1 Syntax of Predicate Logic
2 Predicate Logic as a Formal Language
3 Semantics of Predicate Logic
1 Syntax of Predicate Logic
 - Need for Richer Language
 - Predicates
 - Variables
 - Functions

2 Predicate Logic as a Formal Language

3 Semantics of Predicate Logic
More Declarative Sentences

- Propositional logic can easily handle simple declarative statements such as:

 Example
 Student Peter Lim enrolled in CS3234.

- Propositional logic can also handle combinations of such statements such as:

 Example
 Student Peter Lim enrolled in Tutorial 1, and student Julie Bradshaw is enrolled in Tutorial 2.

 But: How about statements with “there exists...” or “every...” or “among...”?
What is needed?

Example

Every student is younger than some instructor.

What is this statement about?

- Being a student
- Being an instructor
- Being younger than somebody else

These are properties of elements of a set of objects.

We express them in predicate logic using predicates.
Predicates

Example

Every student is younger than *some* instructor.

- $S(andy)$ could denote that Andy is a student.
- $l(paul)$ could denote that Paul is an instructor.
- $Y(andy, paul)$ could denote that Andy is younger than Paul.
The Need for Variables

Example

Every student is younger than *some* instructor.

We use the predicate S to denote student-hood. How do we express “*every student*”?

We need *variables* that can stand for constant values, and a *quantifier* symbol that denotes “*every*”.
The Need for Variables

Example

Every student is younger than *some* instructor.

Using variables and quantifiers, we can write:

\[\forall x (S(x) \rightarrow (\exists y (I(y) \land Y(x, y)))) \].

Literally: For every \(x \), if \(x \) is a student, then there is some \(y \) such that \(y \) is an instructor and \(x \) is younger than \(y \).
Another Example

English
Not all birds can fly.

Predicates

\[B(x): \text{x is a bird} \]
\[F(x): \text{x can fly} \]

The sentence in predicate logic

\[\neg (\forall x (B(x) \rightarrow F(x))) \]
A Third Example

English
Every girl is younger than her mother.

Predicates

\[
G(x): \text{x is a girl} \\
M(x, y): \text{x is y's mother} \\
Y(x, y): \text{x is younger than y}
\]

The sentence in predicate logic

\[
\forall x \forall y (G(x) \land M(y, x) \rightarrow Y(x, y))
\]
A “Mother” Function

The sentence in predicate logic

$$\forall x \forall y (G(x) \land M(y, x) \to Y(x, y))$$

Note that y is only introduced to denote the mother of x.

If everyone has exactly one mother, the predicate $M(y, x)$ is a function, when read from right to left.

We introduce a function symbol m that can be applied to variables and constants as in

$$\forall x (G(x) \to Y(x, m(x)))$$
A Drastic Example

English
Andy and Paul have the same maternal grandmother.

The sentence in predicate logic without functions

$$\forall x \forall y \forall u \forall v (M(x, y) \land M(y, andy) \land M(u, v) \land M(v, paul) \rightarrow x = u)$$

The same sentence in predicate logic with functions

$$m(m(andy)) = m(m(paul))$$
Syntax: We formalize the language of predicate logic, including scoping and substitution.

Semantics: We describe models in which predicates, functions, and formulas have meaning.

Proof theory: We extend natural deduction from propositional to predicate logic (next week)

Further topics: Soundness/completeness, undecidability, incompleteness results, compactness results
1. Syntax of Predicate Logic

2. Predicate Logic as a Formal Language
 - Predicate and Functions Symbols
 - Terms
 - Formulas
 - Variable Binding and Substitution

3. Semantics of Predicate Logic
Predicate Vocabulary

At any point in time, we want to describe the features of a particular “world”, using predicates, functions, and constants. Thus, we introduce for this world:

- a set of predicate symbols \mathcal{P}
- a set of function symbols \mathcal{F}
Arity of Functions and Predicates

Every function symbol in \mathcal{F} and predicate symbol in \mathcal{P} comes with a fixed arity, denoting the number of arguments the symbol can take.

Special case: Nullary Functions
Function symbols with arity 0 are called *constants*.

