Semantics of Hoare Logic

Aquinas Hobor and Martin Henz
What does a Hoare triple mean?

\{ \phi \} \ c \ \{ \psi \}

Informal meaning (already given):

“If the program c is run in a state that satisfies \phi and c terminates, then the state resulting from c’s execution will satisfy \psi.”
We would like to formalize

\{\phi\} \ c \ \{\psi\}

Informal meaning (already given):

“If the program \(c\) is run in a state that satisfies \(\phi\) and \(c\) terminates, then the state resulting from \(c\)’s execution will satisfy \(\psi\).”
We would like to formalize

\{\phi\} \text{c} \{\psi\}

Need to define:
1. Running a program c until it terminates
2. Initial state satisfies \(\phi \)
3. Resulting state satisfies \(\psi \).
We would like to formalize

\{\phi\} \ c \ \{\psi\}

For better clarity and “fun”, we will do it in Coq.
We would like to formalize

\\{
\phi
\}\ c\ \\{\psi\}

For better clarity and “fun”, we will do it in Coq.

(And by “we”, I mean I will do part of it in class and you will do the rest at home...)
We would like to formalize

\{\phi\} P \{\psi\}

Need to define:
1. Running a program P until it terminates
2. Initial state satisfies \(\phi\)
3. Resulting state satisfies \(\psi\).
Operational Semantics

• Numeric Expressions E:
 – z | x | (E + E) | (E – E) | (E * E)

• Boolean Expressions B:
 – (E < E) | (B | | B) | (!B)

• Commands C:
 – skip | x = E | C;C | if (B) {C} else {C} | while (B) {C}
We have to specify exactly how each evaluates

- Numeric Expressions E:
 - \(z \) | \(x \) | \((E + E) \) | \((E - E) \) | \((E * E) \)

First problem: what are our variables “\(x \)”?

We will use our usual trick of letting variables be natural numbers:

\[
\text{Definition } \text{var} : \text{Type} := \text{nat}.
\]
We have to specify exactly how each evaluates

- Numeric Expressions E:
 - z | x | $(E + E)$ | $(E - E)$ | $(E \times E)$

Next: how do we define our expressions?

Inductive $nExpr : Type :=$

| Num: forall $z : Z$, $nExpr$
| Var: forall $v : \text{var}$, $nExpr$
| Plus: forall $ne1 ne2 : nExpr$, $nExpr$
| Minus: forall $ne1 ne2 : nExpr$, $nExpr$
| Times: forall $ne1 ne2 : nExpr$, $nExpr$.
We have to specify exactly how each evaluates

- Numeric Expressions E:
 - $z \mid x \mid (E + E) \mid (E - E) \mid (E \times E)$

Now, what does evaluation of an E mean?

We want to write $E \downarrow n$ to mean “the expression E evaluates to the numeric n”

But what about $E = x$? By itself, we don’t know what to do...
We have to specify exactly how each evaluates

• Numeric Expressions E:

 $\ -z \ | \ x \ | \ (E + E) \ | \ (E - E) \ | \ (E \ast E)$

Define a context ρ to be a function from variables to numbers.

Definition $\text{ctx} := \text{var} \rightarrow \text{num}$.
We have to specify exactly how each evaluates

• Numeric Expressions E:
 – \(z \) | \(x \) | \((E + E)\) | \((E - E)\) | \((E \times E)\)

Now define \(\rho \vdash E \downarrow n \) to mean “in context \(\rho \), the expression E evaluates to the numeric n.”
Numeric Evaluation in Coq

Fixpoint neval (g : ctx) (ne : nExpr) : num :=
 match ne with
 | Num n => n
 | Var x => g x
 | Plus ne1 ne2 => neEval g ne1) + (neEval g ne2)
 | Minus ne1 ne2 => (neEval g ne1) - (neEval g ne2)
 | Times ne1 ne2 => (neEval g ne1) * (neEval g ne2)
 end.
Boolean Expressions

- Boolean Expressions B:
 - \((E \leq E) \mid (B \| B) \mid (!B)\)

\[
\text{Inductive } bExpr : \text{Type} := \\
| \text{LE} : \forall \text{ne1 ne2} : \text{nExpr}, bExpr \\
| \text{Or} : \forall \text{be1 be2} : bExpr, bExpr \\
| \text{bNeg} : \forall \text{be} : bExpr, bExpr.
\]
Boolean Evaluation

- Boolean Expressions B:
 - $(E \leq E) \mid (B \mid B) \mid (!B)$

Since B includes E, we will need contexts to evaluate Bs.

