calling City’s getDistance method. The reverse method should simply exchange the references in the prev and next instance variables.

The Itinerary class’s constructor should create and populate an array of links which contains one Link object for each trip between the cities identified in the input parameter’s array of cities. (This array’s length should be the same as the length of the input cities array.) As you instantiate each link, add its distance to the totalDistance instance variable and add the square of its distance to a local variable called totalSquaredDist. Then, at the end of the constructor, compute a starting “temperature” with the formula:

MAX_TEMP ← sqrt((totalSquaredDist / links.length) –

 (totalDist / links.length) * (totalDist / links.length))
The Itinerary class’s display method is straightforward. Just use the Link class’s toString method to generate displays like what’s shown in the following sample session.

The Itinerary class’s anneal method is the heart of the simulated annealing algorithm. It should make exactly one pass through all the links, and try changing each link in sequence. Suppose you are currently visiting cities in the sequence, c1 → c2 → c3 → c4 → c5 → c6, and you now want to know what would happen if you reversed the order in which you visited cities c3 and c4; that is, you want the change in total distance if you altered the sequence to: c1 → c2 → c4 → c3 → c5 → c6.

To evaluate this possibility, create a newPrev link between c2 and c4, and create a newNext link between c3 and c5. The total-distance change equals the sum of the distances in these potential new links minus the sum of the distances in the current c2 → c3 link and the current c4 → c5 link. Insert the computed value of this change into the Fermi-distribution expression:

 1.0 / (1.0 + exp(change / (factor * MAX_TEMP)))

If the value of this expression is greater than a random number in the range zero to one (if change is sufficiently negative), accept the prospective change. Otherwise, reject it. To accept the change, reverse the cities in the current c3 → c4 link, substitute the newPrev link for the current c2 → c3 link, substitute the newNext link for the current c4 → c5 link, and add change to totalDist.

In TravelingSalesman’s main method, create a cities array, and load it with the names and locations of the 25 cities in the following sample session. Call a helper shuffle method to randomize the sequence in this cities array. Then, instantiate an Itinerary, and display it. In a for loop, step through a number of iterations equal to the cube of the length of the cities array, and call the anneal method once in each step. Each time you call the anneal method, give it a factor (1.0 - i / steps), where i is the current iteration, and steps is the total number of iterations. This gradually reduces the “temperature” in equal increments from MAX_TEMP to zero and implements the annealing process. If you only had 10 cities, the process might look something like this:

[image: image4.emf]0

5000

10000

15000

20000

25000

0 200 400 600 800 1000 1200

iteration

total distance (km)

The shuffle method should simply randomize an array referred to by its parameter. See if you can do this “in place” – without having to create another array.

Output:

Initial Route:

Moscow: 56.0 deg latitude, 37.5 deg longitude

Los Angeles: 34.0 deg latitude, -118.0 deg longitude

Sidney: -34.0 deg latitude, 151.0 deg longitude

Cleveland: 42.0 deg latitude, -82.0 deg longitude

Hong Kong: 22.5 deg latitude, 114.0 deg longitude

Miami: 26.0 deg latitude, -80.0 deg longitude

London: 0.0 deg latitude, 52.0 deg longitude

Bombay: 19.0 deg latitude, 72.5 deg longitude

Paris: 2.0 deg latitude, 49.0 deg longitude

Sao Paulo: -23.5 deg latitude, -47.0 deg longitude

Rio de Janeiro: -23.0 deg latitude, -43.0 deg longitude

Mexico City: 19.0 deg latitude, -99.0 deg longitude

Djakarta: -6.5 deg latitude, 107.0 deg longitude

Buenos Aires: -35.0 deg latitude, -58.0 deg longitude

Chicago: 42.0 deg latitude, -88.0 deg longitude

Shanghai: 31.5 deg latitude, 121.5 deg longitude

Detroit: 42.5 deg latitude, -83.0 deg longitude

Calcutta: 22.5 deg latitude, 88.0 deg longitude

Philadelphia: 40.0 deg latitude, -75.0 deg longitude

San Francisco: 37.0 deg latitude, -122.5 deg longitude

Cairo: 30.0 deg latitude, 31.5 deg longitude

New York: 41.0 deg latitude, -74.0 deg longitude

Tokyo: 36.0 deg latitude, 140.0 deg longitude

Bejing: 40.0 deg latitude, 116.5 deg longitude

Johannesburg: -26.0 deg latitude, 28.0 deg longitude

Total distance = 251652.94726812452

Final Route:

Bejing: 40.0 deg latitude, 116.5 deg longitude

Tokyo: 36.0 deg latitude, 140.0 deg longitude

Shanghai: 31.5 deg latitude, 121.5 deg longitude

Hong Kong: 22.5 deg latitude, 114.0 deg longitude

Djakarta: -6.5 deg latitude, 107.0 deg longitude

Sidney: -34.0 deg latitude, 151.0 deg longitude

San Francisco: 37.0 deg latitude, -122.5 deg longitude

Los Angeles: 34.0 deg latitude, -118.0 deg longitude

Mexico City: 19.0 deg latitude, -99.0 deg longitude

Chicago: 42.0 deg latitude, -88.0 deg longitude

Detroit: 42.5 deg latitude, -83.0 deg longitude

Cleveland: 42.0 deg latitude, -82.0 deg longitude

New York: 41.0 deg latitude, -74.0 deg longitude

Philadelphia: 40.0 deg latitude, -75.0 deg longitude

Miami: 26.0 deg latitude, -80.0 deg longitude

Buenos Aires: -35.0 deg latitude, -58.0 deg longitude

Sao Paulo: -23.5 deg latitude, -47.0 deg longitude

Rio de Janeiro: -23.0 deg latitude, -43.0 deg longitude

Johannesburg: -26.0 deg latitude, 28.0 deg longitude

London: 0.0 deg latitude, 52.0 deg longitude

Paris: 2.0 deg latitude, 49.0 deg longitude

Cairo: 30.0 deg latitude, 31.5 deg longitude

Moscow: 56.0 deg latitude, 37.5 deg longitude

Bombay: 19.0 deg latitude, 72.5 deg longitude

Calcutta: 22.5 deg latitude, 88.0 deg longitude

Total distance = 71691.79573424622
4. [after §10.7] Party Guest List *:

Write a complete program that stores and prints participants in a party. As part of your program, write a Party class that implements these members:

· An instance constant that holds the maximum number of guests.
· Three instance variables that hold, respectively, the actual number of guests, an array of the names of the guests, and the party host’s name.

· A constructor that stores the maximum number of guests and the host’s name.

· An addGuest method that adds a guest to the guest list or prints an error message if the guest is already on the list or there’s no more room on the guest list.

· A helper method, isOnList, that receives a parameter named guest. The method returns true if guest is on the guest list and returns false otherwise.

· A printParty method that prints the party’s host and guests.

Provide a driver class that tests your Party class. Your driver class should contain this main method:

public static void main(String[] args)

{

 Party party = new Party(3, "David Beckham");

 party.addGuest("Roberto Baggio");

 party.addGuest("Zinedine Zidane");

 party.addGuest("Roberto Baggio");

 party.addGuest("Johan Cruyff");

 party.addGuest("Diego Maradona");

 party.printParty();

} // end main

When compiled and run, your driver class and Party class together should produce this output:

Roberto Baggio is already on the guest list.

Diego Maradona cannot come to the party. The guest list is full.

Guest list for David Beckham's party:

Roberto Baggio

Zinedine Zidane

Johan Cruyff

5. [after §10.9] Vowel Counter *:
Write a program that counts the number of occurrences of lowercase and uppercase vowels in entered lines of text. Use a two-dimensional array to store the vowel counts. The array’s first column holds the counts for the lowercase vowels, and the second column holds the counts for the uppercase vowels.

The user indicates the end of the input by pressing enter by itself. At that point, your program should print, for each vowel, the total number of lowercase occurrences, the total number of uppercase occurrences, and the total number of combined occurrences.

