

Industrial Experience with Building a Web Portal Product
Line using a Lightweight, Reactive Approach

Ulf Pettersson

SES Systems Pte. Ltd.
ulfp@stee.stengg.com

Stan Jarzabek
National University of Singapore
Department of Computer Science

stan@comp.nus.edu.sg

ABSTRACT

Imprecise, frequently changing requirements and short time-to-
market create challenges for application of conventional software
methods in Web Portal engineering. To address these challenges,
SES Systems Pte Ltd. applied a lightweight, reactive approach to
support a Web Portal product line. Unique characteristics of the
approach were fast, low-cost migration from a single,
conventional Web Portal towards a reusable “generic Web Portal”
solution, effective handling of large number of functional variants
and their dependencies, the ability to rapidly develop new Web
Portals from the generic one, and to independently evolve
multiple Web Portals without ever loosing a connection between
them and the “generic Web Portal”. The initial Web Portal was
built using state-of the-art conventional methods. The Web Portal
was not flexible enough to reap the benefits of new business
opportunities that required SES Systems to rapidly develop and
further maintain many similar Web Portals. To overcome the
limitations of the conventional solution, a reuse technique of
XVCL was applied incrementally. During three weeks the
conventional solution was converted into a Web architecture
capable of handling nine Web Portals from a base of code smaller
than the original Web Portal. In the paper, we describe the process
that led to building the above Web Portal product line. We explain
the difficulties in building an effective generic Web solutions
using conventional techniques. We analyze SES Systems’ reuse-
based solution in qualitative and quantitative ways.

Categories and Subject Descriptors

D.2.2 [SOFTWARE ENGINEERING]: Design Tools and
Techniques; D.2.10 [SOFTWARE ENGINEERING]: Design –
Representations; D.2.13 [SOFTWARE ENGINEERING]:
Reusable Software - Domain engineering; D.1.2
[PROGRAMMING TECHNIQUES]: Automatic Programming
– Program synthesis;

General Terms
Design, Languages, Experimentation

Keywords

Web engineering, reuse, software product lines, maintenance,
static meta-programming

1. Introduction
Imprecise and frequently changed requirements, and short time-to-
market are the main challenges of Web Portal (WP) development
[5][28]. Given that today WPs have grown from mere collections
of static HTML pages to full-fledged business applications,
meeting these challenges is not easy. In this paper, we describe
how SES Systems Pte. Ltd. (referred to as SES, for short) applied
reuse via product line approach to tackle the problem. The aim
was to enable reuse-based rapid development of new WPs, to
reduce the maintenance cost of all the WPs SES had to manage,
and to control evolution of both already created WPs and reusable
assets defined within the product line architecture.
SES created a Web Portal Product Line incrementally, applying
extractive [18] approach to build a first-cut “generic Web Portal”,
and then applying reactive approach [18] to continuously extend
and refine the “generic Web Portal” with new features requested
by customers. The starting point for this evolution towards a
product line was an ASP-based personal WP developed by the
first author. The personal WP was first converted to a Team
Collaboration Portal (TCP) used internally at SES. Then, it
became a business product portal used in hospitals to help in
Severe Acute Respiratory Syndrome (SARS)-related problems
Finally, it was re-designed with XVCL [32] into a “generic Web
Portal”, called an XVCL-based Web Portal Product Line
Architecture (WP Architecture, for short), on which SES has built
by now 20 different Web Portals.
Unique characteristics of our approach and project experiences
are:

 Short time (less than 2 weeks) and small effort (2 persons) to
transform the TCP into the first version of the WP
Architecture.

 High productivity in building new portals from the WP
Architecture.

 Wide range of portals differing in a large number of inter-
dependent features supported by the WP Architecture.

 Ease of evolving the WP Architecture in new, unexpected
directions.

 Ease of handling multiple portal products during evolution (of
both individual portals and the WP Architecture), without
loosing the connection between the reusable base of portal
components in the WP Architecture and the portal code.