What do we evaluate to? How about $Prop$.

So define $\rho \vdash B \downarrow P$ to mean “in context ρ, the expression B evaluates to the proposition P.”
Boolean Evaluation

\[
\text{Fixpoint beval}\ (g : \text{ctx})\ (be : \text{bExpr}) : \text{Prop} :=
\begin{array}{l}
\text{match be with} \\
\quad | \text{LE}\ ne1\ ne2 \Rightarrow (\text{neEval}\ g\ ne1) \leq (\text{neEval}\ g\ ne2) \\
\quad | \text{Or}\ be1\ be2 \Rightarrow (\text{beEval}\ g\ be1) \text{\ \text{\slash}\ \text{\slash}\ (\text{beEval}\ g\ be2)} \\
\quad | \text{bNeg}\ be \Rightarrow \sim (\text{beEval}\ g\ be) \\
\end{array}
\]
Commands

- Commands C:
 - skip | x = E | C;C | if B {C} else {C} | while B {C}

Inductive Coms : Type :=
 | Skip : Coms
 | Assign : forall (x : var) (e: nExpr), Coms
 | Seq : forall c1 c2 : Coms, Coms
 | If : forall (b : bExpr) (c1 c2 : Coms), Coms
 | While : forall (b : bExpr) (c : Coms), Coms.
Command Evaluation

• Idea: executing command c moves the machine from a starting context ρ_α to an ending context ρ_ω

• We define a step relation that looks like this:

$$c \vdash \rho_\alpha \rightsquigarrow \rho_\omega$$

• This will be defined as the least relation (i.e., inductively) satisfying a set of rules

Inductive BStep : Coms -> ctx -> ctx -> Prop :=
Step relation, skip

\[\text{skip} \vdash \rho \rightsquigarrow \rho \]

| bSkip : forall rho,
 BStep Skip rho rho

Step relation, assign

\[\rho \vdash E \downarrow n \]

\[(x = E) \vdash \rho \leadsto [x \mapsto n] \rho \]

| bAssign : forall x ne rho, BStep (Assign x ne) rho (upd_ctx rho x (neval rho ne)) |
Step relation, seq

\[
\begin{align*}
C_1 & \vdash \rho_1 \leadsto \rho_2 \\
C_2 & \vdash \rho_2 \leadsto \rho_3 \\
(C_1 ; C_2) & \vdash \rho_1 \leadsto \rho_3
\end{align*}
\]

| bSeq : forall rho rho' rho'' c1 c2,
 BStep c1 rho rho' ->
 BStep c2 rho' rho'' ->
 BStep (Seq c1 c2) rho rho'' |
Step relation, if (a)

\[\rho \vdash B \downarrow \text{True} \quad C_1 \vdash \rho_1 \leadsto \rho_2 \]

if \((B)\) then \(\{C_1\}\) else \(\{C_2\}\) \(\vdash \rho_1 \leadsto \rho_2\)

\[
| \text{bIf1 : forall rho rho' b c1 c2,} \\
| \text{beval rho b -> } \\
| \text{BStep c1 rho rho' -> } \\
| \text{BStep (If b c1 c2) rho rho'}
\]
Step relation, if (b)

\[
\rho \models B \Downarrow \text{False} \quad C_2 \models \rho_1 \rightsquigarrow \rho_2
\]

if (B) then \{C_1\} else \{C_2\} \models \rho_1 \rightsquigarrow \rho_2

\text{bIf2} : \text{forall } \rho, \rho', b, c_1, c_2, \text{beval } \rho, b \rightarrow \text{BStep } c_2 \rho, \rho' \rightarrow \text{BStep (If } b, c_1, c_2) \rho, \rho'
Step relation, while (a)

\[\gamma \vdash B \downarrow \text{False} \]

while (B) \{C\} \vdash \rho \rightsquigarrow \rho

| bWhile1 : forall rho b c,
| ~beval rho b ->
| BStep (While b c) rho rho. |
Step relation, while (b)