Special case: Nullary Predicates
Predicate symbols with arity 0 denotes predicates that do not depend on any arguments. They correspond to propositional atoms.
Terms

\[t ::= x \mid c \mid f(t, \ldots, t) \]

where

- \(x\) ranges over a given set of variables \(\mathcal{V}\),
- \(c\) ranges over nullary function symbols in \(\mathcal{F}\), and
- \(f\) ranges over function symbols in \(\mathcal{F}\) with arity \(n > 0\).
Examples of Terms

If n is nullary, f is unary, and g is binary, then examples of terms are:

- $g(f(n), n)$
- $f(g(n, f(n)))$
More Examples of Terms

If 0, 1, 2 are nullary (constants), s is unary, and +, − and * are binary, then

\[*(-2, +(s(x), y)), x) \]

is a term.

Occasionally, we allow ourselves to use infix notation for function symbols as in

\[(2 - (s(x) + y)) * x \]
Formulas

\[\phi ::= P(t, \ldots, t) \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \rightarrow \phi) \mid (\forall x \phi) \mid (\exists x \phi) \]

where
- \(P \in \mathcal{P} \) is a predicate symbol of arity \(n \geq 0 \),
- \(t \) are terms over \(\mathcal{F} \) and \(\mathcal{V} \), and
- \(x \) are variables in \(\mathcal{V} \).
Conventions

Just like for propositional logic, we introduce convenient conventions to reduce the number of parentheses:

- \(\neg, \forall x \) and \(\exists x \) bind most tightly;
- then \(\land \) and \(\lor \);
- then \(\rightarrow \), which is right-associative.
Parse Trees

\[\forall x((P(x) \rightarrow Q(x)) \land S(x, y)) \]

has parse tree

```
        \forall x
           /
          /
         /
        \land
           /
          /
         /
        \rightarrow
           /
            /
           /
          S
            /
           /
          /
         P Q
            /
           /
          /
         /
        x y
            /
           /
          /
         /
        X X
```
Another Example

Every son of my father is my brother.

Predicates

\[S(x, y): x \text{ is a son of } y \]
\[B(x, y): x \text{ is a brother of } y \]

Functions

\[m: \text{ constant for “me”} \]
\[f(x): \text{ father of } x \]

The sentence in predicate logic

\[\forall x(S(x, f(m)) \rightarrow B(x, m)) \]

Does this formula hold?
Equality as Predicate

Equality is a common predicate, usually used in infix notation.

\[= \in \mathcal{P} \]

Example

Instead of the formula

\[= (f(x), g(x)) \]

we usually write the formula

\[f(x) = g(x) \]
Free and Bound Variables

Consider the formula

$$\forall x((P(x) \rightarrow Q(x)) \land S(x, y))$$

What is the relationship between variable “binder” x and occurrences of x?

\[
\begin{array}{c}
\forall x \\
\land \\
\rightarrow \\
S \\
P \\
Q \\
x \\
y \\
X \\
X
\end{array}
\]
Consider the formula

$$(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$$

Which variable occurrences are free; which are bound?
Substitution

Variables are *placeholders*. Replacing them by terms is called *substitution*.

Definition

Given a variable x, a term t and a formula ϕ, we define $[x \Rightarrow t]\phi$ to be the formula obtained by replacing each free occurrence of variable x in ϕ with t.

Example

$$[x \Rightarrow f(x, y)]((\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y)))$$

$$= \forall x (P(x) \land Q(x))) \rightarrow (\neg P(f(x, y)) \lor Q(y))$$
Example as Parse Tree

\[[x \Rightarrow f(x, y)]((\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))) \]

\[= (\forall x (P(x) \land Q(x))) \rightarrow (\neg P(f(x, y)) \lor Q(y)) \]
Example as Parse Tree

\[\forall x \left(P(x) \land \neg Q(x) \right) \lor \left(\exists y \, P(y) \land f(x, y) \right) \]
Capturing in $[x \Rightarrow t] \phi$

Problem

t contains variable y and x occurs under the scope of $\forall y$ in ϕ

Example

$[x \Rightarrow f(y, y)](S(x) \land \forall y(P(x) \rightarrow Q(y))))$
Avoiding Capturing

Definition
Given a term \(t \), a variable \(x \) and a formula \(\phi \), we say that \(t \) is free for \(x \) in \(\phi \) if no free \(x \) leaf in \(\phi \) occurs in the scope of \(\forall y \) or \(\exists y \) for any variable \(y \) occurring in \(t \).

