
IMAGE MOSAICKING
IN GPU
Lu The Kiet

Mallipeddi Venkata Harish
Stephanus

Outline

• Objective
• Assumptions
• What we accomplished
• Why GPU
• Implementation + Results
• Conclusion
• Future Improvements

Objective

• To investigate how GPU aids in accelerating
image registration

• 4 levels of challenge
– Entry: Register two images with pan, tilt & zoom.
– Intermediate: Register a sequence of images with

pan & tilt.
– Advanced: Same as intermediate but with zoom.
– Ultimate: Register two videos real-time.

Assumptions

• Camera is moving slowly.
• Minimal change in light conditions.
• Camera is not too close to an object.

What we have accomplished

• Entry level
• Intermediate level
• Advanced level
• Ultimate level

Why GPU

• Current state of hardware

• ATI Radeon X1800XT
• 120 GFLOPs peak (fragment engine)
• 42 GB/s to video memory

• Intel 3.0 GHz Pentium 4
• 12 GFLOPs peak (MAD)
• 5.96 GB/s to main memory

Why GPU

• Data parallelism:
- Lots of data on which the same computation

is being executed.
- No dependencies between data elements in

each step in the computation (kernel). But
often requires redesign of traditional
algorithms.

Implementation – 3 steps

Feature tracking

OpenVIDIA feature track

OpenCV’s feature tracking

OpenVIDIA feature tracking

• Bad performance even on GPU.
• On previous images, OpenVIDIA Feature

Tracking takes 1.21515 secs
– Graphics card used: Nvidia Geforce 7600GT

• OpenCV’s Lucas Kanade feature tracking
takes 0.0617037 secs
– CPU: AMD Athlon 2.01 GHz

Transformation matrix -
affine vs. projective

• We used affine transformation initially.
• Affine does NOT give good results.
• In real life, we find transformations are

NOT strictly affine.
• We switched to projective transformation

model (homography).
• Projective gives much better results.

Affine Transformation

Projective Transformation

Projective transformation

• Extensively for 3-D affine modelling
transformations and for perspective camera
transformations

• Manipulation is much easier in homogeneous
matrix notation

Projective Transformation

Computing transformation matrix

• We need to solve linear eqns.
• Considered 2 methods:
• Gaussian elimination vs. SVD
• Gaussian elimination is easy to implement in GPU.
• But:

– Gaussian elimination requires the matrix to be a square matrix.
– Gaussian elimination cannot give approximate solution unlike

SVD which can give least square solution x = A+ * b

• Hence, we choose SVD.

Why we did SVD on CPU

• SVD algorithm is too complex.
• [Bondhugula et al] implemented SVD on

GPU.
• Significant speedup only for large matrices

(>= 2000x2000).
• We never have to compute SVD for such

large matrices.

SVD on GPU

GPU alpha blending

• Reason:
– Data independency – best fit for parallel computation.

• Each pixels is blended independently to each other.
– Buffer(xi) = Alpha * Pi(xi) + (1 – Alpha) * Buffer(xi)

– Fast data transfer rate in GPU : 42 GB/s to video
memory of ATI X1800.

GPU alpha blending

However, instead of using linear blending,
we employ Alpha Map Blending technique
on GPU :

Without blending

With blending on GPU

GPU alpha blending

- Method : use alpha map as weight to
“smoothly merge” the image into the
buffer.

- Reason : to reduce sharp edges as well as
less visual boundary artifact.

CPU – GPU conversion of alpha
blending method

• Traditional algorithm:
– For each pixel (pi) at Image i:

– Get Alpha map weight Alpha

• IF position (xi) not in “blank” region:
– Buffer(xi) = Alpha * Pi(xi) + (1 – Alpha) * Buffer(xi)

• Else Buffer(xi) = Pi(xi) // copy image without
blending

CPU – GPU conversion of alpha
blending method

• Problem with GPU:
– For each pixel (pi) at Image i:

– Get Alpha map weight Alpha

• Float4 Blending = Alpha * Pi(xi) + (1 – Alpha) *
Buffer(xi);

