Propositional Logic: Application of SAT Solving
“ACC” stands for “Atlantic Coast Conference”, an American college basketball organization.
The ACC 1997/98 Problem

- “ACC” stands for “Atlantic Coast Conference”, an American college basketball organization
- 9 teams participate in tournament
The ACC 1997/98 Problem

- "ACC" stands for "Atlantic Coast Conference", an American college basketball organization
- 9 teams participate in tournament
- dense double round robin: there are 2×9 dates
The ACC 1997/98 Problem

- “ACC” stands for “Atlantic Coast Conference”, an American college basketball organization
- 9 teams participate in tournament
- dense double round robin: there are 2×9 dates
- at each date, each team plays either home, away or has a “bye”
The ACC 1997/98 Problem

- “ACC” stands for “Atlantic Coast Conference”, an American college basketball organization
- 9 teams participate in tournament
- dense double round robin: there are 2×9 dates
- at each date, each team plays either home, away or has a “bye”
- Each team must play each other team once at home and once away.
The ACC 1997/98 Problem

- “ACC” stands for “Atlantic Coast Conference”, an American college basketball organization
- 9 teams participate in tournament
- Dense double round robin: there are 2×9 dates
- At each date, each team plays either home, away or has a “bye”
- Each team must play each other team once at home and once away.
- There should be at least 7 dates distance between first leg and return match.
The ACC 1997/98 Problem

- “ACC” stands for “Atlantic Coast Conference”, an American college basketball organization
- 9 teams participate in tournament
- Dense double round robin: there are 2 \times 9 dates
- At each date, each team plays either home, away or has a “bye”
- Each team must play each other team once at home and once away.
- There should be at least 7 dates distance between first leg and return match.
- To achieve this, we assume a fixed mirroring between dates: (1,8), (2,9), (3,12), (4,13), (5,14), (6,15) (7,16), (10,17), (11,18)
No team can play away on both last dates
The ACC 1997/98 Problem (contd)

- No team can play away on both last dates
- No team may have more than two away matches in a row.
The ACC 1997/98 Problem (contd)

- No team can play away on both last dates
- No team may have more than two away matches in a row.
- No team may have more than two home matches in a row.
The ACC 1997/98 Problem (contd)

- No team can play away on both last dates
- No team may have more than two away matches in a row.
- No team may have more than two home matches in a row.
- No team may have more than three away matches or byes in a row.
The ACC 1997/98 Problem (contd)

- No team can play away on both last dates
- No team may have more than two away matches in a row.
- No team may have more than two home matches in a row.
- No team may have more than three away matches or byes in a row.
- No team may have more than four home matches or byes in a row.
The ACC 1997/98 Problem (contd)

- Of the weekends, each team plays four at home, four away, and one bye.
Of the weekends, each team plays four at home, four away, and one bye.

Each team must have home matches or byes at least on two of the first five weekends.
Of the weekends, each team plays four at home, four away, and one bye.

Each team must have home matches or byes at least on two of the first five weekends.

Every team except FSU has a traditional rival. The rival pairs are Clem-GT, Duke-UNC, UMD-UVA and NCSt-Wake. In the last date, every team except FSU plays against its rival, unless it plays against FSU or has a bye.
The following pairings must occur at least once in dates 11 to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.
The following pairings must occur at least once in dates 11 to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.

No team plays in two consecutive dates away against Duke and UNC. No team plays in three consecutive dates against Duke UNC and Wake.
The ACC 1997/98 Problem (contd)

- The following pairings must occur at least once in dates 11 to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.
- No team plays in two consecutive dates away against Duke and UNC. No team plays in three consecutive dates against Duke UNC and Wake.
- UNC plays Duke in last date and date 11.
The following pairings must occur at least once in dates 11 to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.

No team plays in two consecutive dates away against Duke and UNC. No team plays in three consecutive dates against Duke, UNC and Wake.

UNC plays Duke in last date and date 11.

UNC plays Clem in the second date.
The ACC 1997/98 Problem (contd)

- The following pairings must occur at least once in dates 11 to 18: Duke-GT, Duke-Wake, GT-UNC, UNC-Wake.
- No team plays in two consecutive dates away against Duke and UNC. No team plays in three consecutive dates against Duke UNC and Wake.
- UNC plays Duke in last date and date 11.
- UNC plays Clem in the second date.
- Duke has bye in the first date 16.
Wake does not play home in date 17.
Wake does not play home in date 17.
Wake has a bye in the first date.
The ACC 1997/98 Problem (contd)

- Wake does not play home in date 17.
- Wake has a bye in the first date.
- Clem, Duke, UMD and Wake do not play away in the last date.
The ACC 1997/98 Problem (contd)