The above characteristics and productivity indicators are often
mentioned as important problems in product line practice, but

difficult to address with conventional software technologies
[4][9][12][19].
 We attribute the above to a successful merger of two design
techniques, namely model-based design1 (MBD) and XVCL.
MBD helped us design the WP Architecture for reuse using
conventional methods. However, there were clearly many design-
level similarities, intra-module, inter-module and across portals,
that MBD could not take advantage of. We applied XVCL on top
of the MBD solution to fully exploit reuse opportunities arising
from those similarities.
In the paper, we describe the Web Portal Product Line project at
SES and lessons we learned from it. In Sections 2 and 3, we
describe the ASP Web Portal that was a starting point for the
project. In Section 4, we describe some of the problems and
challenges encountered while evolving this portal based on its
original design. In Section 5, we introduce XVCL. In Section 6,
we describe how we applied XVCL to create the Web Portal
Product Line Architecture. We also evaluate and quantify our
results. In Sections 7, we provide a summary of our project
experiences. In Section 8 and 9, we discuss related work and
conclude the paper.

2. The Team Collaboration Portal (TCP)
The starting point for the project was a Web-based Team
Collaboration Portal (TCP for short) developed using Active
Server Pages (ASP) [1]. The TCP was developed incrementally,
starting with a personal web portal developed by the first author.
This personal portal facilitated information sharing via
management of users, HTML-content, images and video-clips
[22]. Over time, the functionality of the personal portal was
extended to include access statistics, news/announcements,
weather animations, and posting/feedback facilities. The personal
portal was then brought to the company environment where it was
deployed as a team collaboration tool for software development
teams, and as this was done, the portal functionality evolved
further to form the TCP.

News Discussion
Forum

Topic

Posting

Team Collaboration Portal

0..n

0..n

Task

Task
Comment

0..n subtasks

0..n

User

0..n

Profile

1
0..n

0..n0..n

Figure 1: Partial functional view of the TCP.

1 In model-based design, we create a model of an application from
which we derive (generate or manually) parts of an application.

A subset of the functional modules of the TCP is illustrated in
Figure 1. Some of the functional modules such as News are
independent of other modules, while other functional modules
have relationships (such as the Postings that is a composite of
Topic that is a further composite of Discussion Forum). In
addition to the functional modules illustrated in Figure 1, the TCP
also provided facilities for site configuration and other usual
infrastructure services for access control, data history capturing,
statistics gathering, and database persistency.

3. Initial design of the TCP for reuse
Though a Web Portal product line was not our explicit target yet,
we were aware of many similarities across the TCP. We viewed
them as attractive reuse opportunities that could facilitate design
solutions greatly reducing development cost, as well as the cost of
future enhancements.
At SES Systems, we characterize and scope applications in terms
of conceptual entities our applications should implement. We use
entity models in the early stage of requirement analysis, and also
in design and implementation. In the TCP, a functional module
(Figure 1) was built from one or more Entity Modules, where each
Entity Module (Table 1) implemented functionality related to a
single entity.

At the top level, the TCP was designed around a Portal
Foundation with complementary Entity Modules as
illustrated in the Figure 2.

Database
Portal

Foundation

…

Entity Module

Entity Module

Entity Module
Entity Module

Figure 2. Top-level architecture of the TCP.

While some of the functional modules implemented specific and
unique features, many features could be shared (after certain
modifications) across the modules. Most of the shared features
were focused around the management of entities underlying
respective functional modules. For each entity such as News, Task
or User we needed features to:

 Create an entity
 Edit/update of entity
 Delete of entity
 Display of entity
 Display of entity listing
 Capture and display of entity history

There were also similarities in the way infrastructure services
interacted with various functional modules. From previous
experience, we knew that visualization, persistency, search
indexing and history capturing were done in a similar (and
sometimes rather complicated) way across functional modules.
We built a number of models to identify and explicate similarities
in the TCP analysis and design spaces. The TCP architecture was
based on these models, facilitating reuse of similar solutions. We
call this approach a model-based design, MBD for short, and
explain it by examples below.

3.1. Entity Modules
Table 1 identifies most of the Entity Modules in the TCP.

 2

Table 1. TCP Entities.