$$\gamma \vdash B \downarrow \text{True} \quad C \vdash \rho \leadsto \rho' \quad \text{while (B) \{C\} \vdash \rho' \leadsto \rho''}$$

while B \{C\} \vdash \rho \leadsto \rho''

| bWhile1 : forall rho rho' rho'' b c,
 beval rho b ->
 BStep c rho rho' ->
 BStep (While b c) rho' rho'' ->
 BStep (While b c) rho rho''
Inductive BStep : Command -> context -> context -> Prop :=
| bSkip : forall rho,
 BStep Skip rho rho |
| bAssign : forall x ne rho,
 BStep (Assign x ne) rho (upd_ctx rho x (neval rho ne)) |
| bSeq : forall rho rho' rho'' c1 c2,
 BStep c1 rho rho' ->
 BStep c2 rho' rho'' ->
 BStep (Seq c1 c2) rho rho'' |
| bIf1 : forall rho rho' b c1 c2,
 beval rho b ->
 BStep c1 rho rho' ->
 BStep (If b c1 c2) rho rho' |
| bIf2 : forall rho rho' b c1 c2,
 ~beval rho b ->
 BStep c2 rho rho' ->
 BStep (If b c1 c2) rho rho' |
| bWhile2 : forall rho rho' rho'' b c,
 beval rho b ->
 BStep c rho rho' ->
 BStep (While b c) rho' rho'' ->
 BStep (While b c) rho rho'' |
| bWhile1 : forall rho b c,
 ~beval rho b ->
 BStep (While b c) rho rho.
We would like to formalize

\(\{\phi\} P \{\psi\} \)

Need to define:

1. Running a program \(P \) until it terminates
2. Initial state satisfies \(\phi \)
3. Resulting state satisfies \(\psi \).
What is an assertion?

We can do what we did for modal logic:

Definition assertion : Type :=
 ctx -> Prop.

We can even write $\rho \vdash \psi$ as shorthand for $\psi(\rho)$

Thus, we can use the rules of our Coq metalogic to easily reason about our Hoare assertions.
Lifting Assertions to Metalogic 1

\[\rho \models \phi \land \psi \equiv (\rho \models \psi) \land (\rho \models \phi) \]

\begin{definition}
assertAnd (P Q : assertion) : assertion :=
 fun g => P g \land Q g.
\end{definition}

\textbf{Notation} "P \&\& Q" := (assertAnd P Q).

\[\rho \models B \equiv \rho \vdash B \Downarrow \text{True} \]

\begin{definition}
assertbEval (b : bExpr) : assertion :=
 fun g => beEval g b.
\end{definition}

\textbf{Notation} "[b]" := (assertbEval b).
Defining Multimodal Operators

• Recall from modal logic the definitions of \square and \Diamond over some relation R:

 • $\rho \models \square P \equiv \forall \rho' (\rho R \rho' \rightarrow \rho' \models P)$
 • $\rho \models \Diamond P \equiv \exists \rho' (\rho R \rho' \land \rho' \models P)$
Defining Multimodal Operators

• We are going to generalize this idea: instead of “baking in” R, \square and \Diamond will take R as a parameter:

• $\rho \models \square_R P \equiv \forall \rho' (\rho R \rho' \rightarrow \rho' \models P)$

• $\rho \models \Diamond_R P \equiv \exists \rho' (\rho R \rho' \land \rho' \models P)$
Defining Multimodal Operators

• Now all we have to do is define a relation between worlds and we automatically get a "reasonable" pair of □/◇ modal operators

• What kinds of relations might be of interest?

• What about the step relation c ⊩ ρ ↛ ρ′?

• Given a command c, this relates two contexts
Defining Multimodal Operators

- Here is what this idea looks like:

- \(\rho \models \Box_c P \equiv \forall \rho' (c \models \rho \sim \rho' \rightarrow \rho' \models P) \)
- \(\rho \models \Diamond_c P \equiv \exists \rho' (c \models \rho \sim \rho' \land \rho' \models P) \)

- What do these mean? How are they similar/different?
We would like to **formalize**

\[\{ \phi \} P \{ \psi \} \]

Need to define:
1. Running a program P until termination
2. Initial state satisfies \(\phi \)
3. Resulting state satisfies \(\psi \).
Putting it all together

\{ \psi \} C \{ \phi \} \equiv \forall \rho \ (\rho \models (\psi \rightarrow c \phi))

[\psi] C [\phi] \equiv \forall \rho \ (\rho \models (\psi \rightarrow c \phi))

Definition HTriple (P) (c) (Q) :=
forall rho, (Impl P (SBox c Q)) rho.

