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Objective

• To investigate how GPU aids in accelerating 
image registration

• 4 levels of challenge
– Entry: Register two images with pan, tilt & zoom.
– Intermediate: Register a sequence of images with 

pan & tilt.
– Advanced: Same as intermediate but with zoom.
– Ultimate: Register two videos real-time.



Assumptions

• Camera is moving slowly.
• Minimal change in light conditions.
• Camera is not too close to an object.



What we have accomplished

• Entry level
• Intermediate level
• Advanced level
• Ultimate level



Why GPU

• Current state of hardware

• ATI Radeon X1800XT
• 120 GFLOPs peak (fragment engine)
• 42 GB/s to video memory

• Intel 3.0 GHz Pentium 4
• 12 GFLOPs peak (MAD)
• 5.96 GB/s to main memory



Why GPU

• Data parallelism: 
- Lots of data on which the same computation 

is being executed. 
- No dependencies between data elements in 

each step in the computation (kernel). But 
often requires redesign of traditional 
algorithms.



Implementation – 3 steps



Feature tracking



OpenVIDIA feature track



OpenCV’s feature tracking



OpenVIDIA feature tracking

• Bad performance even on GPU. 
• On previous images, OpenVIDIA Feature 

Tracking takes 1.21515 secs
– Graphics card used: Nvidia Geforce 7600GT

• OpenCV’s Lucas Kanade feature tracking 
takes 0.0617037 secs
– CPU: AMD Athlon 2.01 GHz



Transformation matrix -
affine vs. projective

• We used affine transformation initially.
• Affine does NOT give good results.
• In real life, we find transformations are 

NOT strictly affine.
• We switched to projective transformation 

model (homography).
• Projective gives much better results.



Affine Transformation



Projective Transformation



Projective transformation

• Extensively for 3-D affine modelling
transformations and for perspective camera 
transformations

• Manipulation is much easier in  homogeneous 
matrix notation



Projective Transformation



Computing transformation matrix

• We need to solve linear eqns.
• Considered 2 methods:
• Gaussian elimination vs. SVD
• Gaussian elimination is easy to implement in GPU.
• But: 

– Gaussian elimination requires the matrix to be a square matrix.
– Gaussian elimination cannot give approximate solution unlike 

SVD which can give least square solution x = A+ * b

• Hence, we choose SVD.



Why we did SVD on CPU

• SVD algorithm is too complex.
• [Bondhugula et al] implemented SVD on 

GPU.
• Significant speedup only for large matrices 

(>= 2000x2000).
• We never have to compute SVD for such 

large matrices. 



SVD on GPU



GPU alpha blending

• Reason:
– Data independency – best fit for parallel computation. 

• Each pixels is blended independently to each other. 
– Buffer(xi) = Alpha * Pi(xi) + (1 – Alpha) * Buffer(xi)

– Fast data transfer rate in GPU : 42 GB/s to video 
memory of ATI X1800.



GPU alpha blending

However, instead of using linear blending, 
we employ Alpha Map Blending technique 
on GPU : 



Without blending



With blending on GPU



GPU alpha blending

- Method : use alpha map as weight to 
“smoothly merge” the image into the 
buffer. 

- Reason : to reduce sharp edges as well as 
less visual boundary artifact. 



CPU – GPU conversion of alpha 
blending method

• Traditional algorithm:
– For each pixel (pi) at Image i:

– Get Alpha map weight Alpha

• IF position (xi) not in “blank” region:
– Buffer(xi) = Alpha * Pi(xi) + (1 – Alpha) * Buffer(xi) 

• Else Buffer(xi) = Pi(xi) // copy image without 
blending



CPU – GPU conversion of alpha 
blending method

• Problem with GPU:
– For each pixel (pi) at Image i:

– Get Alpha map weight Alpha

• Float4 Blending = Alpha * Pi(xi) + (1 – Alpha) * 
Buffer(xi);

IF position (xi) not in “blank” region:
No “IF-Else” statement at GPU
– Buffer(xi) = Alpha * Pi(xi) + (1 – Alpha) * Buffer(xi)

Else Buffer(xi) = Pi(xi)



CPU – GPU conversion of alpha 
blending method

1) GPU version for branching limitation:
– For each pixel (pi) at Image i:

– Get Alpha map weight Alpha

• Float4 Blending = Alpha * Pi(xi) + (1 – Alpha) * 
Buffer(xi);

GPU “IF - else” statement:
• Float t = step (0.0, Buffer) //return 1 if Buffer color 

NOT 0.0 and return 0 otherwise.
• OUTPUT = t * (Blending ) + (1 - t) * Pi(xi)



CPU – GPU conversion of alpha 
blending method

2) Ping pong technique:
- “Buffer cannot be read and write and the 

same time.”
- Use 2 double buffers and pass data forward 

and backward between these two buffers and 
swap buffers after each loops. 

- (illustration here)



Our Results

• Mosaic of 9 image sequences (panning)



Our Results



Our Results

• Mosaic of 7 Images (Panning)



Our Results

• Tilting / Rotation of 4 Images



Our Results

• Vertical Translation of 5 Images



Our Results

• 5 Image Sequences of Zooming



Our Results

• Translation, Rotation and Zooming of 24 
Images



CPU vs. GPU

CPU vs GPU (Total time) - Two images
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CPU vs. GPU

CPU vs GPU (Mosaic time) - Two images
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CPU vs. GPU

CPU vs GPU (Total time) - 1024x768 
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CPU vs. GPU

CPU vs GPU (Mosaic time) - 1024x768
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Comments on OpenVidia
• Feature Tracking does not work well.
• OpenVidia requires mid-to-high range NVIDIA 

graphics card.
• Hard to setup (dependencies: Glew, Glut, 

OpenGL, Cg).
• Extremely hard to compile from source (Pre-

compiled binaries depend on MSVC 2005).
• Uses OpenGL stencil buffer.
• Size of input image has to be multiple of 4.
• Changes OpenGL internal state.
• Decided not to use OpenVidia.



Conclusion
• We have iteratively tried to solve Image 

Registration on GPU
• Using GPU for small problem is less efficient 

than using CPU
• We have studied the performance benefit of 

GPU on Image Registration
• Feature tracking – CPU

Homography computation – CPU
• Registration, Alpha blending, bilinear 

interpolation - GPU



Real-time video demo



Thank you
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