Entity Module Description
Feedback Capture user feedback on the portal.
Folder Container for other entities.
Forum Discussion forum.
Forum Topic Topics within the discussion forum.
Help General and context sensitive help information.
History History records of entities (old versions).
HTML Content Portal content in HTML format (on-line

managed HTML content).
Menu Menus for navigation within the portal (and to

external URLs).
News News/Announcement content.
Page Access Control user access to pages.
Poll Polls for user feedback.
Post Comments posted for entities (such as

comments on a HTML Content, or postings on a
Forum Topic).

Profile User-specific preferences.
Quiz A simple on-line quiz (user self-tests applied

after informal training sessions).
Rate Log Capture user ratings of entities.
Search Index Dynamic search index built as and when entities

are updated.
Session Log User session (login) history.
Site Information Portal revision history, etc.
Task Tasks assigned to users (ToDo & Action items).
User Administration of users and their access rights.
User Action Log Logging (audit trail) of all user input actions.

Figure 3 shows the entity model as a UML class diagram.

Forum

Base EntityPost
0..n

RateLog
0..n

Captures

Captures

History
Captures

0..n

TaskNews HTML Content User

Session Log

Access History
0..nSubTasks

0..n

Folder

Forum Topic0..n

Stores

0..n

Figure 3. TCP model example.

As seen in the Figure 3, entities are derived from an abstract Base
Entity. All the entities can be organized into Folders. The
composites of the Base Entity (History, Post and Rate Log) are
optional, applied only to entities that need them (e.g., Postings
were required for Tasks, News, HTML Content and Forum
Topics, but not for Forums, Users and Folders).
From the entity model, we identified some reuse opportunities
such as the ability of the Base Entity to capture versions (History
class), postings&comments (Post class), and ratings (RateLog
class).
To further understand the common behavior of the entities, we
developed a meta-model around the Base Entity, as illustrated in
Figure 4.

Base Entity visualize

Entity View

Edit View

Display View

List View

Mini View

Module Page
1..n 1

0..n

main

complementary Edit Page

Display Page

List Page

Print Page

Post Page

Entity Controller
1

Figure 4. Meta-model around Base Entity.

The roles of the classes in the meta-model are as follows:
Base Entity: Defines entity attributes and mapping of attributes to

and from database record set.
Entity Controller: Handles coordination between entity, entity

views and Portal Foundation.
Entity View: Defines a presentation view of the entity (i.e. a sub-

window displayed within a web page). Most Entity Modules
implement specialized Entity Views such as:

 Edit view: A view for editing of an entity.
 Display view: A view for display of all attributes of an

entity.
 List view: A view for displaying a sorted listing of

entities.
 Mini list view: A view for a small sorted and/or filtered

listing of entity objects (typically with entity specific
behavior such as “Latest News”, “My Tasks”, “Latest
Postings”, etc).

Module Page: Represents a web page displayed in the Web
browser. Each Entity Module typically defines a number of
Module Pages where each such page includes a main view of
the own entity and one or more complementary views
(generated from arbitrary entities). Each Entity Module
implements Module Pages as illustrated in Table 2.

Table 2. Module Pages for Entity Module.

Web Page Main View Purpose

List Page List View* Displays a list of entities.

Edit Page Edit View* Displays a form for entity
editing.

Display Page Display View* Displays all details of an entity

Print Page Display View* Displays all details of an entity,
but without a page header and
without complementary views.

Post Page Post Edit View# Displays a form for postings
related to an entity.

* Entity specific view.

General view shared by entities.
The personal portal example shown in Figure 5 illustrates how the
various views were composed into the Web pages (this portal can
be viewed at [22]).

 3

Mini Views
(complementary)

Display View
(main)

Mini Views
(Complementary)

Figure 5. Web page composed by views.

