03a—Induction

CS 3234: Logic and Formal Systems

Martin Henz and Aquinas Hobor

August 26, 2009

Generated on Thursday 26th August, 2010, 07:23
Inductive Definitions

- What are Inductive Definitions?
- Extremal Clause
- Proofs by Induction
- Defining Sets by Rules in Java
We will frequently define a set by a collection of rules that determine the elements of that set. Example: the set of valid sentences of a grammar.
We will frequently define a set by a collection of rules that determine the elements of that set.
Example: the set of valid sentences of a grammar

What does it mean to define a set by a collection of rules?
Examples

- Numerals, in unary (base-1) notation.
 - *Zero* is a numeral;
 - if *n* is a numeral, then so is *Succ(n)*.
Examples

- Numerals, in unary (base-1) notation.
 - Zero is a numeral;
 - If n is a numeral, then so is $\text{Succ}(n)$.

- Binary trees (w/o data at nodes):
 - Empty is a binary tree;
 - If l and r are binary trees, then so is $\text{Node}(l, r)$.
Numerals: The set Num is defined by the rules

- Zero
- $\text{Succ}(n)$
Examples (more formally)

- Numerals: The set Num is defined by the rules

 \[
 \begin{align*}
 Zero & \quad \text{for } n = 0 \\
 \text{Succ}(n) & \quad \text{for } n \in \text{Num}
 \end{align*}
 \]

- Binary trees: The set Tree is defined by the rules

 \[
 \begin{align*}
 \text{Empty} & \quad \text{for } \text{Tree} = \text{Empty} \\
 \text{Node}(t_l, t_r) & \quad \text{for } \text{Tree} = \text{Node}(t_l, t_r)
 \end{align*}
 \]
Given a collection of rules, what set does it define?
Defining a Set by Rules

- Given a collection of rules, what set does it define?
 - What is the set of numerals?
 - What is the set of trees?
Defining a Set by Rules

- Given a collection of rules, what set does it define?
 - What is the set of numerals?
 - What is the set of trees?
- Do the rules pick out a unique set?
There can be many sets that satisfy a given collection of rules.

- \(\text{MyNum} = \{ \text{Zero}, \text{Succ(Zero)}, \ldots \} \)
- \(\text{YourNum} = \text{MyNum} \cup \{ \infty, \text{Succ(\infty)}, \ldots \} \), where \(\infty \) is an arbitrary symbol.
There can be many sets that satisfy a given collection of rules.

- \(\text{MyNum} = \{ \text{Zero}, \text{Succ(Zero)}, \ldots \} \)
- \(\text{YourNum} = \text{MyNum} \cup \{ \infty, \text{Succ(\infty)}, \ldots \} \), where \(\infty \) is an arbitrary symbol

Both \(\text{MyNum} \) and \(\text{YourNum} \) satisfy the rules defining numerals (i.e., the rules are true for these sets). Really?
MyNum Satisfies the Rules

\[
\begin{align*}
\text{Zero} & \quad \text{Succ}(n) \\
\end{align*}
\]

\[
\text{MyNum} = \{ \text{Zero}, \text{Succ(Zero)}, \text{Succ(Succ(Zero))}, \ldots \}
\]

Does **MyNum** satisfy the rules?
Inductive Definitions

What are Inductive Definitions?
Extremal Clause
Proofs by Induction
Defining Sets by Rules in Java

MyNum Satisfies the Rules

MyNum = \{ Zero, Succ(Zero), Succ(Succ(Zero)), \ldots \}

Does MyNum satisfy the rules?

- Zero ∈ MyNum. √
- If n ∈ MyNum, then Succ(n) ∈ MyNum. √
YourNum Satisfies the Rules

YourNum =
{Zero, Succ(Zero), Succ(Succ(Zero)), ...} ∪ {∞, Succ(∞), ...}

Does YourNum satisfy the rules?
YourNum Satisfies the Rules

YourNum = \{ Zero, Succ(Zero), Succ(Succ(Zero)), \ldots \} \cup \{ \infty, Succ(\infty), \ldots \}

Does YourNum satisfy the rules?

- Zero \in YourNum. \checkmark
- If n \in YourNum, then Succ(n) \in YourNum. \checkmark
Both *MyNum* and *YourNum* satisfy all rules.
Both *MyNum* and *YourNum* satisfy all rules.