- Wake does not play home in date 17.
- Wake has a bye in the first date.
- Clem, Duke, UMD and Wake do not play away in the last date.
- Clem, FSU, GT and Wake do not play away in the first date.
Wake does not play home in date 17.
Wake has a bye in the first date.
Clem, Duke, UMD and Wake do not play away in the last date.
Clem, FSU, GT and Wake do not play away in the first date.
Neither FSU nor NCSt have a bye in the last date.
The ACC 1997/98 Problem (contd)

- Wake does not play home in date 17.
- Wake has a bye in the first date.
- Clem, Duke, UMD and Wake do not play away in the last date.
- Clem, FSU, GT and Wake do not play away in the fist date.
- Neither FSU nor NCSt have a bye in the last date.
- UNC does not have a bye in the first date.
Trick and Nemhauser work on the problem from 1995 onwards
Background

- Trick and Nemhauser work on the problem from 1995 onwards
- Trick and Nemhauser publish the problem and their approach in “Scheduling a Major Basketball Conference”, Operations Research, 46(1), 1998
Propositional Logic: Application of SAT Solving

Background

- Trick and Nemhauser work on the problem from 1995 onwards
- Trick and Nemhauser publish the problem and their approach in “Scheduling a Major Basketball Conference”, Operations Research, 46(1), 1998
- From then onwards, Henz, Walser and Zhang use different techniques to solve the problem
General Approach

- Three phases:

1. Generate all possible patterns such as
 "A H B A H H A H A A H B H A A H H A"
2. Generate all feasible 9-element pattern sets that can be used to construct a schedule
3. Generate schedules from pattern sets

Output: all feasible solutions, from which the organizers can choose the most suitable one
General Approach

Three phases:

1. Generate all possible patterns such as “A H B A H H A H A A H B H A A H H A”
General Approach

Three phases:

1. Generate all possible patterns such as “A H B A H H A H A A H B H A A H H A”
2. Generate all feasible 9-element pattern sets that can be used to construct a schedule
General Approach

Three phases:

1. Generate all possible patterns such as “A H B A H H A A H A H A H B H A A H H A”
2. Generate all feasible 9-element pattern sets that can be used to construct a schedule
3. Generate schedules from pattern sets
Three phases:

1. Generate all possible patterns such as “A H B A H H A H A A H B H A A H H A”
2. Generate all feasible 9-element pattern sets that can be used to construct a schedule
3. Generate schedules from pattern sets

Output: all feasible solutions, from which the organizers can choose the most suitable one
Nemhauser and Trick use integer programming for all three steps, leading to a “turn-around time” of 24 hours.
Solution Techniques

- Nemhauser and Trick use integer programming for all three steps, leading to a “turn-around time” of 24 hours.
- Henz uses constraint programming, turn-around time of less than 1 minute, publishes his approach in “Scheduling a Major Basketball Conference—Revisited”, Operations Research, 49(1), 2001.
Solution Techniques

- Nemhauser and Trick use integer programming for all three steps, leading to a “turn-around time” of 24 hours.
- Henz uses constraint programming, turn-around time of less than 1 minute, publishes his approach in “Scheduling a Major Basketball Conference—Revisited”, Operations Research, 49(1), 2001.
- Zhang Hantao uses SAT solving, turn-around time of 2 seconds, see “Generating College Conference Basketball Schedules using a SAT Solver”.

Solution Techniques

- Nemhauser and Trick use integer programming for all three steps, leading to a “turn-around time” of 24 hours.
- Henz uses constraint programming, turn-around time of less than 1 minute, publishes his approach in “Scheduling a Major Basketball Conference—Revisited”, Operations Research, 49(1), 2001.
- Zhang Hantao uses SAT solving, turn-around time of 2 seconds, see “Generating College Conference Basketball Schedules using a SAT Solver”.
- Different approach: In 1998, J.P. Walser described a local-search based method for finding some (not all) solutions, without using 3 phases.
How to Encode ACC as a SAT Formula

Consider Phase 3: Generation of schedule, assigning teams to opponents at every day of the tournament.

For teams x, y, day z, introduce atom $p_{x,y,z} = T$ iff team x plays a home game against team y in day z.

Example of encoding constraints: "Each team must play each other team once at home and once away."

For every pair of distinct teams s and t, we have:

$$(p_{s,t,1} \land \neg p_{s,t,2} \land \cdots \land \neg p_{s,t,18}) \lor (\neg p_{s,t,1} \land p_{s,t,2} \land \neg p_{s,t,3} \land \cdots \land \neg p_{s,t,18}) \lor \cdots \lor (\neg p_{s,t,1} \land \cdots \land \neg p_{s,t,17} \land p_{s,t,18})$$

Convert formula into CNF, and use a complete SAT solver.
How to Encode ACC as a SAT Formula

- Consider Phase 3: Generation of schedule, assigning teams to opponents at every day of the tournament
- For teams x, y, day z, introduce atom $p_{x,y,z}$
How to Encode ACC as a SAT Formula

- Consider Phase 3: Generation of schedule, assigning teams to opponents at every day of the tournament
- For teams x, y, day z, introduce atom $p_{x,y,z} = T$ iff team x plays a home game against team y in day z.