3.2. Portal Foundation
The Portal Foundation (as illustrated in Figure 2) aimed to
simplify the implementation of Entity Modules by providing:

 Session and Access Control.
 Page formatting.
 Site Configuration.
 Database persistency, indexing and search.
 Support for Base Entity meta-model patterns such as:

- Entity visualization.
- Entity persistency.
- Entity indexing (to support generic search feature).
- Entity history capturing (to support on-line history

archive).
When the various entity related patterns (supported by the Portal
Foundation) were implemented in the Entity Modules, it resulted
in several repetitive code patterns (often termed as software
clones). These clones were not seen as a major problem. In fact
we felt that we arrived at a reasonable compromise between:

 Complexity risk arising from needs to handle too many and
too complex variants of common functionality.

 Ease of Entity Module creation and modification.
 The amount of clones existing in the Entity Modules.

This assessment bears many similarities with common practices of
clone assessment in the financial software industry as described
by Cordy [10].

4. The product line problem
The Team Collaboration Portal (TCP) was first deployed to a few
software development teams at SES. The key Entity Modules
used were HTML-content/files/images (content management)
forum, news/announcement, task, and change requests. At this
point of time, no business vision existed for the TCP. It was
merely an internal support tool rather than a business product.
During the SARS crisis in May 2003, SES developed a portal to
facilitate analysis of people movements in hospitals. This portal
was to register people movement within a hospital to facilitate
tracing of people who could have been in contact with SARS

infected persons. Under great time pressure (5 days), two of SES
staff transformed the TCP into a People Tracking Portal and
integrated this portal with an external Radio Frequency
Identification (RFID) tracking system at two hospitals. Some key
Entity Modules in the People Tracking Portal were: zone, visitor,
visitor movement (including movement/contact analysis). With
this deployment, the portal actually turned into a business product
(even though from a business perspective this was more of a
community service).
Several other portals were later developed and deployed. Even
though development of new Entity Modules could be done with
reasonable ease (typically 500-1500 code lines each), constantly
growing need for enhancements to existing portals and
development of new portals resulted in increasing difficulty to
maintain the portal family.
Although a single team was maintaining most of the portals, it
was not possible to maintain them from a single code base for the
following reasons:

 The portals were deployed in a turnkey project manner rather
than a product manner. As a result, some portals were in a
frozen state where only critical defects would be corrected,
and feature enhancements were thus not wanted.

 Some of the required feature enhancements were only
applicable (and wanted) in one or a few portals and not in the
whole portal family.

 Even though some entity modules were required in multiple
portals, there were specific variations that applied to each
individual portal resulting in difficulties to maintain a single
code base.

At the same time, the SES team was given seven days to develop
an eLearning demonstration portal that required about 20 new
Entity Modules, and with the existing design and code volume
required for each Entity Module, it was deemed impossible to
achieve both design and implementation within a week.
In an effort to bring the situation under control, SES considered
applying more specialized methods [28], but later decided to apply
XVCL reuse technique [30][32]. A key factor in this decision was
the ability of XVCL to handle variations to reusable elements in a
selective manner, so that enhancements and modifications could
be applied in specific products or throughout the product line. The
decision was also influenced by encouraging results from earlier
experiments where:

 XVCL could unify similarity patterns in Java Buffer Library
and STL, resulting in reduction of maintained code by 68%
[14] and 50% [3], respectively.

 Another team at SES Systems applied XVCL to a C# 3-tier
application and achieved up to eight-fold effort reduction in
enhancing the application.

5. Introduction to XVCL
XVCL (XML-based Variant Configuration Language) [32] is a
meta-language, method and tool for enhancing changeability,
maintainability, and reusability of programs. XVCL is applied on
top of programs written in any programming language. The usual
strategy is to develop a program solution using conventional
design techniques, such as Object-Oriented or component-based.
XVCL is then applied on top of the program, to inject extra
degrees of changeability, non-redundancy or genericity, in the

 4

areas that conventional techniques do not yield a satisfactory
solution.
Using XVCL, we design generic, adaptable meta-components
called x-frames. X-frames represent domain knowledge in the
form of reusable assets, accommodating both domain defaults and
variants. X-frame body is written in the base language, which
could be a programming language such as Java, or a natural
language such as English. XVCL commands allow the
composition of x-frames (via <adapt> command), and also make
x-frames customizable by allowing one to select pre-defined
options based on certain conditions (via <select> command), by
marking breakpoints where additional changes can be inserted (via
<break> and <insert> commands), and by providing variables as a
parameterization mechanism (via <set> and <value-of>
commands).
X-frames are organized into a layered hierarchy called an x-
framework. X-frames at lower-levels are building blocks of
higher-level x-frames. The hierarchal x-framework enables us to
handle variants at all the granularity levels.