It is not enough that a set satisfies all rules.
Defining Sets by Rules

- Both \textit{MyNum} and \textit{YourNum} satisfy all rules.
- It is not enough that a set satisfies all rules.
- Something more is needed: an \textit{extremal} clause.
Both *MyNum* and *YourNum* satisfy all rules.

It is not enough that a set satisfies all rules.

Something more is needed: an *extremal* clause.

“and nothing else”
Both *MyNum* and *YourNum* satisfy all rules.

It is not enough that a set satisfies all rules.

Something more is needed: an *extremal* clause.

- “and nothing else” or
- “the least set that satisfies these rules”
Example 1: *Num*

Num is the least set that satisfies these rules:

- *Zero* is included
- If *n* is included, then *Succ(n)* is included.
Example 2: *Tree*

Tree is the least set that satisfies these rules:

- *Zero* is included
- If t_l and t_r are included, then $Node(t_l, t_r)$ is included.
Question: What do we mean by “least”?
Answer: The smallest with respect to the subset ordering on sets.

- Contains no “junk”, only what is required by the rules.
Question: What do we mean by “least”?
Answer: The smallest with respect to the subset ordering on sets.

- Contains no “junk”, only what is required by the rules.
- Since \(\text{YourNum} \supsetneq \text{MyNum} \), \(\text{YourNum} \) is ruled out by the extremal clause.
Inductive Definitions

Question: What do we mean by “least”?
Answer: The smallest with respect to the subset ordering on sets.

- Contains no “junk”, only what is required by the rules.
- Since YourNum ⊋ MyNum, YourNum is ruled out by the extremal clause.
- MyNum is “ruled in” because it has no “junk”.

Inductive Definitions

What are Inductive Definitions?
Extremal Clause
Proofs by Induction
Defining Sets by Rules in Java
What's the Big Deal?

- Inductively defined sets “come with” an induction principle.
What’s the Big Deal?

- Inductively defined sets “come with” an induction principle.
- Suppose \(I \) is inductively defined by rules \(R \).
Inductive Definitions

What are Inductive Definitions?
Extremal Clause
Proofs by Induction
Defining Sets by Rules in Java

What’s the Big Deal?

- Inductively defined sets “come with” an induction principle.
- Suppose I is inductively defined by rules R.
- To show that every $x \in I$ has property P, it is enough to show that P satisfies the rules of R.

Sometimes called structural induction or rule induction.

CS 3234: Logic and Formal Systems

03a—Induction
What’s the Big Deal?

- Inductively defined sets “come with” an induction principle.
- Suppose I is inductively defined by rules R.
- To show that every $x \in I$ has property P, it is enough to show that P satisfies the rules of R.
- Sometimes called *structural induction* or *rule induction*.
To show that every $n \in Num$ has property P, it is enough to show:

- Zero has property P.
- if n has property P, then $Succ(n)$ has property P.

This is just ordinary mathematical induction!
To show that every tree has property P, it is enough to show that
Induction Principle

To show that every tree has property P, it is enough to show that

- $Empty$ has property P.
To show that every tree has property P, it is enough to show that

- $Empty$ has property P.
- If l and r have property P, then so does $Node(l, r)$.
Inductive Definitions

What are Inductive Definitions?
Extremal Clause
Proofs by Induction
Defining Sets by Rules in Java

Induction Principle

To show that every tree has property \(P \), it is enough to show that

- \textit{Empty} has property \(P \).
- If \(l \) and \(r \) have property \(P \), then so does \(\text{Node}(l, r) \).

We call this \textit{structural induction on trees}.
How can we justify this principle?

- Properties are sets. We are trying to show that $P \supseteq I$.

Remember that I is (by definition) the smallest set satisfying the rules in R. Hence if P satisfies the rules of R, then $P \supseteq I$. This is why the extremal clause matters so much!
How can we justify this principle?

- Properties are sets. We are trying to show that $P \supseteq I$.
- Remember that I is (by definition) the smallest set satisfying the rules in R.

Hence if P satisfies the rules of R, then $P \supseteq I$.

This is why the extremal clause matters so much!
How can we justify this principle?

- Properties are sets. We are trying to show that $P \supseteq I$.
- Remember that I is (by definition) the smallest set satisfying the rules in R.
- Hence if P satisfies the rules of R, then $P \supseteq I$.
How can we justify this principle?