Definition THTriple (P) (c) (Q) :=
forall rho, (Impl P (SDiam c Q)) rho.
Now what?

• Prove the Hoare rules as lemmas from definitions!

\[
\{\psi\} \; c_1 ; \; c_2 \; \{\psi\}
\]

Lemma HT_Skip: \(\text{forall } P,\)
\(\text{Htriple } P \; \text{Skip} \; P.\)
Assignment Rule

\[
\begin{array}{c}
\{[x \rightarrow E] \psi\} \quad x = E \quad \{\psi\}
\end{array}
\]

Lemma HT_Asgn: forall x e psi, HTriple [x => e @ psi] (Assign x e) psi.
Lifting Assertions to Metalogic 2

\[\gamma \vdash [x \rightarrow e] \psi \equiv [x \rightarrow n] \gamma \vdash \psi \quad (\text{where } \gamma \vdash e \Downarrow n) \]

Definition assertReplace (x : var) (e : nExpr) (psi : assertion) : assertion :=
fun g => psi (upd_ctx g x (neEval g e)).

Notation "\[x \Rightarrow e @ psi \]" :=
(assertReplace x e psi).

\[\vdash_{AR} \phi \rightarrow \psi \equiv \forall \gamma, (\gamma \vdash \phi) \Rightarrow (\gamma \vdash \psi) \]

Definition Implies (P Q : assertion) : Prop :=
forall g, P g -> Q g.

Notation "P |-- Q" :=
(Implies P Q) (at level 30).
Sequence Rule

\[
\frac{\{\psi\} c_1 \{\chi\} \quad \{\chi\} c_2 \{\phi\}}{\{\psi\} c_1 ; c_2 \{\phi\}}
\]

Lemma HT_Seq: forall a1 c1 a2 c2 a3,

\[
\text{HTriple a1 c1 a2} \rightarrow \\
\text{HTriple a2 c2 a3} \rightarrow \\
\text{HTriple a1 (Seq c1 c2) a3}.
\]
Implied (Consequence) Rule

\[\vdash_{AR} \phi' \rightarrow \phi \quad \{\phi\} \text{C} \quad \{\psi\} \quad \vdash_{AR} \psi \rightarrow \psi' \]

\[\{\phi'\} \text{C} \quad \{\psi'\} \]

Lemma HT_Cons:

forall phi phi' psi psi' c,

phi' |-- phi ->
HTriple phi c psi ->
psi |-- psi' ->
HTriple phi' c psi'.
If Rule

\[
\begin{align*}
\{\phi \land B\} & \quad C_1 \quad \{\psi\} \quad \{\phi \land \neg B\} \quad C_2 \quad \{\psi\} \\
\{\phi\} & \quad \text{if } B \{C_1\} \quad \text{else } \{C_2\} \quad \{\psi\}
\end{align*}
\]

Lemma HT_If: forall \(\phi\) \(b\) \(c_1\) \(psi\) \(c_2\),
HTriple \((\phi \land \neg B)\) \(b\) \(c_2\) \(psi\) \(->\)
HTriple \((\phi \land bNeg \ b)\) \(c_2\) \(psi\) \(->\)
HTriple \(\phi\) (If \(b\) \(c_1\) \(c_2\)) \(psi\).
While Rule

\[\{ \psi \land B \} \ C \ \{ \psi \} \]
\[\{ \psi \} \text{ while } B \ \{ C \} \ \{ \psi \land \neg B \} \]

Lemma HT_While: forall psi b c,
HTriple (psi && [b]) c psi ->
HTriple psi (While b c) (psi && [bNeg b]).
Your task: Prove these lemmas

HT_Skip : 10 points
HT_Asgn : 10 points
HT_Seq : 10 points
HT_Implied : 10 points
HT_If : 10 points
HT_While : 20 points extra credit
Your task: Prove these lemmas

- THT_Skip : 10 points
- THT_Asgn : 10 points
- THT_Seq : 10 points
- THT_Implied : 10 points
- THT_If : 10 points
- THT_While : 20 points extra credit

(These are the total correctness versions)
Finally

Definition x : var := 0.
Definition y : var := 1.
Definition z : var := 2.
Open Local Scope Z_scope.