Here are some implementation requirements:

· Use two separate files – one for a main driver method and one for a VowelCounter class that keeps track of vowel counts.
· main – Repeatedly prompt the user to enter a line of text or press enter by itself to quit. Note that the stdIn.nextLine() method returns the empty string ("") if the user presses enter by itself. For each entered line of text, call the processLine method. When the user chooses to quit, call printSummary.

· Within the VowelCounter class, include these methods:

· processLine ─ This method receives a line of text as a parameter and uses it to update the vowel counts appropriately.

· printSummary ─ This method prints a summary of the counts for all vowels entered.

Sample session:

Enter a line of characters (press enter by itself to quit):

Oscar the ostrich graduated

Enter a line of characters (press enter by itself to quit):

from Exeter in England.

Enter a line of characters (press enter by itself to quit):

A: 4 lowercase, 0 uppercase, 4 total

E: 4 lowercase, 2 uppercase, 6 total

I: 2 lowercase, 0 uppercase, 2 total

O: 2 lowercase, 1 uppercase, 3 total

U: 1 lowercase, 0 uppercase, 1 total

6. [after §10.9] Solution of Simultaneous Algebraic Equations ***:

In algebra, we often have to solve simultaneous differential equations. If the equations are linear and independent, there is a unique solution when the number of equations equals the number of variables. If there are only two variables and two equations, it’s easy, but as the number of equations and unknowns increases, the problem becomes more difficult. Imagine, for example trying to solve 100 equations in 100 unknowns. That's an unthinkably difficult manual exercise, but a good computer program can do it in less than a second.

Suppose you want the solution to this pair of equations:
2 * x + y = 1

 4 * y = 12

In the first equation, the coefficient of x is 2 and the coefficient of y is 1. In the second equation, the coefficient of x is 0, and the coefficient of y is 4. The right-side values are 1 and 12, respectively. It's easy to solve this pair of equations by hand. The second equation says y = 12/4 = 3, and substituting this back into the first equation gives x = (1-3)/2 = -1. The program you'll write will solve this problem like this:

Sample session:

Number of Equations & Unknowns: 2
Enter equation 0's coefficients separated by spaces:

2 1

Enter right-side value: 1
Enter equation 1's coefficients separated by spaces:

0 4

Enter right-side value: 12
Equations

2.0 1.0 1.0

0.0 4.0 12.0

Solution

-1.0
3.0

Verification

1.0 1.0

12.0 12.0

The numbers under “Verification” show a comparison between the original right-side values (first column) with what the computer gets when it substitutes it’s solution back into the original equations (second column). It’s not worthwhile writing a computer program to solve a simple problem like this, but it would be worthwhile if you had to solve 10 equations with 10 unknowns, and suppose you had 200 equations with 200 unknowns? This project’s program will be able to solve even a problem of that size, with no sweat.

Often it’s useful to put a hard-coded default example into your code, to keep you from having to re-enter everything when debugging. You could use an unreasonable input like zero to generate a test case:

Another sample session:

Number of Equations & Unknowns: 0
Equations

-6.0 33.0 16.0 -36.0

-7.0 34.0 -8.0 43.0

-25.0 22.0 9.0 -46.0

Solution

1.310701412279147

0.7545943390651776

-3.3148377947172487

Verification

-36.0 -36.0

43.0 43.0

-46.0 -46.0

In addition, you might want to test the program with many different large problems. You can do this with minimal effort by using Math.random to generate all the coefficients and right-side values of arbitrarily large sets of equations. You could ask for this kind of text by inputting a single negative number.