Frame 1

…

…

…

… Frame n

Adapt

XVCL
Processor

X-framework

ASP code
Composition &

Adaptation
File 1 File n…

Web Server

Runtime & DebuggingCoding & Construction

Figure 6. Construction of ASP Web Portals from a Web

Portal Architecture (called an x-framework in XVCL jargon).

An x-framework is an XVCL implementation of a product line
architecture concept [9]. XVCL supports automated configuration
of variants in product line assets. Given specifications recorded in
a special x-frame, the XVCL Processor traverses an x-framework,
performs composition and adaptation by executing XVCL
commands embedded in x-frames, and constructs components of a
specific system, a member of a product line. In Figure 6, we see
an illustration of the above in case of a Web Portal Product Line.
XVCL is based on Bassett’s frame technology that has been
applied by Netron Inc. to manage variants and evolve multi-
million-line, COBOL-based information systems. An independent
analysis showed that frame technology has reduced large software
project costs by over 84% and their times-to-market by 70%,
when compared to industry norms [4]. In 2000, a research team at
the Software Engineering Lab of National University of Singapore
developed XVCL [30][32], a refined form of frame language.
XVCL refines original frames into a general-purpose meta-
language that blends with contemporary programming and design
paradigms. XVCL processors were also developed and in
September 2002, XVCL was made available at an Open Source
forum (fxvcl.sourceforge.net), from which the latest XVCL
language specification, processor and source code can be
downloaded. Since then, researchers at NUS and SES Systems
have applied XVCL in many application domains (class libraries,
business systems, Web Portals), programming languages (Java,
C++, C#, ASP) and platforms (J2EE, .NET, Unix, Windows)
[3][14][31][32].

6. Project application of XVCL
6.1. Web Portal Product Line with XVCL
SES team built an XVCL-based Web Portal Product Line in two
phases. In the first phase, SES used XVCL to unify recurring
patterns of similar design across the Entity Modules. This first
approximation of the Web Portal Product Line Architecture was
called an Entity Module Architecture. In the second phase, SES
did the same for the Portal Foundation, creating a full-fledged
Web Portal Product Line Architecture (WP Architecture, for
short). The motivation for selecting this two-phased approach to
building the WP Architecture was as follows:

 The most immediate business goal was to increase
productivity of building and enhancing Entity Modules, while
enhancements of the Portal Foundation were of the lesser
concern.

 There were numerous variations in Entity Modules that
required much effort in adapting Entity Modules to the needs
of different portals, members of our WP Product Line.
Variations in the Portal Foundation were significantly less and
they were less complex.

 Based on earlier experiments [3][14][31], it could be expected
that XVCL might help SES effectively handle types of
similarities found in Entity Modules.

As exploiting reuse opportunities across Entity Modules was more
important, beneficial, promising, instructive and risky, SES
decided to launch an attack on it first. Two team members (with
only general knowledge of the XVCL technique) completed the
first phase in three working days. It should be also noted that these
two persons were very familiar with the TCP code and that one
person with extensive XVCL experience assisted them. A
simplified view of the resulting Entity Module Architecture is
illustrated in Figure 7.
As illustrated in Figure 7, the lowest level of the Entity Model
Architecture consisted of several generic customizable x-frames
grouped into views, pages and others. These generic x-frames
were adapted by Entity Module x-frames to form specific Entity
Modules. To construct the specific Entity Modules, these
adaptations were done using various XVCL mechanisms. At the
top level, WPs were formed by including the required, already
customized, Entity Modules.