- Properties are sets. We are trying to show that $P \supseteq I$.
- Remember that I is (by definition) the smallest set satisfying the rules in R.
- Hence if P satisfies the rules of R, then $P \supseteq I$.
- This is why the extremal clause matters so much!
Example: Size of a Tree

To show: Every tree has a size, defined as follows:

Definition of size

1. The size of $Empty$ is 1.
2. If tree l has size h_l and tree r has size h_r, then the tree $Node(l, r)$ has size $1 + h_l + h_r$.
Example: Size of a Tree

To show: Every tree has a size, defined as follows:

Definition of size

- The size of *Empty* is 1.
- If tree *l* has size *h_l* and tree *r* has size *h_r*, then the tree *Node(l, r)* has size 1 + *h_l* + *h_r*.

Clearly, every tree has at most one size, but does it have a size at all?
Example: size

- It may seem obvious that every tree has a size, but notice that the justification relies on structural induction!
 - An “infinite tree” does not have a size!
 - But the extremal clause rules out the infinite tree!
Example: size

We prove that every tree (as defined above) has a size (as defined above).
Example: size

- We prove that every tree (as defined above) has a size (as defined above).
- Proceed by induction on the rules defining trees, showing that the property “has a size” satisfies the rules defining trees.
Example: size

- We prove that every tree (as defined above) has a size (as defined above).
- Proceed by induction on the rules defining trees, showing that the property “has a size” satisfies the rules defining trees.
- Since the set of trees is the least set that satisfies the rules, the property “has a size” must be a superset of the set of trees!
Example: size

Definition of size

- The size of *Empty* is 1.
- If tree *l* has size *h_l* and tree *r* has size *h_r*, then the tree *Node(l, r)* has size *1 + h_l + h_r*.
Example: size

Definition of size

- The size of Empty is 1.
- If tree l has size h_l and tree r has size h_r, then the tree $Node(l, r)$ has size $1 + h_l + h_r$.

- Rule 1 of Def of Tree: Empty is included.
Example: size

Definition of size

- The size of *Empty* is 1.
- If tree *l* has size *h_l* and tree *r* has size *h_r*, then the tree *Node(l, r)* has size 1 + *h_l* + *h_r*.

Rule 1 of Def of Tree: *Empty* is included.
Do all things that have a size fulfill this rule?
Inductive Definitions

What are Inductive Definitions?
Extremal Clause
Proofs by Induction
Defining Sets by Rules in Java

Example: size

Definition of size

- The size of *Empty* is 1.
- If tree *l* has size *h_l* and tree *r* has size *h_r*, then the tree \(\text{Node}(l, r) \) has size \(1 + h_l + h_r \).

- Rule 1 of Def of Tree: *Empty* is included. Do all things that have a size fulfill this rule? Does *Empty* have a size?
Example: size

Definition of size

- The size of *Empty* is 1.
- If tree l has size h_l and tree r has size h_r, then the tree $Node(l, r)$ has size $1 + h_l + h_r$.

Rule 1 of Def of Tree: *Empty* is included. Do all things that have a size fulfill this rule? Does *Empty* have a size? **yes**
Example: size

Definition of size

- The size of $Empty$ is 1.
- If tree l has size h_l and tree r has size h_r, then the tree $Node(l, r)$ has size $1 + h_l + h_r$.

- Rule 1 of Def of Tree: $Empty$ is included. Do all things that have a size fulfill this rule? Does $Empty$ have a size? **yes**
- Rule 2 of Def of Tree: If l and r are included, then $Node(l, r)$ is included.
Example: size

Definition of size

- The size of *Empty* is 1.
- If tree \(l \) has size \(h_l \) and tree \(r \) has size \(h_r \), then the tree \(\text{Node}(l, r) \) has size \(1 + h_l + h_r \).

Rule 1 of Def of Tree: *Empty* is included. Do all things that have a size fulfill this rule? Does *Empty* have a size? **yes**

Rule 2 of Def of Tree: If \(l \) and \(r \) are included, then \(\text{Node}(l, r) \) is included. Does all things that have a size fulfill this rule?
Example: size

Definition of size

- The size of $Empty$ is 1.
- If tree l has size h_l and tree r has size h_r, then the tree $Node(l, r)$ has size $1 + h_l + h_r$.

- Rule 1 of Def of Tree: $Empty$ is included. Do all things that have a size fulfill this rule? Does $Empty$ have a size? **yes**
- Rule 2 of Def of Tree: If l and r are included, then $Node(l, r)$ is included. Does all things that have a size fulfill this rule? If l and r have sizes, then $Node(l, r)$ has a size?
Example: size

Definition of size
- The size of *Empty* is 1.
- If tree *l* has size *h_l* and tree *r* has size *h_r*, then the tree *Node(l, r)* has size 1 + *h_l* + *h_r*.

