Inductive Definitions

- What are Inductive Definitions?
- Extremal Clause
- Proofs by Induction
- Defining Sets by Rules in Java
We will frequently define a set by a collection of rules that determine the elements of that set.

Example: the set of valid sentences of a grammar

What does it mean to define a set by a collection of rules?
Examples

- Numerals, in unary (base-1) notation.
 - *Zero* is a numeral;
 - if *n* is a numeral, then so is *Succ*(n).

- Binary trees (w/o data at nodes):
 - *Empty* is a binary tree;
 - If *l* and *r* are binary trees, then so is *Node*(l, r).
Examples (more formally)

- Numerals: The set Num is defined by the rules

 $\begin{align*}
 \text{Zero} & : n \\
 \text{Succ} & : n \\
 \end{align*}$

- Binary trees: The set Tree is defined by the rules

 $\begin{align*}
 \text{Empty} & : t_l, t_r \\
 \text{Node} & : t_l, t_r \\
 \end{align*}$
Defining a Set by Rules

- Given a collection of rules, what set does it define?
 - What is the set of numerals?
 - What is the set of trees?
- Do the rules pick out a unique set?
Defining a Set by Rules

- There can be many sets that satisfy a given collection of rules.
 - \(\text{MyNum} = \{ \text{Zero}, \text{Succ(Zero)}, \ldots \} \)
 - \(\text{YourNum} = \text{MyNum} \cup \{ \infty, \text{Succ(\infty)}, \ldots \} \), where \(\infty \) is an arbitrary symbol
- Both \(\text{MyNum} \) and \(\text{YourNum} \) satisfy the rules defining numerals (i.e., the rules are true for these sets). Really?
MyNum Satisfies the Rules

\[n \]

Zero \[Succ(n) \]

\[MyNum = \{ \text{Zero}, Succ(\text{Zero}), Succ(Succ(\text{Zero})), \ldots \} \]

Does MyNum satisfy the rules?

- Zero \(\in \) MyNum. \(\checkmark \)
- If \(n \in \) MyNum, then \(Succ(n) \in \) MyNum. \(\checkmark \)
YourNum Satisfies the Rules

YourNum =
\{Zero, Succ(Zero), Succ(Succ(Zero)), \ldots\} \cup \{\infty, Succ(\infty), \ldots\}

Does YourNum satisfy the rules?

- Zero ∈ YourNum. √
- If n ∈ YourNum, then Succ(n) ∈ YourNum. √
Defining Sets by Rules

- Both *MyNum* and *YourNum* satisfy all rules.
- It is not enough that a set satisfies all rules.
- Something more is needed: an *extremal* clause.
 - “and nothing else” or
 - “the least set that satisfies these rules”
Example 1: *Num*

Num is the least set that satisfies these rules:

- *Zero* is included
- If *n* is included, then *Succ*(n) is included.
Example 2: *Tree*

Tree is the least set that satisfies these rules:

- *Zero* is included
- If t_l and t_r are included, then $Node(t_l, t_r)$ is included.
Inductive Definitions

Question: What do we mean by “least”?
Answer: The smallest with respect to the subset ordering on sets.

- Contains no “junk”, only what is required by the rules.
- Since \(\text{YourNum} \supseteq \text{MyNum} \), \(\text{YourNum} \) is ruled out by the extremal clause.
- \(\text{MyNum} \) is “ruled in” because it has no “junk”.

Inductive Definitions
What’s the Big Deal?

- Inductively defined sets “come with” an induction principle.
- Suppose I is inductively defined by rules R.
- To show that every $x \in I$ has property P, it is enough to show that P satisfies the rules of R.
- Sometimes called *structural induction* or *rule induction*.
Induction Principle

- To show that every $n \in \text{Num}$ has property P, it is enough to show:
 - Zero has property P.
 - if n has property P, then $\text{Succ}(n)$ has property P.

- This is just ordinary mathematical induction!
Induction Principle

- To show that every tree has property P, it is enough to show that
 - *Empty* has property P.
 - If l and r have property P, then so does $Node(l, r)$.
- We call this *structural induction on trees*.
How can we justify this principle?