DB Table

Entity

ControllerStatistics

Actions Adapt

Web Portal (WP)

Entity
Modules

Edit View

Display View

Mini View

List View

Post View

List Page

Edit Page

Print Page

Post Page

Display Page

Page

Task

Views Pages

Others

Figure 7. Entity Module Architecture for Phase 1.

 5

The Entity Module Architecture was driven by the meta-model of
the Entity Module (see Figure 4). The similarities of the design
greatly contributed to the short time required to construct the
Entity Module Architecture, and even though we yet have to find
any major weaknesses in the concept and structure of the Entity
Module Architecture, we make no claims of this being a standard
approach for success.
The second phase targeted at inclusion of the Portal Foundation
into the WP Architecture. Even though we put no special effort to
identify similarity patterns and unify them with XVCL, this phase
was still important as it established a foundation for future
enhancements.
A comparison between the code lines in the portal before and after
application of XVCL is provided in Table 3.
A sample comparison between the Entity Module code lines
before and after application of XVCL is provided in Table 4.

Table 3. Portal code line comparison

 Original TCP
(ASP)

WP Architecture
(XVCL)

Generated
portal (ASP)

Portal Foundation* 15180 14021 16401

Entity Modules* 16322 1577 30474

Entity Module X-
Frames

N/A 4119 N/A

Σ 31502 19717 46875

*XVCL code for 8 entities were constructed without use of the Entity
Module x-frames and thus included as a part of the Portal Foundation

Table 4. Entity Module code line comparison

Entity Module Original TCP
(ASP)

WP Architecture
(XVCL)

Generated
portal (ASP)

Help* 722 133 1490

Web Page 514 50 1428

User 755 54 1717

Task (todo) 1295 147 2429

.

Σ 16322 1577 30474

From Table 3 we see that the number of code lines have been
reduced from 31502 to 19717 (37% reduction). This moderate
reduction is due to the fact that the Portal Foundation in the
original TCP and WP Architecture remained almost unchanged,
since we did not target at unifying similarities in this area. If we
instead focus on the Entity Modules, we can see a reduction from
16322 to 5696 (65% reduction), and this number is similar to what
we have seen in earlier experiments [14]. It should also be noted
that the managed code lines for Entity Modules have been reduced
from 16322 to 1577 (90% reduction). This significant reduction
of managed code translated into productivity gains that allowed us
to create more than 20 Entity Modules for e-Learning
demonstration portal less than one week.
 From Table 4, we see that the code line reduction differs across
the Entity Modules. These variations are dependent on how much
the individual Entity Modules differ from the generic Entity
Module in the Entity Module Architecture. The increase of code
lines across Entity Modules could sometimes be linked to certain
variation types that were inducing extra repeated similarity

patterns. In such cases, we could often improve the Entity Module
Architecture by unifying them with XVCL.
An example of such an improvement is that during the
development of the WP Architecture, each entity module x-frame
adapted a single page x-frame many times to form all the different
page types (edit page, display page, print page, etc). Even though
the adaptation of each page only required about 4-8 code lines, we
found it beneficial to consolidate such clones into more
specialized frames, so that each page type could be generated
from a single code line. This specialization is illustrated in the
transition from a) to b) of Figure 8.

Adapt

List Page

Edit Page

Print Page

Post Page

Display Page

Page

Task

Page

Task

Entity
Module
Frames

a) b) Entity
Module
Frames

Figure 8. Evolving the WP Architecture to eliminate

redundancies.

6.2. Enhancing the WP Architecture
Having implemented and used the WP Architecture, we continued
to implement various enhancements required by new customers.
Some of these enhancements were of similar kind to the
enhancements that caused problems before the WP Architecture
was created. We believe that meeting challenges of evolution,
especially changes in emerging new, unexpected directions, is an
ultimate test for the product line success. We believe our solution
passed this test and in this section, we report some of our
experiences in that area.