Another sample session:

Number of Equations & Unknowns: -5
Equations

-9.0 19.0 5.0 37.0 2.0 -48.0

-47.0 46.0 8.0 44.0 15.0 5.0

7.0 16.0 41.0 21.0 -42.0 35.0

7.0 -20.0 -1.0 -10.0 3.0 -49.0

-42.0 -1.0 37.0 9.0 -30.0 -11.0

Solution

0.012246478294370786

3.7224775353707003

-0.9162041095080082

-2.9847537821317

-1.7999721904905293

Verification

-48.0 -48.000000000000014

5.0 5.000000000000011

35.0 34.999999999999986

-49.0 -49.0

-11.0 -10.999999999999993

This project asks you to implement one of the best methods for solving a large set of linear algebraic equations. It’s called the “Lower-Upper Decomposition” method. Most of the computational effort goes into organizing (decomposing) the coefficients on the left side of the equations. After this, it’s relatively easy to plug in (substitute) any set of right-hand side terms and solve for the corresponding unknowns.

As usual, it’s useful to break the problem into a primary class that contains the basic algorithms and a driver class that applies the methods in the primary class to whatever data the driver provides. Here’s a UML diagram for the suggested program:

[image: image5]

[image: image6]
AlgebraicEquationsDriver class:

Have the main method call the setUp method, which establishes the equations to be solved and returns their quantity, n. Then, have main call the first overloaded print method to display the equations to be solved. Next, instantiate coefficients as double[n][n], rightSides as double[n], and oldRow and int[n], and copy the elements of dCoefficients into coefficients and the elements of dRightSides into rightSides. Use the copy (coefficients) in a call to the decompose method, which changes the values in coefficients as it implements the bulk of the algorithm. The decompose method initializes oldRow with information about how it rearranged the elements in coefficients.

Next, have main call the substitute method. Assign the now-decomposed coefficients to the lowerUpper parameter, and also provide the now-initialized oldRow. Use the copy (rightSides) in this call. The substitute method uses oldRow to alter rightSides to make it conform to the previously altered coefficients, but the substitute method does not change coefficients and oldRow .
 The substitute method creates a solution array and returns a reference to this new array to main. Then main calls the second overloaded version of print to display the solution.

Next, have main call the evaluate method, passing references to the original dCoefficients and the computed solution. The evaluate method simply evaluates the equations and generates right-side values, which it returns to main. Finally, main gives the original dRigntSides and the right-side values just computed by evaluate to the third overloaded version of print, which displays the original and recomputed values of all right-side values. This comparison verifies the solution.

The setup method implements this algorithm:

n ← number of equations & unknowns

if n == 0

 n ← 3

else

 dCoefficients ← new double[abs(n)][abs(n)]

 dRightSides ← new double[abs(n)]

 if n < 0

 n ← -n

 generateEquations(n, dCoefficients, dRightSides)

 else

 for row=0 to row<n

 for col=0 to col<n

 dCoefficients ← user input

 dRightSides ← user input

return n
The generateEquations method fills the each element dCoefficients and dRightSides with a rounded version of 100 * (Math.random – 0.5).

The evaluate method implements this algorithm:
for row=0 to row<n

 for col=0 to col<n

 rightSides[row] +=

 dCoefficients[row][col] * solution[col]

return rightSides

AlgebraicEquations class:

The decompose method is the heart of the program. It initializes double[] scalings with a the reference returned by doScaling(n, coefficients). Then it implements the following algorithm:
for row=0 to row<n

 oldRow[row] ← row

for col=0 to col<n

 doUpper(col, coefficients)

 maxRow = beginLower(col, coefficients, scalings)

 if maxRow != col

 for k=0 to k<n

 swap: coefficients[maxRow][k] ↔ coefficients[col][k]

 swap: oldRow[maxRow] ↔ oldRow[col]

 scalings[maxRow] ← scalings[col]

 if col != (n-1)

 for row=(col+1) to row<n

 coefficients[row][col] /= coefficients[col][col]

The doScaling method implements this algorithm:
scalings ← new double[n]

for row=0 to row<n

 max ← 0

 for col=0 to col<n

 if abs(coefficients[row][col]) > max

 max ← abs(coefficients[row][col])

 if max == 0

 Error: "All coefficients in a row are zero!"