Definition neq (ne1 ne2 : nExpr) : bExpr :=
 Or (LT ne1 ne2) (LT ne2 ne1).

Definition factorial_prog : Coms :=
 Seq (Assign y (Num 1)) (* y := 1 *)
 (Seq (Assign z (Num 0)) (* z := 0 *)
 (While (neq (Var z) (Var x)) (* while z <> x { *)
 (Seq (Assign z (Plus (Var z) (Num 1))))
 (* z := z + 1 *)
 (Assign y (Times (Var y) (Var z)))) (* y := y * z *)
) (* } *)
).
Statement of Theorem

Definition Top : assertion := fun _ => True.

Open Local Scope nat_scope.

Fixpoint factorial (n : nat) :=
 match n with
 | O => 1
 | S n' => n * (factorial n')
 end.

Open Local Scope Z_scope.

Lemma factorial_good:
 HTuple Top factorial_prog (fun g => g y = Z_of_nat (factorial (Zabs_nat (g x)))).
Casts

Definition Top : assertion := fun _ => True.

Open Local Scope nat_scope.

Fixpoint factorial (n : nat) :=
 match n with
 | O => 1
 | S n' => n * (factorial n')
 end.

Open Local Scope Z_scope.

Lemma factorial_good:
 HTuple Top factorial_prog
 (fun g => g y = Z_of_nat (factorial (Zabs_nat (g x)))).
Proof of Theorem

Lemma factorial_good:

\[
\text{HTuple Top factorial_prog (fun g => g y = 0) with (fun g : ctx => g y = 1)).}
\]

Proof.

apply HT_Seq with (fun g => g y = 1).
replace Top with ((y => (Num 1) @ (fun g : ctx => g y = 1))).
apply HT_Asgn.
extensionality g.
unfold assertReplace, Top, upd_ctx.
simpl.
apply prop_ext.
firstorder.
apply HT_Seq with (fun g : ctx => g z = 0 /\ g y = 1).
replace (fun g : var => Z => g y = 1) with

\[
\text{((z => (Num 0)) @ (fun g : ctx => g z = 0 /\ g y = 1))}.
\]

apply HT_Asgn.
extensionality g.
unfold assertReplace, Top, upd_ctx.
simpl.
apply prop_ext.
firstorder.
apply HT_Implicated with

\[
\text{(fun g => g z >= 0 /\ (g y) * ((g z) + 1) = Z_of_nat (factorial (Zabs_nat (g z)) + 1))}
\]

apply prop_ext.
firstorder.
unfold upd_ctx in H.
simpl in H.
auto with zarith.
simpl.
unfold upd_ctx.
simpl.
auto with zarith.
replace (fun g : var => Z => g z - 1 >= 0 /\ g y * (g z + 1) = Z_of_nat (factorial (Zabs_nat (g z)))) with

\[
\text{[(y => (Times (Var y) (Var z)) @ (fun g : var => Z => g z - 1 >= 0 /\ g y = Z_of_nat (factorial (Zabs_nat (g z))))]}.
\]

apply HT_Asgn.
extensionality g.
apply prop_ext.
firstorder.
apply HT_While.
apply HT_Implicated with

\[
\text{(fun g => g z >= 0 /\ (g y)*((g z)+1) = Z_of_nat (factorial (Zabs_nat (g z)) + 1))}
\]

apply prop_ext.
firstorder.
unfold upd_ctx in H.
simpl in H.
auto with zarith.
simpl.
unfold upd_ctx.
simpl.
auto with zarith.
replace (fun g : var => Z => g z - 1 >= 0 /\ g y * (g z + 1) = Z_of_nat (factorial (Zabs_nat (g z)))) with

\[
\text{[(y => (Times (Var y) (Var z)) @ (fun g : var => Z => g z - 1 >= 0 /\ g y = Z_of_nat (factorial (Zabs_nat (g z))))]}.
\]