Free-ness as precondition
In order to compute \([x \Rightarrow t] \phi \), we demand that \(t \) is free for \(x \) in \(\phi \).

What if not?
Rename the bound variable!
Example of Renaming

\[[x \Rightarrow f(y, y)](S(x) \land \forall y(P(x) \rightarrow Q(y))) \]

\[\Downarrow \]

\[[x \Rightarrow f(y, y)](S(x) \land \forall z(P(x) \rightarrow Q(z))) \]

\[\Downarrow \]

\[S(f(y, y)) \land \forall z(P(f(y, y)) \rightarrow Q(z)) \]
Syntax of Predicate Logic

Predicate Logic as a Formal Language

Semantics of Predicate Logic

Models

Equality

Free Variables

Satisfaction and Entailment
Models

Definition
Let \(\mathcal{F} \) contain function symbols and \(\mathcal{P} \) contain predicate symbols. A model \(\mathcal{M} \) for \((\mathcal{F}, \mathcal{P}) \) consists of:

1. A non-empty set \(A \), the *universe*;
2. for each nullary function symbol \(f \in \mathcal{F} \) a concrete element \(f^\mathcal{M} \in A \);
3. for each \(f \in \mathcal{F} \) with arity \(n > 0 \), a concrete function \(f^\mathcal{M} : A^n \to A \);
4. for each \(P \in \mathcal{P} \) with arity \(n > 0 \), a function \(P^\mathcal{M} : U^n \to \{F, T\} \).
5. for each \(P \in \mathcal{P} \) with arity \(n = 0 \), a value from \(\{F, T\} \).
Example

Let $\mathcal{F} = \{e, \cdot\}$ and $\mathcal{P} = \{\leq\}$. Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

1. Let A be the set of binary strings over the alphabet $\{0, 1\}$;
2. let $e^\mathcal{M} = \epsilon$, the empty string;
3. let $\cdot^\mathcal{M}$ be defined such that $s_1 \cdot^\mathcal{M} s_2$ is the concatenation of the strings s_1 and s_2; and
4. let $\leq^\mathcal{M}$ be defined such that $s_1 \leq^\mathcal{M} s_2$ iff s_1 is a prefix of s_2.
Example (continued)

1. Let \(A \) be the set of binary strings over the alphabet \(\{0, 1\} \);
2. let \(e^M = \epsilon \), the empty string;
3. let \(\cdot^M \) be defined such that \(s_1 \cdot^M s_2 \) is the concatenation of the strings \(s_1 \) and \(s_2 \); and
4. let \(\leq^M \) be defined such that \(s_1 \leq^M s_2 \) iff \(s_1 \) is a prefix of \(s_2 \).

Some Elements of \(A \)
- 10001
- \(\epsilon \)
- \(1010 \cdot^M 1100 = 10101100 \)
- \(000 \cdot^M \epsilon = 000 \)
Equality Revisited

Interpretation of equality
Usually, we require that the equality predicate $=\$ is interpreted as same-ness.

Extensionality restriction
This means that allowable models are restricted to those in which $a =^M b$ holds if and only if a and b are the same elements of the model’s universe.
Example (continued)

1. Let A be the set of binary strings over the alphabet $\{0, 1\}$;
2. let $e^M = \epsilon$, the empty string;
3. let \cdot^M be defined such that $s_1 \cdot^M s_2$ is the concatenation of the strings s_1 and s_2; and
4. let \leq^M be defined such that $s_1 \leq^M s_2$ iff s_1 is a prefix of s_2.