 scalings[row] ← 1 / max

return scalings

The doUpper method implements this algorithm:
for row=0 to row<col

 sum ← coefficients[row][col]

 for k=0 to k<row

 sum -= coefficients[row][k] * coefficients[k][col]

 coefficients[row][col] ← sum
The beginLower method implements this algorithm:
rowMax ← col

max ← 0

for row=col to row<n

 sum ← coefficients[row][col]

 for k=0 to k<col

 sum -= coefficients[row][k] * coefficients[k][col]

 coefficients[row][col] ← sum

 if scalings[row] * abs(sum) >= max

 max ← scalings[row] * abs(sum)

 rowMax ← row

return rowMax

The substitute method implements two operations:
rightSides = forward(n, lowerUpper, oldRow, rightSides);

backward(n, lowerUpper, rightSides);

return rightSides;
The forward method implements this algorithm:
firstNonZeroRow ← -1

solution ← new double[n]

for row=0 to row<n

 sum ← rightSides[oldRow[row]]

 if firstNonZeroRow > -1

 for col=firstNonZeroRow to col<row

 sum -= lowerUpper[row][col] * solution[col]

 else if sum != 0

 firstNonZeroRow ← row

 solution[row] ← sum

return solution
The backward method implements this algorithm:
for row=(n-1) to row>=0

 sum ← rightSides[row]

 for col=(row+1) to col<n

 sum -= lowerUpper[row][col] * rightSides[col]

 rightSides[row] ← sum / lowerUpper[row][row]

7. [after §10.9] Linear Regression **:

Linear regression draws a straight line through a group of data points such that the position and slope of the line minimizes the square of the vertical distance between the data points and the straight line. It fits the data in an intuitively satisfying and yet mathematically reproducible way. For linear regression to be valid, all data points should vary in exactly the same random way, and that variation should have a normal or “Gaussian” distribution ─ the familiar bell-shaped distribution.

To illustrate the application of linear regression, this project uses it to generate a trend line for the effect of nitrogen fertilizer on the yield of a crop of corn (maise). To guarantee that the required assumptions are met, we have created the data artificially, by adding a normally distributed random variable to a sloping straight line, with the same variance for all data points. Specifically, we added a normal random number having a standard deviation of 25 to the straight line. Here’s the equation:

y = 50 + 100 * x + randomNumber

The following plot shows one set of 10 data points, and the linear-regression fit to those data points:

[image: image7.emf]0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

pounds per acre nitrogen fertilizer

bushels per acre corn yield

Sample session:
Enter number of data points or 0 for default: 0
Fert Yield

81 131

14 71

60 112

12 53

99 115

35 92

4 71

23 65

45 104

14 25

slope = 0.8486061764042895

yieldAt0 = 51.058940973154

yieldAtMax = 135.91955861358295

residual error = 18.87483162574109
Another sample session:

Enter number of data points or 0 for default: 10000
Fert Yield

64 139

1 52

86 121

31 97

95 126

86 166

67 118

26 95

89 179

39 95

slope = 1.0051707825618592

yieldAt0 = 50.025474774097034

yieldAtMax = 150.54255303028296

residual error = 25.0921873778027
The first sample session prints all of the data points used in the figure. The second sample session prints just the first 10 of 10,000 points used as the basis of the regression. Of course, your random number generator will not generate the same data values as those shown above, but the four values at the bottom of your output should be close to the four values we generated – which are close to the parameters used to generate the random data.
Your job is to write the program that produces these results. To generate the first sample session above, initialize a two-dimensional array with the 10 sets of output values shown. To generate the second sample session above, import the java.util.Random package, use the zero-parameter constructor to instantiate a random-number generator, and have that generator call its nextGaussian method to generate a random variable with a Gaussian distribution whose mean value is zero and whose standard deviation is 1.0. (See Section 5.8 for more information.)
Here is the basic algorithm for linear regression:

1. Find the average x (avgX) and the average y (avgY).

2. Find the x_variance, which is the sum of the squares of (x[i] – avgX), divided by the number of data points.

3. Find the x_y_covariance, which is the sum of the product, (x[i] ‑ avgX) * (y[i] ‑ avgY), divided by the number of data points.