Example of encoding constraints: "Each team must play each other team once at home and once away."

For every pair of distinct teams s and t, we have:

$$(p_{s,t,1} \land \neg p_{s,t,2} \land \cdots \land \neg p_{s,t,18}) \lor (\neg p_{s,t,1} \land p_{s,t,2} \land \cdots \land \neg p_{s,t,18}) \lor \cdots \lor (\neg p_{s,t,1} \cdots \land \neg p_{s,t,17} \land p_{s,t,18})$$

Convert formula into CNF, and use a complete SAT solver.
Consider Phase 3: Generation of schedule, assigning teams to opponents at every day of the tournament.
For teams x, y, day z, introduce atom $p_{x,y,z} = T$ iff team x plays a home game against team y in day z.
Example of encoding constraints: “Each team must play each other team once at home and once away.”
How to Encode ACC as a SAT Formula

- Consider Phase 3: Generation of schedule, assigning teams to opponents at every day of the tournament.
- For teams x, y, day z, introduce atom $p_{x,y,z} = T$ iff team x plays a home game against team y in day z.
- Example of encoding constraints: “Each team must play each other team once at home and once away.”
- For every pair of distinct teams s and t, we have:

$$
(p_s,t,1 \land \neg p_s,t,2 \land \cdots \land \neg p_s,t,18) \lor \\
(\neg p_s,t,1 \land p_s,t,2 \land \neg p_s,t,3 \land \cdots \land \neg p_s,t,18) \lor \\
\vdots \\
(\neg p_s,t,1 \cdots \land \neg p_s,t,17 \land p_s,t,18)
$$
Consider Phase 3: Generation of schedule, assigning teams to opponents at every day of the tournament.

For teams x, y, day z, introduce atom $p_{x,y,z} = T$ iff team x plays a home game against team y in day z.

Example of encoding constraints: “Each team must play each other team once at home and once away.”

For every pair of distinct teams s and t, we have:

$$
(p_{s,t,1} \land \neg p_{s,t,2} \land \cdots \land \neg p_{s,t,18}) \lor
(p_{s,t,1} \land \neg p_{s,t,2} \land \cdots \land \neg p_{s,t,18}) \lor
\cdots
\lor
(p_{s,t,1} \cdots \land \neg p_{s,t,17} \land p_{s,t,18})
$$

Convert formula into CNF, and use a complete SAT solver.
Some Statistics

- Zhang Hantao used the DPLL-based SAT solver SATO
Some Statistics

- Zhang Hantao used the DPLL-based SAT solver SATO
- Phase 1: $18 \cdot 3 = 54$ propositional atoms, 1499 clauses, taking 0.01 seconds, resulting in 38 patterns
Some Statistics

- Zhang Hantao used the DPLL-based SAT solver SATO
- Phase 1: $18 \cdot 3 = 54$ propositional atoms, 1499 clauses, taking 0.01 seconds, resulting in 38 patterns
- Phase 2: $38 \cdot 9 \cdot 3 = 1026$ propositional atoms, 569300 clauses, taking 0.60 seconds, resulting in 17 pattern sets
Some Statistics

- Zhang Hantao used the DPLL-based SAT solver SATO
- Phase 1: $18 \cdot 3 = 54$ propositional atoms, 1499 clauses, taking 0.01 seconds, resulting in 38 patterns
- Phase 2: $38 \cdot 9 \cdot 3 = 1026$ propositional atoms, 569300 clauses, taking 0.60 seconds, resulting in 17 pattern sets
- Phase 3: $9 \cdot 9 + 9 \cdot 8 \cdot 18 = 1377$ propositional atoms, hundreds of thousands of clauses, taking less than 2 seconds, resulting in 179 solutions
Conclusion

For many discrete constraint satisfaction problems such as the ACC 1997/98 problem, an encoding in SAT and use of a state-of-the-art SAT solver provides an attractive solving technique.
Conclusion

For many discrete constraint satisfaction problems such as the ACC 1997/98 problem, an encoding in SAT and use of a state-of-the-art SAT solver provides an attractive solving technique.

The approach takes advantage of the effort that the designers of SAT solvers such as SATO spent in order to optimize the solver.
Conclusion

For many discrete constraint satisfaction problems such as the ACC 1997/98 problem, an encoding in SAT and use of a state-of-the-art SAT solver provides an attractive solving technique.

The approach takes advantage of the effort that the designers of SAT solvers such as SATO spent in order to optimize the solver.

This works well, because the solver is independent of the application domain; it can be used without modification across application domains.