apply HT_Asgn.
extensionality g.
apply prop_ext.
firstorder.
apply HT_While.
apply prop_ext.
firstorder.
apply HT_Implied with

\[
\text{(fun g => g z >= 0 /\ (g y)*((g z)+1) = Z_of_nat (factorial (Zabs_nat (g z)) + 1))}
\]

apply prop_ext.
firstorder.
unfold upd_ctx in H.
simpl in H.
auto with zarith.
simpl.
unfold upd_ctx.
simpl.
auto with zarith.
replace (fun g : var => Z => g z - 1 >= 0 /\ g y * (g z + 1) = Z_of_nat (factorial (Zabs_nat (g z)))) with

\[
\text{[(y => (Times (Var y) (Var z)) @ (fun g : var => Z => g z - 1 >= 0 /\ g y = Z_of_nat (factorial (Zabs_nat (g z))))]}.
\]

apply HT_Asgn.
extensionality g.
apply prop_ext.
firstorder.
apply HT_While.
apply HT_Implicated with

\[
\text{(fun g => g z >= 0 /\ (g y)*((g z)+1) = Z_of_nat (factorial (Zabs_nat (g z)) + 1))}
\]

apply prop_ext.
firstorder.
unfold upd_ctx in H.
simpl in H.
auto with zarith.
simpl.
unfold upd_ctx.
simpl.
auto with zarith.
replace (fun g : var => Z => g z - 1 >= 0 /\ g y * (g z + 1) = Z_of_nat (factorial (Zabs_nat (g z)))) with

\[
\text{[(y => (Times (Var y) (Var z)) @ (fun g : var => Z => g z - 1 >= 0 /\ g y = Z_of_nat (factorial (Zabs_nat (g z))))]}.
\]

apply HT_Asgn.
extensionality g.
apply prop_ext.
firstorder.
apply HT_While.
apply prop_ext.
The good news...

Your HW does **not** require you to do one of these yourself (we are not without mercy...)

Still... why did I show it to you?
Seems like a lot of work... why bother?