4. The slope of the desired regression line is slope ← x_variance / x_y_covariance
5. The y-axis intercept (value of y at x=0) of the straight line is

y0 ← avgY – slope * avgX
8. [after §10.10] Purchase Vouchers **:
A “voucher system” helps a business manage its purchases and payments to vendors. Before making a commitment to buy something, the employee making the purchase must fill out a “voucher,” which includes the dollar amount, the account to be debited (usually a type of expense), the vendor’s name, and some kind of approval. Later, when the vendor sends a bill, the employee responsible for paying the bill compares the billed amount with the amount on the previously approved voucher before issuing a check for payment.

Create a class, called Voucher, whose objects are vouchers. Create another class, called VoucherDriver, which manages three aspects of voucher processing, writing vouchers, printing data, and issuing checks. Make your classes conform to the following UML class diagram. (For simplicity, we are omitting fields for approvals and other types of data that real vouchers might have.)

[image: image8]
The main method in the driver calls initialize, which establishes the first voucher and check numbers and instantiates an array of null vouchers. The constructor searches the array for the first null voucher and makes that equal to this. Then it initializes all of its instance variables except for checkNumber and paymentDate. The find method searches the array for a voucher whose number equals the parameter value, and if found it returns a reference to that voucher. Otherwise it returns null. The issueCheck method should include a verification that amount > 0.0 and vendor is not null. Make your program able to generate the following display.

Sample session:

XYZ COMPANY Voucher Manager

Activities available:

 1. create voucher

 2. print voucher register

 3. issue checks

Enter number of choice (or zero to quit): 4
Invalid choice. Try again.

Activities available:

 1. create voucher

 2. print voucher register

 3. issue checks

Enter number of choice (or zero to quit): 1
Enter purchase date (dd/mm/yyyy): 17/08/2003
Enter amount: $123.45
Enter name of account to debit: tools
Enter name of vendor: Mack's Hardware
Activities available:

 1. create voucher

 2. print voucher register

 3. issue checks

Enter number of choice (or zero to quit): 1
Enter purchase date (dd/mm/yyyy): 15/09/2003
Enter amount: $67.42
Enter name of account to debit: supplies
Enter name of vendor: ABC Company
Activities available:

 1. create voucher

 2. print voucher register

 3. issue checks

Enter number of choice (or zero to quit): 2
Voucher Register:

voucher #1001 date: 17/08/2003 amount: $123.45

 account: tools vendor: Mack's Hardware

 check #0 date: null

voucher #1002 date: 15/09/2003 amount: $67.42

 account: supplies vendor: ABC Company

 check #0 date: null

Activities available:

 1. create voucher

 2. print voucher register

 3. issue checks

Enter number of choice (or zero to quit): 3
Enter number of voucher to pay: 1000
No vouchers have that number.

Enter number of voucher to pay: 1001
Enter payment date (dd/mm/yyyy): 08/01/2004
Activities available:

 1. create voucher

 2. print voucher register

 3. issue checks

Enter number of choice (or zero to quit): 2
Voucher Register:

voucher #1001 date: 17/08/2003 amount: $123.45

 account: tools vendor: Mack's Hardware

 check #2001 date: 08/01/2004

voucher #1002 date: 15/09/2003 amount: $67.42

 account: supplies vendor: ABC Company

 check #0 date: null

Activities available:

 1. create voucher

 2. print voucher register

 3. issue checks

Enter number of choice (or zero to quit): 0
9. [after §10.11] Deck of Cards *:
Write a complete program that implements the functionality of a deck of cards. In writing your program, use the provided DeckDriver and Card classes shown below. Write your own Deck class so that it works in conjunction with the two given classes. Use anonymous objects where appropriate.

Deck class details:

Use an ArrayList to store Card objects.

