1. Review: Partial Correctness
2. Proof Calculus for Total Correctness
3. Programming by Contract
Convert informal description R of requirements for an application domain into formula ϕ_R.
Convert informal description R of requirements for an application domain into formula ϕ_R.

Write program P that meets ϕ_R.
Convert informal description R of requirements for an application domain into formula ϕ_R.

Write program P that meets ϕ_R.

Prove that P satisfies ϕ_R.
Framework for Software Verification

Convert informal description R of requirements for an application domain into formula ϕ_R.

Write program P that meets ϕ_R.

Prove that P satisfies ϕ_R.

Each step provides risks and opportunities.
Expressions come as arithmetic expressions E:

\[
E ::= n \mid x \mid (-E) \mid (E + E) \mid (E - E) \mid (E \times E)
\]
Expressions in Core Language

Expressions come as arithmetic expressions E:

$$E ::= n \mid x \mid (-E) \mid (E + E) \mid (E - E) \mid (E \times E)$$

and boolean expressions B:

$$B ::= \text{true} \mid \text{false} \mid (!B) \mid (B \& B) \mid (B \| B) \mid (E < E)$$
Commands cover some common programming idioms. Expressions are components of commands.

\[C ::= x = E \mid C; C \mid \text{if } B \{ C \} \text{ else } \{ C \} \mid \text{while } B \{ C \} \]
Example

Consider the factorial function:

\[
0! \quad \overset{\text{def}}{=} \quad 1 \\
(n + 1)! \quad \overset{\text{def}}{=} \quad (n + 1) \cdot n!
\]

We shall show that after the execution of the following Core program, we have \(y = x! \).

\[
y = 1; \\
z = 0; \\
\textbf{while} \; (z \neq x) \; \{ \; z = z + 1; \; y = y \ast z; \; \}
\]
Shape of assertions

\{ \phi \} \ P \ \{ \psi \}
Assertions on Programs

Shape of assertions

\[\{ \phi \} \ P \ {\psi} \]

Informal meaning

If the program \(P \) is run in a state that satisfies \(\phi \), then the state resulting from \(P \)'s execution will satisfy \(\psi \).
What program P meets this triple

$\{ x > 0 \} P \{ y \cdot y < x \}$

One correct answer: $P =$

```plaintext
y = 0;
while (y * y < x) {
    y = y + 1;
}
y = y - 1;
```
Hoare Triples

Definition

An assertion of the form \(\{ \phi \} P \{ \psi \} \) is called a Hoare triple.

- \(\phi \) is called the precondition, \(\psi \) is called the postcondition.
- A state of a Core program \(P \) is a function \(l \) that assigns each variable \(x \) in \(P \) to an integer \(l(x) \).
- A state \(l \) satisfies \(\phi \) if \(M \models l \phi \), where \(M \) contains integers and gives the usual meaning to the arithmetic operations.
- Quantifiers in \(\phi \) and \(\psi \) bind only variables that do not occur in the program \(P \).
Definition

We say that the triple $\{\phi\} \ P \{\psi\}$ is satisfied under partial correctness if, for all states which satisfy ϕ, the state resulting from P’s execution satisfies ψ, provided that P terminates.
Partial Correctness

Definition
We say that the triple $\{ \phi \} P \{ \psi \}$ is satisfied under partial correctness if, for all states which satisfy ϕ, the state resulting from P’s execution satisfies ψ, provided that P terminates.

Notation
We write $\models_{\text{par}} \{ \phi \} P \{ \psi \}$.
Total Correctness

Definition

We say that the triple $\{\phi\} P \{\psi\}$ is satisfied under total correctness if, for all states which satisfy ϕ, P is guaranteed to terminate and the resulting state satisfies ψ.
Definition
We say that the triple \(\{ \phi \} P \{ \psi \} \) is satisfied under total correctness if, for all states which satisfy \(\phi \), \(P \) is guaranteed to terminate and the resulting state satisfies \(\psi \).

Notation
We write \(\models_{\text{tot}} \{ \phi \} P \{ \psi \} \).
We are looking for a proof calculus that allows us to establish

\[\vdash_{\text{par}} \{ \phi \} \quad P \quad \{ \psi \} \]
Strategy

We are looking for a proof calculus that allows us to establish

\[\vdash_{\text{par}} \{ \phi \} \ P \ \{ \psi \} \]

where

\[\models_{\text{par}} \{ \phi \} \ P \ \{ \psi \} \] holds whenever \[\vdash_{\text{par}} \{ \phi \} \ P \ \{ \psi \} \]

