School of Computing
 National University of Singapore
 CS5240 Theoretical Foundations in Multimedia

Exercise 1

Working with Matrix Elements

Objectives

- This exercise lets you practice working with matrix elements.
- You should learn to work out the answers yourself without referring to Google, Wikipedia, etc., or consulting others.
- Work out the answers using the simplest, cleanest and most concise method.

Exercise Questions

Let's denote the (i, j)-th elements of matrix \mathbf{A} and \mathbf{B} as $[\mathbf{A}]_{i j}$ and $[\mathbf{B}]_{i j}$, respectively. Then, the (i, j)-th element of the matrix product $\mathbf{A B}$ is

$$
[\mathbf{A B}]_{i j}=\sum_{k}[\mathbf{A}]_{i k}[\mathbf{B}]_{k j} .
$$

Then, matrix transpose means $\left[\mathbf{A}^{\top}\right]_{i j}=[\mathbf{A}]_{j i}$.
Work on the following exercises. The first exercise is partially worked out for you as an illustrative example.
(a) Show that $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$.

The (i, j)-th element of the left hand side is

$$
[\mathbf{A}(\mathbf{B}+\mathbf{C})]_{i j}=\sum_{k}[\mathbf{A}]_{i k}[\mathbf{B}+\mathbf{C}]_{k j}=\cdots
$$

(b) Show that $(\mathbf{A B}) \mathbf{C}=\mathbf{A}(\mathbf{B C})$. Note that $\mathbf{A B} \neq \mathbf{B A}$.
(c) Show that $(\mathbf{A}+\mathbf{B})^{\top}=\mathbf{A}^{\top}+\mathbf{B}^{\top}$.
(d) Show that $(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$.