Lemma factorial_good:
HTuple Top factorial_prog (fun g => g y =
 Z_of_nat (factorial (Zabs_nat (g
x)))).
Proof.
 apply HT_SEQ with (fun g => g y = 1).
 replace Top with (\{y => (Num 1) \} \$ (fun g :
 ctx => g y = 1))).
 apply HT_Asgn.
 extensionality g.
 unfold assertReplace, Top, upd_ctx.
 simpl.
 apply prop_ext.
 firstorder.
 apply HT_SEQ with (fun g :ctx => g z = 0
 \$ g y = 1).
 replace (fun g : var => Z => g y = 1)
 with
 (\{z => \{Num 0\} \} \$ (fun g :ctx
 => g z = 0 \$ g y = 1))).
 apply HT_Asgn.
 extensionality g.
 unfold assertReplace, Top, upd_ctx.
 simpl.
 apply prop_ext.
 firstorder.
 apply HT_Implied with
 (fun g => g z => 0 \$ g y = Z_of_nat
 (factorial (Zabs_nat (g z)))\$)
 -
 (fun g => g z => 0 \$ g y = Z_of_nat
 (factorial (Zabs_nat (g z)))\$ $&
 [bNeg (neg (Var z) (Var x))).
 repeat intro.
 destruct H.
 rewrite H, H0.
 firstorder.
 apply HT_While.
 apply HT_Implied with
 (fun g => g z => 0 \$ g y = Z_of_nat
 (factorial (Zabs_nat (g z)))\$)
 -
 (fun g => g z => 0 \$ g y * (g z + 1) = Z_of_nat
 (factorial (Zabs_nat (g z + 1))))\$)
 &x
 [bNeg (neg (Var z) (Var x))).
 repeat intro.
 destruct H.
 rewrite H, H0.
 simp.
 firstorder.
 apply HT_While.
 apply HT_Implied with
 (fun g => g z => 0 \$ g y = Z_of_nat
 (factorial (Zabs_nat (g z)))\$)
 -
 (fun g => g z => 0 \$ g y * (g z + 1) = Z_of_nat
 (factorial (Zabs_nat (g z + 1))))\$)
 &x
 [bNeg (neg (Var z) (Var x))).
 apply prop_ext.
 firstorder.
 unfold upd_ctx in H.
 simpl in H.
 auto with zarith.
 simpl.
 unfold upd_ctx.
 simpl.
 auto with zarith.
 replace (fun g : var => Z => g z - 1 => 0
 \$ g y = Z_of_nat (factorial (Zabs_nat (g
 z))))\$)
 with
 [y => (Times (Var y) (Var z)) \$ (fun g :
 var => Z => g z - 1 => 0 \$ g y =
 Z_of_nat (factorial (Zabs_nat (g
 z))))\$)].
 apply HT_Asgn.
 extensionality g.
 apply prop_ext.
 firstorder.
 unfold prop_ext.
 simp.
 auto with zarith.
 simp.
 unfold prop_ext.
 simp.
 auto with zarith.
 replace (fun g : var => Z => g z - 1 => 0
 \$ g y = Z_of_nat (factorial (Zabs_nat (g
 z))))\$)
 with
 [y => (Times (Var y) (Var z)) \$ (fun g :
 var => Z => g z - 1 => 0 \$ g y =
 Z_of_nat (factorial (Zabs_nat (g
 z))))\$)].
 apply HT_Asgn.
 extensionality g.
 apply prop_ext.
 firstorder.
 unfold prop_ext.
 simp.
 auto with zarith.
 simp.
 unfold prop_ext.
 simp.
 auto with zarith.
 replace (fun g : var => Z => g z - 1 => 0
 \$ g y = Z_of_nat (factorial (Zabs_nat (g
 z))))\$)
 with
 [y => (Times (Var y) (Var z)) \$ (fun g :
 var => Z => g z - 1 => 0 \$ g y =
 Z_of_nat (factorial (Zabs_nat (g
 z))))\$)].
 apply HT_Asgn.
 extensionality g.
 apply prop_ext.
 firstorder.
Lemma factorial_good:
HTuple Top factorial_prog (fun g => g y = Z_of_nat (factorial (Zabs_nat (g x))))
Proof.
apply HT_Seq with (fun g => g y = 1).
replace Top with ((y => (Num 1) \ (fun g : ctx => g y = 1))).
apply HT_Asgn.
extensionality g.
unfold assertReplace, Top, upd_ctx.
simpl.
apply prop_ext.
firstorder.
apply HT_Seq with (fun g : ctx => g z = 0 \ g y = 1).
replace (fun g : var => Z => g y = 1) with
 \(\{z => \text{Num}(0)\} \ \& \ (\text{fun g : ctx => g z = 0 \ g y = 1})\).
apply HT_Asgn.
extensionality g.
unfold assertReplace, Top, upd_ctx.
simpl.
apply prop_ext.
firstorder.
apply HT_Implied with
\(\text{fun g => g z >= 0 \ g y = Z_of_nat (factorial (Zabs_nat (g z)))}\) -
\(\text{fun g => g z >= 0 \ g y = Z_of_nat (factorial (Zabs_nat (g z)))}\) \& &\n\[\text{bNeg (neq (Var z) (Var x))}\].
repeat intro.
destruct H.
rewrite H1.
split; auto.
remember (g z) as n.
clear H.
destruct n; auto.
simpl.
rewrite <- Pplus_one_succ_r.
rewrite inj_plus.
rewrite inj_mult.
auto with zarith.
replace (fun g : var => Z => g z >= 0 \ g y * g z = Z_of_nat (factorial (Zabs_nat (g z)))) with
\(\text{fun g : var => Z => g z >= 0 \ g y * g z = Z_of_nat (factorial (Zabs_nat (g z)))}\).
apply HT_Asgn.
extensionality g.
apply prop_ext.
firstorder.
unwrap upd_ctx in H.
simpl in H.
auto with zarith.
simpl.
unfold upd_ctx.
simpl.
auto with zarith.
rewrite (fun g : var => Z => g z - 1 >= 0 \ g y * g z = Z_of_nat (factorial (Zabs_nat (g z))) with
\(\text{fun g : var => Z => g z - 1 >= 0 \ g y = Z_of_nat (factorial (Zabs_nat (g z)))}\)).
apply HT_Asgn.
extensionality g.
apply prop_ext.
firstorder.
destruct H.
rewrite H1.
simpl.
destruct intro; firstorder.
repeat intro.
destruct H.
destruct H.
rewrite H1.
simpl in H0.
destruct (Ztrichotomy (g z) (g x)).
contradiction H0; auto.destruct H2.
rewrite H2.
simpl.
rewrite <- H2.
trivial.
contradiction H0; right.
apply Zgt_lt.
trivial.
Qed.
Forgot to track boundary condition