(correctness)
We are looking for a proof calculus that allows us to establish

\[\vdash_{\text{par}} \begin{cases} \phi \end{cases} P \begin{cases} \psi \end{cases} \]

where

\[\models_{\text{par}} \begin{cases} \phi \end{cases} P \begin{cases} \psi \end{cases} \]

holds whenever \[\vdash_{\text{par}} \begin{cases} \phi \end{cases} P \begin{cases} \psi \end{cases} \] (correctness), and

\[\vdash_{\text{par}} \begin{cases} \phi \end{cases} P \begin{cases} \psi \end{cases} \]

holds whenever \[\models_{\text{par}} \begin{cases} \phi \end{cases} P \begin{cases} \psi \end{cases} \] (completeness).
Rules for Partial Correctness

\[\{ \phi \} \ C_1 \ {\eta} \quad \{ \eta \} \ C_2 \ {\psi} \]

\[\frac{}{\{ \phi \} \ C_1 ; C_2 \ {\psi}} \quad \text{[Composition]} \]
Rules for Partial Correctness (continued)

\[
\{ [x \rightarrow E] \psi \} \ x = E \ {\psi}
\]
Rules for Partial Correctness (continued)

\[
\begin{align*}
\{ \phi \land B \} & \quad C_1 \quad \{ \psi \} \\
\{ \phi \land \neg B \} & \quad C_2 \quad \{ \psi \}
\end{align*}
\]

\[\text{[If-statement]}\]

\[
\{ \phi \} \text{ if } B \{ \ C_1 \ \} \text{ else } \{ \ C_2 \ \} \{ \psi \}
\]
Rules for Partial Correctness (continued)

\[
\begin{align*}
\{ \phi \land B \} & \quad C_1 \quad \{ \psi \} \quad \quad \{ \phi \land \neg B \} \quad C_2 \quad \{ \psi \} \\
\hline
\{ \phi \} & \quad \text{if} \quad B \quad \{ \quad C_1 \quad \} \quad \text{else} \quad \{ \quad C_2 \quad \} \quad \{ \psi \} \\
\end{align*}
\]

[If-statement]

\[
\{ \psi \land B \} \quad C \quad \{ \psi \} \\
\hline
\{ \psi \} \quad \text{while} \quad B \quad \{ \quad C \quad \} \quad \{ \psi \land \neg B \} \\
\]

[Partial-while]
Rules for Partial Correctness (continued)

\[
\begin{align*}
\vdash_{AR} \phi' & \rightarrow \phi & \{\phi\} \; C & \{\psi\} & \vdash_{AR} \psi & \rightarrow \psi' \\
\hline
\{\phi'\} \; C & \{\psi'\} & \text{[Implied]}
\end{align*}
\]
Factorial Example

We shall show that the following Core program Fac1 meets this specification:

\[
\begin{align*}
y &= 1; \\
z &= 0; \\
\text{while} \ (z \neq x) \ {\{ z = z + 1; \ y = y \times z; \} }
\end{align*}
\]

Thus, to show:

\[
\{ \top \} \text{Fac1} \ {\{ y = x! \}}
\]
Partial Correctness of \texttt{Fac1}

\begin{verbatim}
:
\{y = z!\} while (z != x) {
 \{y = z! \land z \neq x\} \quad \text{Invariant}
 \{y \cdot (z + 1) = (z + 1)!\} \quad \text{Implied}
 z = z + 1;
 \{y \cdot z = z!\} \quad \text{Assignment}
 y = y \ast z;
 \{y = z!\} \quad \text{Assignment}
}
\{y = z! \land \neg(z \neq x)\} \quad \text{Partial-while}
\{y = x!\} \quad \text{Implied}
\end{verbatim}
How To Discover an Invariant?

$$\{\eta \land B\} \ C \ \{\eta\}$$

$$\frac{}{\{\eta\} \ \text{while} \ B \ \{\ C \ \} \ \{\eta \land \neg B\}}$$

[Partial-while]
How To Discover an Invariant?

\[
\{\eta \land B\} \ C \ \{\eta\}
\]

\[
\{\eta\} \ \text{while} \ B \ \{\ C \ \} \ \{\eta \land \neg B\}
\]

To be proven:

\[
\{\phi\} \ \text{while} \ B \ \{\ C \ \} \ \{\psi\}
\]
How To Discover an Invariant?

\[
\begin{align*}
\{\eta \land B\} & \quad C \quad \{\eta\} \\
\hline
\{\eta\} & \quad \text{while} \quad B \quad \{C\} \quad \{\eta \land \neg B\}
\end{align*}
\]

To be proven:

\[
\{\phi\} \quad \text{while} \quad B \quad \{C\} \quad \{\psi\}
\]

1. \(\vdash_{AR} \phi \rightarrow \eta\)
How To Discover an Invariant?

\[
\{ \eta \land B \} \ C \ \{ \eta \} \\
\hline \\
\{ \eta \} \ \text{while} \ B \ \{ \ C \ \} \ \{ \eta \land \neg B \} \\
\]

To be proven: \[\{ \phi \} \ \text{while} \ B \ \{ \ C \ \} \ \{ \psi \} \]

1. \[\vdash_{\text{AR}} \phi \rightarrow \eta \]
2. \[\vdash_{\text{AR}} \eta \land \neg B \rightarrow \psi \]
How To Discover an Invariant?