- Properties are sets. We are trying to show that $P \supseteq I$.
- Remember that I is (by definition) the smallest set satisfying the rules in R.
- Hence if P satisfies the rules of R, then $P \supseteq I$.
- This is why the extremal clause matters so much!
Example: Size of a Tree

To show: Every tree has a size, defined as follows:

Definition of size

- The size of Empty is 1.
- If tree l has size h_l and tree r has size h_r, then the tree $Node(l, r)$ has size $1 + h_l + h_r$.

Clearly, every tree has at most one size, but does it have a size at all?
Example: size

It may seem obvious that every tree has a size, but notice that the justification relies on structural induction!

- An “infinite tree” does not have a size!
- But the extremal clause rules out the infinite tree!
Example: size

- We prove that every tree (as defined above) has a size (as defined above).
- Proceed by induction on the rules defining trees, showing that the property “has a size” satisfies the rules defining trees.
- Since the set of trees is the least set that satisfies the rules, the property “has a size” must be a superset of the set of trees!
Example: size

Definition of size

- The size of $Empty$ is 1.
- If tree l has size h_l and tree r has size h_r, then the tree $Node(l, r)$ has size $1 + h_l + h_r$.

Rule 1 of Def of Tree: $Empty$ is included.
Do all things that have a size fulfill this rule?
Does $Empty$ have a size? **yes**

Rule 2 of Def of Tree: If l and r are included, then $Node(l, r)$ is included.
Does all things that have a size fulfill this rule?
If l and r have sizes, then $Node(l, r)$ has a size? **yes**
Example: size (summary)

- We have defined $Tree$ as the least set satisfying:
 - $Zero$ is included
 - If t_l and t_r are included, then $Node(t_l, t_r)$ is included.
- We have shown that the property “has a size” is a set satisfying
 - $Zero$ is included
 - If t_l and t_r are included, then $Node(t_l, t_r)$ is included.
- Thus, the property “has a size” is a superset of $Tree$, meaning: Every $Tree$ has a size.
Encoding Numerals in Java

```java
interface Num {}
class Zero implements Num {}
class Succ implements Num {
    public Num pred;
    Succ(Num p) {pred = p;}
}
Num my_num = new Zero();
Num my_other_num =
    new Succ(new Succ(new Zero()));
```
Encoding Trees in Java

```java
interface Tree {}
class Empty implements Tree {}
class Node implements Tree {
    public Tree left, right;
    Node(Tree l, Tree r) {
        left = l; right = r;
    }
}
Tree my_tree =
    new Node(new Empty(),
        new Node(new Node(new Empty(),
            new Empty()),
            new Empty()));
```
Constructors and Rules

- The constructors of the classes correspond to the rules in the inductive definition.

- Numerals
 - `new Zero()` is of type `Num`
 - `if n is of type Num, then new Succ(n) is of type Num`

- Trees
 - `new Empty()` is of type `Tree`
 - `if l and r are of type Tree, then new Node(l, r) is of type Tree`
Analogy with Java

- We assume an implicit extremal clause: no other classes implement the interface.
- The associated induction principle may be used to prove termination and correctness of functions.
Example: Size in Java

```java
interface Tree {
    public int size();
}
class Empty implements Tree {
    public int size() {return 1;}
}
class Node implements Tree {
    public Tree left, right;
    Node(Tree l, Tree r) {left = l; right = r;}
    public int size() {
        return 1 + left.size() + right.size();
    }
}
```
Proving Termination of Java Program

Why does $\text{size}(t)$ terminate for every tree t?

- For every t of type Tree, does there exist h such that $\text{size}(t)$ returns h?
- Proof similar to above!
An inductively defined set is the least set closed under a collection of rules.

Rules have the form:

“If $x_1 \in X$ and \ldots and $x_n \in X$, then $x \in X$.”

\[x_1 \quad \ldots \quad x_n \]

Notation:

\[\begin{array}{c}
 x_1 \\
 \vdots \\
 x_n \\
\end{array} \]

\[\underline{X} \]
Inductive Definitions

What are Inductive Definitions?
Extremal Clause
Proofs by Induction
Defining Sets by Rules in Java

Summary

- Inductively defined sets admit proofs by rule induction.
- For each rule
 \[x_1 \cdots x_n \]
 \[\overline{\hspace{\textwidth}} \]
 \[x \]
 assume that \(x_1 \in P, \ldots, x_n \in P \), and show that \(x \in P \).
- Conclude that every element of the set is in \(P \).