\(z \geq 0 \) at all times in the loop

Lemma factorial_good:

\[\text{HTuple Top factorial prog (fun g => g y = Z_of_nat (factorial (Zabs_nat (g x))) \} \]

Proof.
apply HT_Seq with (fun g => g y = 1).
replace Top with \((y \mapsto (\text{Num 1}) \ O \ (\text{fun } g:\ ctx \mapsto g y = 1)) \) .
apply HT_Asgn.
extensionality g.
unfold assertReplace, Top, upd_ctx.
simpl.
apply prop_ext.
firstorder.
apply HT_Seq with (fun g : ctx => g z = 0 \ g y = 1).
replace (fun g : var => Z => g y = 1) with
\((\{z \mapsto \{\text{Num 0}\} \ O \ (\text{fun } g:\ ctx \mapsto g z = 0 \ / \ g y = 1)) \) .
apply HT_Asgn.
extensionality g.
unfold assertReplace, Top, upd_ctx.
simpl.
apply prop_ext.
firstorder.
apply HT_Implied with (fun g => g z = 0 \ g y = Z_of_nat (factorial (Zabs_nat (g z)))) .
apply HT_Implied with
replace (fun g : var => Z => g y = Z_of_nat (factorial (Zabs_nat (g z))) \) .
repeat intro.
destruct H.
destruct n; auto.
simplify.
rewrite H1.
rewrite inj_plus.
rewrite inj_mult.
rewrite \(\text{Zpos eq} \ Z_{of_nat} _o_nat_{of_P} ___\text{ring} \).
unify_type False.
auto with zarith.
apply HT_Seq with (fun g => g z = 0 \ g y = Z_of_nat (factorial (Zabs_nat (g z))) \) .
apply HT_Seq with (fun g : ctx => g z = 0 \ g y = Z_of_nat (factorial (Zabs_nat (g z))) \) .
replace (fun g : var => Z => g z = 0 \ g y = Z_of_nat (factorial (Zabs_nat (g z))) \) .
apply HT_Asgn.
extensionality g.
Coercions (easily forgotten about...)

Fixpoint factorial (n : nat) :=
 match n with
 | 0 => 1
 | S n' => n * (factorial n')
end.

fun g =>
g y = Z_of_nat (factorial (Zabs_nat (g x))).

We define factorial on nats because that way we have the best chance of not making a mistake in our specification.

But there is a cost: we must coerce from Z to N and back to Z...
Where you need this fact in the proof

Our “x!” has an implicit coercion in it: first we take the integer x, get the absolute value of it, and then calculate factorial on nats (and then coerce back to Z)...

while (z <> x) {
 {y = z! ∧ z <> x} Now use Implied
 {y * (z + 1) = (z + 1)!}
Where you need this fact in the proof

Our “x!” has an implicit coercion in it: first we take the integer x, get the absolute value of it, and then calculate factorial on nats (and then coerce back to Z)...

```plaintext
while (z <> x) {
    {y = z! ∧ z <> x}       Now use Implied
    {y * (z + 1) = (z + 1)!}  ← But wait! What if z < 0?
}
```

Try y = 3, z = -4:

- $3 \times (-4 + 1) = -9$
- $(-4 + 1)! = (-3)! = 3! = 6$
The Explosion of the Ariane 5

- On June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space Agency exploded just forty seconds after its lift-off from Kourou, French Guiana.

- The rocket was on its first voyage, after a decade of development costing $7 billion. The destroyed rocket and its cargo were valued at $500 million.

- A board of inquiry investigated the causes of the explosion and in two weeks issued a report.

- It turned out that the cause of the failure was a software error in the inertial reference system. Specifically a 64 bit floating point number relating to the horizontal velocity of the rocket with respect to the platform was converted to a 16 bit signed integer. The number was larger than 32,767, the largest integer storable in a 16 bit signed integer, and thus the conversion failed.