To be proven: \(\{ \phi \} \text{ while } B \{ C \} \{ \psi \} \)

1. \(\vdash_{AR} \phi \rightarrow \eta \)
2. \(\vdash_{AR} \eta \land \neg B \rightarrow \psi \)
3. \(\{ \eta \land B \} \ C \{ \eta \} \)
Partial Correctness of Fac1

$\{\top\}$

$\{(1 = 0!)\}$ Implied

$y = 1;$ Assignment

$\{y = 0!\}$ Assignment

$z = 0;$

$\{y = z!\}$ Assignment

while ($z \neq x$) {

 ...

}

$\{y = z! \land \neg(z \neq x)\}$ Partial-while

$\{y = x!\}$ Implied
Review: Partial Correctness

Proof Calculus for Total Correctness

Programming by Contract
Ideas for Total Correctness

- The only source of non-termination is the `while` command.
- If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination.
The only source of non-termination is the `while` command.

If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination. Why?
The only source of non-termination is the `while` command.

If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination. Why? Well-foundedness of natural numbers.
Ideas for Total Correctness

- The only source of non-termination is the `while` command.
- If we can show that the value of an integer expression decreases in each iteration, but never becomes negative, we have proven termination.
 Why? Well-foundedness of natural numbers
- We shall include this argument in a new version of the `while` rule.
Rules for Partial Correctness (continued)

\[
\begin{align*}
\{\psi \land B\} & \quad C \quad \{\psi\} \\
\{\psi\} & \quad \textbf{while} \quad B \quad \{\ C \} \quad \{\psi \land \neg B\}
\end{align*}
\]

\[
\begin{align*}
\{\psi \land B \land 0 \leq E = E_0\} & \quad C \quad \{\psi \land 0 \leq E < E_0\} \\
\{\psi \land 0 \leq E\} & \quad \textbf{while} \quad B \quad \{\ C \} \quad \{\psi \land \neg B\}
\end{align*}
\]
y = 1;
z = 0;
while (z != x) {
 z = z + 1;
y = y * z;
}

What could be a good variant E?
y = 1;
z = 0;
while (z != x) {
 z = z + 1; y = y * z;
}

What could be a good variant E?

E must strictly decrease in the loop, but not become negative.
Factorial Example (Again!)

\[
y = 1; \\
z = 0; \\
\text{while } (z \neq x) \{ z = z + 1; \ y = y * z; \} \\
\]

What could be a good variant \(E\)?

\(E\) must strictly decrease in the loop, but not become negative.

Answer:

\[x - z\]
Total Correctness of \texttt{Fac1}

\begin{verbatim}
: {y = z! \land 0 \leq x - z}
while (z != x) {
 {y = z! \land z \neq x \land 0 \leq x - z = E_0}
 {y \cdot (z + 1) = (z + 1)! \land 0 \leq x - (z + 1) < E_0}
 z = z + 1;
 {y \cdot z = z! \land 0 \leq x - z < E_0}
 y = y \ast z;
 {y = z! \land 0 \leq x - z < E_0}
}
{y = z! \land \neg(z \neq x)}
{y = x!}
\end{verbatim}
Total Correctness of \texttt{Fac1}

\[
\begin{align*}
\{ x \leq 0 \} \\
\{ (1 = 0! \land 0 \leq x - 0) \} & \quad \text{Implied} \\
y = 1; \\
\{ y = 0! \land 0 \leq x - 0 \} & \quad \text{Assignment} \\
z = 0; \\
\{ y = z! \land 0 \leq x - z \} & \quad \text{Assignment} \\
\text{while } (z \neq x) \{ \\
\quad \vdots \\
\} \\
\{ y = z! \land \neg (z \neq x) \} & \quad \text{Total-while} \\
\{ y = x! \} & \quad \text{Implied}
\end{align*}
\]
1. Review: Partial Correctness
2. Proof Calculus for Total Correctness
3. Programming by Contract
Consider

\[\{ \phi \} \; P \; \{ \psi \} \]

Obligation for consumer of \(P \)

Only run \(P \) when \(\phi \) is met.

Obligation for producer of \(P \)

Make sure \(\psi \) is met after every run of \(P \), assuming that \(\phi \) is met before the run.
Contracts as Documentation

```java
int factorial (x: int) { ... return y; }
```

Method name: factorial
Input: x of type int
Assumes: \(0 \leq x\)
Guarantees: \(y = x!\)
Output: y
Modifies only: y