Deck constructor:
The Deck constructor should initialize your ArrayList with the 52 cards found in a standard deck. Each card is a Card object. Each Card object contains two instance variables ─ num and suit. Study the Card class definition below for details.

dealCard:
This method removes the highest-indexed card in the ArrayList and returns it. In general, a method should not do more than what it’s supposed to do. Thus, dealCard should not print anything.

toString:
This method returns the deck’s contents using the format shown in the output session. In particular, note that toString should insert a newline after every fifth card. Hint: In coming up with a return value, use a String local variable. As you generate card values and newlines, concatenate those items to your local variable using the += operator.

Write your code such that the following classes produce the output shown in the subsequent output.
/***

* DeckDriver.java

* <your name>

*

* This class tests the Deck class.

***/

public class DeckDriver

{

 public static void main(String[] args)

 {

 Deck deck = new Deck();

 System.out.println(deck.dealCard());

 System.out.println(deck.dealCard());

 System.out.println();

 System.out.println(deck);

 } // end main

} // end DeckDriver class

/**

* Card.java

* <your name>

*

* This class stores a Card's information.

**/

public class Card

{

 private int num; // hold a number between 1 and 13

 private char suit; // holds 'C' for clubs, 'D' for diamonds,

 // 'H' for hearts, 'S' for spades

 //**

 public Card(int num, char suit)

 {

 this.num = num;

 this.suit = suit;

 } // end Card constructor

 //**

 // Return the card's value in the form of a concatenated

 // number and character.

 // For example, 1C = ace of clubs, 12H = queen of hearts.

 public String toString()

 {

 return Integer.toString(num) + suit;

 }

} // end class Card

Output:

13S

12S

1C 2C 3C 4C 5C

6C 7C 8C 9C 10C

11C 12C 13C 1D 2D

3D 4D 5D 6D 7D

8D 9D 10D 11D 12D

13D 1H 2H 3H 4H

5H 6H 7H 8H 9H

10H 11H 12H 13H 1S

2S 3S 4S 5S 6S

7S 8S 9S 10S 11S

10. [after §10.13] Bookstore *:
Write a program that implements a rudimentary book-finder service. It should start out by filling up a books ArrayList with Book objects. Then it should ask the user if he/she wants to find a particular book. Then it should search for the book in the books ArrayList and return the book’s information if the book is found. Here is a suggested UML class diagram:

[image: image9]
Implement BookStore’s fillTheStore method by adding anonymous objects representing these two books:

Title

Author

ISBN

Siddhartha
Hesse

11111
Lolita

Nabokov
22222
Implement Bookstore’s getBook method so that if the book is not found, the method returns the string:
"Sorry - book not found."
Implement Book’s toString method simply by returning this string value:

title + " " + author + " " + isbn

Government

+Government(lostFraction : double)

+getTaxes() : double

+govern(youth : People, adults : People, seniors : People,

 environment : Environment) : void

-lostFraction : double

-taxes : double

-distribution : double

Environment

+Environment(production : double, resources : double)

+getCurrentResources() : double

+produce(populationFraction : double, extractionExpense : double) : double

-sustainableProduction : double

-initialResources : double

-currentReseources : double

-yieldFactor : double = 2.0

AlgebraicEquationsDriver

Itinerary

-links : Link[]

-totalDistance : double = 0.0

+MAX_TEMP : double

+Itinerary(cities : City[])

+display() : void

+anneal(factor : double) : void

City

+City(name : String, latitude : double, longitude : double)

+toString() : String

+getDistance(city2 : City) : void

+RADIUS : double = 6366

-name : String

-north : double

-east : double

Link

+Link(city1 : City, city2 : City)

+getPrev() : City

+getNext() : City

+getDistance() : double

+reverse() : void

-prev : City

-next : City

-distance : double

TravelingSalesman

+main(args : String[]) : void

-shuffle(cities : City[]) : void

-dCoefficients : double[][] = {{-6, 33, 16}, {-7, 34, -8}, {-25, 22, 9}}

-dRightSides : double[]= {-36, 43, -46}

newNext

newPrev

c4

c3

c2

c1

c6

c5

+main(args : String[]) : void

-setUp() : int

-generateEquations(n : int, coefficients : double[][], rightSides : double[]) : void