6.2.1. Entity attributes and business logic variations
The Entity Modules for management of Change Request [7]
required special customization to cater for different levels of
formality applied in small and big projects.
For small projects, we handled Change Requests in a quite
informal manner by capturing only a few states (such as
Submitted, Analyzed, Implemented, Closed, Duplicated and
Rejected). We did not formalize the state transitions, but some
business logic was required to capture the timing of state
transition for the trend analysis purpose.
For larger projects, the Change Request would have additional
attributes (some mandatory and some optional). Additional states
and extended business logic were also required to enforce the state
transition rules (e.g., Changes Requests had to enter the Approved
state before transition to the Implemented state, etc.).
We started with a Change Request Entity Module for portals
supporting small teams. This Entity Module was then enhanced
with XVCL mechanisms to facilitate variations related to large
teams. In particular, we created an x-frame to represent the
specific attributes and business logic for Change Requests in
portals for large teams. We then used this x-frame to extend the
basic Change Request Module to cater for large team variations
(Figure 9).

 6

Change Request
(enhancements for large teams)

Specific attributesSpecific business logic

Change Request
(small teams)

Adapt

Figure 9. Extending the Change Request Module.

6.2.2. Entity relationship variations
Even though the entity attributes and business logic may be fully
reused across portals, entity relationships may require
customizations, too.
As an example, for certain portals a Log File Entity was created
and defined as a composite of the Change Request for large teams.
Again, we enhanced the Change Request Entity Module with
XVCL mechanisms to represent the required relationships.

Change Request
(small teams)

Change Request
(large team)

Change Request
(small teams)

Change Request
(small teams)

AdaptChange Request
(with associations)

Relationship definitions

Adapt

Figure 10. Extending the Change Request with relationships.

6.2.3. Other variations
To further support the Web Portal Product Line, we grouped the
Entity Modules of our WP Architecture into four categories,
shown in Figure 11.

Specific

Portal Foundation

WP-A

A1

An

General
G1

Fundamental
F1

Fn Gn

Adapted
AG1

AGn

Entity
Modules

a) b) c) d)

e)

e) e)

e)

Portal
Specific

f)

f)

Figure 11. Entity Module organizations.

A specific portal, WP-A, was typically created using:
a) A common set of Fundamental Entity Modules (F1-Fn).
b) A selective set of General Entity Modules (a subset of G1-

Gn)
c) A selected set of General Entity Modules adapted in a

portal specific manner (AG1-AGn)
d) A set of Portal Specific Entity Modules (A1-An).

Within each group of Entity Modules, more specialized modules
were created by adapting other modules e). Similar reuse was also
applied for construction of General and Specific modules f).
The WP Architecture intentionally restricted cross-usage of parts
specific to one WP c) and d) in other WPs built upon the WP
Architecture. If during evolution such reuse was needed,
developers converted d) structure to a b) or c) structure. This
approach ensured that each WP only depended on the general and
fundamental parts. By selecting this approach, SES could ensure
independent evolution of WPs, without breaking their connection
with WP Architecture. Individually evolving WPs could still
benefit from upgrades of general or fundamental parts
implemented in the WP Architecture. There was no need to keep
traceability between reuse across WPs, either. Specific WP only
needed to be re-processed if there was a change within the portal
itself or in the general or fundamental parts. Using the solution
above, new features of a Entity Module could be propagated to
selected WPs, product line members, without affecting other WPs
that did not need those features.

6.3. Building new portals based on the WP
Architecture

We have developed nine portals based on the WP Architecture.
Our WP Architecture facilitates incremental development of new
portals, with each increment involving some or all of the
following steps:
1. Functional Definition: A starting point for an entity model of
the portal is the same as in Figure 3. This model is then refined
with definition of typed attributes and input/display formats. The
model is finally complemented by definition of business logic,
with the intention of letting the model play an effective role in
driving our architecture.
2. Portal Definition: First, we create an x-frame to indicate
which Entity Modules provided by the WP Architecture are to be
included into the new portal. Each such module may be reused "as
is" or after adaptations.
3. Coding and testing: Entity Modules of a new portal are built
based on “most similar” Entity Modules from the WP
Architecture. At times, it is beneficial to select an already adapted
Entity Module used in some other portal (as discussed in Section
6.2.3). The idea is to start with an Entity Module that requires
minimum adaptation effort. The Entity Modules are then
debugged and tested one at the time.
New portals may differ in reused entities, the details of their
customizations, as well as in entities specific to the new portal
(not catered for in the WP Architecture). Once implemented and
tested, specific entities with reuse potential are included into the
WP Architecture.
The level of customization of the nine first portals is illustrated in
Table 5. The consolidated code lines for these portals are listed in
Table 6. With our Web Portal Product Line, we have produced
nine portals from a total of 24574 XVCL code lines (Table 6).