Equality in M

- $000 =^M 000$
- $001 \neq^M 100$
Another Example

Let $\mathcal{F} = \{z, s\}$ and $\mathcal{P} = \{\leq\}$.
Let model \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ be defined as follows:

1. Let A be the set of natural numbers;
2. let $z^\mathcal{M} = 0$;
3. let $s^\mathcal{M}$ be defined such that $s(n) = n + 1$; and
4. let $\leq^\mathcal{M}$ be defined such that $n_1 \leq^\mathcal{M} n_2$ iff the natural number n_1 is less than or equal to n_2.
How To Handle Free Variables?

Idea

We can give meaning to formulas with free variables by providing an environment (lookup table) that assigns variables to elements of our universe:

\[I : \mathcal{V} \rightarrow A. \]

Environment extension

We define environment extension such that \(I[x \mapsto a] \) is the environment that maps \(x \) to \(a \) and any other variable \(y \) to \(I(y) \).
Satisfaction Relation

The model \mathcal{M} satisfies ϕ with respect to environment l, written $\mathcal{M} \models _l \phi$:

- in case ϕ is of the form $P(t_1, t_2, \ldots, t_n)$, if a_1, a_2, \ldots, a_n are the results of evaluating t_1, t_2, \ldots, t_n with respect to l, and if $P^\mathcal{M}(a_1, a_2, \ldots, a_n) = T$;
- in case ϕ is of the form P, if $P^\mathcal{M} = T$;
- in case ϕ has the form $\forall x \psi$, if the $\mathcal{M} \models _l [x \mapsto a] \psi$ holds for all $a \in A$;
- in case ϕ has the form $\exists x \psi$, if the $\mathcal{M} \models _l [x \mapsto a] \psi$ holds for some $a \in A$;
• in case \(\phi \) has the form \(\neg \psi \), if \(M \models \psi \) does not hold;
• in case \(\phi \) has the form \(\psi_1 \lor \psi_2 \), if \(M \models \psi_1 \) holds or \(M \models \psi_2 \) holds;
• in case \(\phi \) has the form \(\psi_1 \land \psi_2 \), if \(M \models \psi_1 \) holds and \(M \models \psi_2 \) holds; and
• in case \(\phi \) has the form \(\psi_1 \rightarrow \psi_2 \), if \(M \models \psi_2 \) holds whenever \(M \models \psi_1 \) holds.
Satisfaction of Closed Formulas

If a formula ϕ has no free variables, we call ϕ a *sentence*. $\mathcal{M} \models_I \phi$ holds or does not hold regardless of the choice of I. Thus we write $\mathcal{M} \models \phi$ or $\mathcal{M} \not\models \phi$.
Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Entailment

$\Gamma \models \psi$ iff for all models \mathcal{M} and environments l, whenever $\mathcal{M} \models_l \phi$ holds for all $\phi \in \Gamma$, then $\mathcal{M} \models_l \psi$.

Satisfiability of Formulas

ψ is satisfiable iff there is some model \mathcal{M} and some environment l such that $\mathcal{M} \models_l \psi$ holds.

Satisfiability of Formula Sets

Γ is satisfiable iff there is some model \mathcal{M} and some environment l such that $\mathcal{M} \models_l \phi$, for all $\phi \in \Gamma$.
Semantic Entailment and Satisfiability

Let Γ be a possibly infinite set of formulas in predicate logic and ψ a formula.

Validity

ψ is valid iff for all models \mathcal{M} and environments I, we have $\mathcal{M} \models_I \psi$.
The Problem with Predicate Logic

Entailment ranges over models

Semantic entailment between sentences: $\phi_1, \phi_2, \ldots, \phi_n \models \psi$
requires that in all models that satisfy $\phi_1, \phi_2, \ldots, \phi_n$, the sentence ψ is satisfied.

How to effectively argue about all possible models?

Usually the number of models is infinite; it is very hard to argue on the semantic level in predicate logic.

Idea from propositional logic

Can we use natural deduction for showing entailment?
Coq Homework 2: out on module homepage; due 10/9, 9:30pm
Assignment 3: out soon; due 9/9, 11:00am
Monday, Wednesday: Office hours
Tuesday: Tutorials (Assignments 2 and 3)
Wednesday: Labs (Quiz 1 solution, Coq Homework 2)
Thursday: Lecture on