-print(message : String, n : int, coefficients : double[][], rightSide : double[]) : void

-print(message : String, n : int, solution : double[]) : void

+evaluate(n : int, coefficients : double[][], solution : double[]) : double[]

-print(message : String, n : int, origRS : double[], checkRS : double[]) : void

AlgebraicEquations

+decompose(n : int, coefficients : double[][], oldRow : int[]) : void

-doScaling(n : int, coefficients : double[][]) : double[]

-doUpper(col : int, coefficients : double[][]) : void

-beginLower(col : int, coefficients : double[][], scalings : double[]) : int

+substitute(n : int, lowerUpper : double[][], oldRow : int[], rightSides : double[]) : double[]

-forward(n : int, lowerUpper : double[][], oldRow : int[], rightSides : double[]) : double[]

-backward(n : int, lowerUpper : double[][], rightSides : double[]) : void

Voucher

-nextVoucherNumber : int

-nextCheckNumber : int

-vouchers : Voucher[]

-voucherNumber : int

-purchaseDate : String

-amount : double

-debitAccount : String

-vendor : String

-checkNumber : int

-paymentDate : String

+Voucher()

+issueCheck() : void

+initialize(firstVoucher : int, firstCheck : int,

 maxNumberOfVouchers: int) : void

+printData() : void

+find(voucherNumber : int) : Voucher

+main(args : String[]) : void

VoucherDriver

Book

-title : String

-author : String

-isbn : String

+Book(title : String, author : String, isbn : String)

+getTitle() : String

+toString() : String

+main(args : String[]) : void

BookstoreDriver

Bookstore

-books : ArrayList<Book> = ArrayList<Book>

+fillTheStore() : void

+getBook(title : String) : Book

+People(youngest : int, taxRate : double, extractionExpense : double)

+getPopulation() : long

+getPopulationFraction() : double

+earn(distribution : double, environment : Environment) : double

+getIncome() : double

+getTotalPopulation() : long

+initialize(maxAge: int) : void

+simulate(youth : People, adults : People, seniors : People) : void

-M0 : double = 0.015

-M1 : double = 0.05

-M4 : double = 0.22

-youngestChildBearingAge : int = 15

-oldestChildBearingAge : int = 40

-primeFertility : double = 0.16

-population : long[]

-totalPopulation : long

-youngest : int

-taxRate : double

-individualExtractionExpense : double

-income : double

-groupPopulation : long

-populationFraction : double

People

� This is the Ferm-Dirac distribution function. It describes the energy distribution of all things that satisfy the Pauli Exclusion Principle, which says that two similar things cannot occupy the same space at the same time.

� Once decompose has done its job, you can run substitute over and over with different rightSides to get different solutions for a given set of coefficients, relatively quickly.

_1146054155.xls
Chart1

		81		0

		14		100

		60

		12

		99

		35

		4

		23

		45

		14

pounds per acre nitrogen fertilizer

bushels per acre corn yield

131

50.9819367444

71

135.8169367775

112

53

115

92

71

65

104

25

Sheet1

		81		131		0		50.9819367444

		14		71		100		135.8169367775

		60		112

		12		53

		99		115

		35		92

		4		71

		23		65

		45		104

		14		25

Sheet1

		

pounds per acre nitrogen fertilizer

bushels per acre corn yield

regressionData

		0.84		0.36		0.72		0.75		0.24		0.42		0.04		0.59		0.16		0.56		0.22		0.37		0.21		0.24		0.15		0.8		0.37		0.21		0.15		0.21

		3.17		1.01		0.78		1.79		1.97		1.88		1.37		0.99		1.11		2.14		1.32		0.96		0.4		1.03		1.41		1.84		1.53		2.02		0.62		1.95

Sheet3

		81		14		60		12		99		35		4		23		45		14		0		100

		131		71		112		53		115		92		71		65		104		25		50.9819367444		135.8169367775