- Rule 1 of Def of Tree: *Empty* is included. Do all things that have a size fulfill this rule? Does *Empty* have a size? **yes**
- Rule 2 of Def of Tree: If *l* and *r* are included, then *Node(l, r)* is included. Does all things that have a size fulfill this rule? If *l* and *r* have sizes, then *Node(l, r)* has a size? **yes**
Example: size (summary)

- We have defined *Tree* as the least set satisfying:
 - *Zero* is included
 - If \(t_l \) and \(t_r \) are included, then \(\text{Node}(t_l, t_r) \) is included.
Example: size (summary)

- We have defined \textit{Tree} as the least set satisfying:
 - \textit{Zero} is included
 - If \(t_l \) and \(t_r \) are included, then \(\text{Node}(t_l, t_r) \) is included.
- We have shown that the property “has a size” is a set satisfying
 - \textit{Zero} is included
 - If \(t_l \) and \(t_r \) are included, then \(\text{Node}(t_l, t_r) \) is included.
Example: size (summary)

- We have defined *Tree* as the least set satisfying:
 - *Zero* is included
 - If t_l and t_r are included, then $Node(t_l, t_r)$ is included.

- We have shown that the property “has a size” is a set satisfying
 - *Zero* is included
 - If t_l and t_r are included, then $Node(t_l, t_r)$ is included.

- Thus, the property “has a size” is a superset of *Tree*,
We have defined *Tree* as the least set satisfying:

- *Zero* is included
- If \(t_l \) and \(t_r \) are included, then \(\text{Node}(t_l, t_r) \) is included.

We have shown that the property “has a size” is a set satisfying

- *Zero* is included
- If \(t_l \) and \(t_r \) are included, then \(\text{Node}(t_l, t_r) \) is included.

Thus, the property “has a size” is a superset of *Tree*, meaning: Every *Tree* has a size.
interface Num {
}
class Zero implements Num {
}
class Succ implements Num {
 public Num pred;
 Succ(Num p) {pred = p;}
}
Num my_num = new Zero();
Num my_other_num =
 new Succ(new Succ(new Zero()));
interface Tree {}
class Empty implements Tree {}
class Node implements Tree {
 public Tree left, right;
 Node(Tree l, Tree r) {
 left = l; right = r;
 }
}
Tree my_tree =
 new Node(new Empty(),
 new Node(new Node(new Empty(),
 new Empty()),
 new Empty()));
Constructors and Rules

- The constructors of the classes correspond to the rules in the inductive definition.

- Numerals
 - `new Zero()` is of type `Num`
 - if `n` is of type `Num, then new Succ(n) is of type `Num`

- Trees
 - `new Empty()` is of type `Tree`
 - if `l` and `r` are of type `Tree, then new Node(l, r) is of type Tree`
We assume an implicit extremal clause: no other classes implement the interface.

The associated induction principle may be used to prove termination and correctness of functions.
interface Tree {
 public int size();
}
class Empty implements Tree {
 public int size() {return 1;}
}
class Node implements Tree {
 public Tree left, right;
 Node(Tree l, Tree r) {left = l; right = r;}
 public int size() {
 return 1 + left.size() + right.size();
 }
}
Why does $\text{size}(t)$ terminate for every tree t?

- For every t of type Tree, does there exist h such that $\text{size}(t)$ returns h?
- Proof similar to above!
An inductively defined set is the least set closed under a collection of rules.

Rules have the form:
“If $x_1 \in X$ and \ldots and $x_n \in X$, then $x \in X$.”

Notation: $\left\{ \begin{array}{c} x_1 \\ \vdots \\ x_n \\ \hline \end{array} \right\} = X$
Inductive Definitions

What are Inductive Definitions?
Extremal Clause
Proofs by Induction
Defining Sets by Rules in Java

Summary

- Inductively defined sets admit proofs by rule induction.
- For each rule
 \[
 \begin{array}{ccc}
 x_1 & \cdots & x_n \\
 \hline \\
 \end{array}
 \]
 \[
 \begin{array}{c}
 x \\
 \end{array}
 \]
 assume that \(x_1 \in P, \ldots, x_n \in P \), and show that \(x \in P \).
- Conclude that every element of the set is in \(P \).