IF position (xi) not in “blank” region:
No “IF-Else” statement at GPU
– Buffer(xi) = Alpha * Pi(xi) + (1 – Alpha) * Buffer(xi)

Else Buffer(xi) = Pi(xi)

CPU – GPU conversion of alpha
blending method

1) GPU version for branching limitation:
– For each pixel (pi) at Image i:

– Get Alpha map weight Alpha

• Float4 Blending = Alpha * Pi(xi) + (1 – Alpha) *
Buffer(xi);

GPU “IF - else” statement:
• Float t = step (0.0, Buffer) //return 1 if Buffer color

NOT 0.0 and return 0 otherwise.
• OUTPUT = t * (Blending) + (1 - t) * Pi(xi)

CPU – GPU conversion of alpha
blending method

2) Ping pong technique:
- “Buffer cannot be read and write and the

same time.”
- Use 2 double buffers and pass data forward

and backward between these two buffers and
swap buffers after each loops.

- (illustration here)

Our Results

• Mosaic of 9 image sequences (panning)

Our Results

Our Results

• Mosaic of 7 Images (Panning)

Our Results

• Tilting / Rotation of 4 Images

Our Results

• Vertical Translation of 5 Images

Our Results

• 5 Image Sequences of Zooming

Our Results

• Translation, Rotation and Zooming of 24
Images

CPU vs. GPU

CPU vs GPU (Total time) - Two images

0

0.2

0.4

0.6

0.8

320x240 400x300 640x480 720x540 1024x768

Image resolution

Ti
m

e
in

 s
ec

CPU
GPU

CPU vs. GPU

CPU vs GPU (Mosaic time) - Two images

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

320x240 400x300 640x480 720x540 1024x768

Image Resolution

Ti
m

e
in

 s
ec

CPU
GPU

CPU vs. GPU

CPU vs GPU (Total time) - 1024x768

0
2
4
6
8

10
12
14
16

2 3 4 5 10 15 20

No. of images

Ti
m

e
in

 s
ec

.

CPU
GPU

CPU vs. GPU

CPU vs GPU (Mosaic time) - 1024x768

0
2
4
6
8

10
12
14

2 3 4 5 10 15 20

No. of images

Ti
m

e
in

 s
ec

.

CPU
GPU

Comments on OpenVidia
• Feature Tracking does not work well.
• OpenVidia requires mid-to-high range NVIDIA

graphics card.
• Hard to setup (dependencies: Glew, Glut,

OpenGL, Cg).
• Extremely hard to compile from source (Pre-

compiled binaries depend on MSVC 2005).
• Uses OpenGL stencil buffer.
• Size of input image has to be multiple of 4.
• Changes OpenGL internal state.
• Decided not to use OpenVidia.

Conclusion
• We have iteratively tried to solve Image

Registration on GPU
• Using GPU for small problem is less efficient

than using CPU
• We have studied the performance benefit of

GPU on Image Registration
• Feature tracking – CPU

Homography computation – CPU
• Registration, Alpha blending, bilinear

interpolation - GPU

Real-time video demo

Thank you

	IMAGE MOSAICKINGIN GPU
	Outline
	Objective
	Assumptions
	What we have accomplished
	Why GPU
	Why GPU
	Implementation – 3 steps
	Feature tracking
	OpenVIDIA feature track
	OpenCV’s feature tracking
	OpenVIDIA feature tracking
	Transformation matrix - affine vs. projective
	Affine Transformation
	Projective Transformation
	Projective transformation
	Projective Transformation
	Computing transformation matrix
	Why we did SVD on CPU
	SVD on GPU
	GPU alpha blending
	GPU alpha blending
	Without blending
	With blending on GPU
	GPU alpha blending
	CPU – GPU conversion of alpha blending method
	CPU – GPU conversion of alpha blending method
	CPU – GPU conversion of alpha blending method
	CPU – GPU conversion of alpha blending method
	Our Results
	Our Results
	Our Results
	Our Results
	Our Results
	Our Results
	Our Results
	CPU vs. GPU
	CPU vs. GPU
	CPU vs. GPU
	CPU vs. GPU
	Comments on OpenVidia
	Conclusion
	Real-time video demo
	Thank you