 7

Comparing this with the 31502 ASP code lines of the original
TCP (Table 3), we conclude that even though we have expanded
from a single portal to a product line of 9 portals, we have reduced
the code by 22%.

Table 5. Portal specific code lines

Entities Portal
Abbrev. Reused Customized Specific

Portal
specific
XVCL

Apol 21 0 9 617
Cq 17 0 3 271

Csap 18 3 0 157
Demo 18 4 1 958
Ecap 19 3 4 363

Feptp 18 7 0 439
Gered 21 0 10 665

Eses 20 0 1 120
Ework 19 3 4 363

Σ N/A N/A N/A 3953

Table 6. WP Architecture code lines for 9 portals

Item XVCL Remark
Portal Foundation 14021 (from Table 3)
Entity Module X-
Frames
(terminology)

4119 (from Table 3)

Shared entities 2481 Entities shared across
portals

Portal specific code 3953 (from Table 5)

Σ 24574 Total for 9 portals

7. Summary of project experiences

7.1. Strengths of the adopted approach
With WP Architecture, SES observed significant benefits such as
overall reduction of managed code lines by 37%, reduction of
Entity Module code lines by 65%, and as much as 90% code line
reduction for creation of new Entity Modules. For development of
new Entity Modules, SES observed 4-8 times reduction in
required effort. The size of the WP Architecture from which we
generated nine WPs was 22% less than the size of the initial
Team Collaboration Portal. This 22% reduction of code size is
consistent with measurements/feedback that both effort and
difficulty in maintaining the original TCP were significantly more
than what is now required for the whole product line.
In component-based development, we usually try to stabilize an
architecture, in particular component interfaces. The Web Portal
project at SES started with the same perception. However, as the
work progressed, it was found that, when applying XVCL, the
stability of interfaces were less of an issue. Retrospectively, it
seems that this phenomenon is due to non-redundancy achieved in
the XVCL representation, but we have yet to come up with full
interpretation of this result. This interface-tolerance and the ability

of XVCL to absorb such changes with ease allowed SES to freely
experiment with enhancements and changes to core Portal
Foundation services and related mechanisms.
Many XVCL concepts, such as parameterization, selection and
iteration, are similar to programming language concepts. Even
though there are specifics of XVCL that must be understood, it
was found relatively easy to start with XVCL as compared to
conventional programming languages and environments where
developers in addition to the language must be familiar with
infrastructural support such as class libraries.
Interestingly, SES built our WP Architecture without conducting
any systematic domain analysis [25]. Web Portals built in the past
was the only source of the domain knowledge. Extractive
approach [18] proved an effective way to built the initial WP
Architecture, and reactive approach helped SES gradually refine it
as SES was addressing new types of Web Portals. The advantage
of such an approach, as compared to proactive approach, is low
investment and fast results [18].
A common problem with scalability of the product line approach
is explosion of the number of variant features and feature
dependencies [12]. This often leads to the explosion of similar
component versions that hinders reuse. While the WP project dealt
with a substantial number of variant features, SES avoided
explosion of similar component versions by identifying similarity
patterns in component design and building generic components
from which multiple forms of concrete components could be
produced.

7.2. Pitfalls of the adopted approach
XVCL structures organize design and code at the meta-level for
enhanced genericity and changeability. This meta-level
decomposition is parallel to conventional modular decomposition
along component (function or class) boundaries. A part of
applying XVCL is that XVCL commands become embedded into
the source code. As a result, developers must know and manage
multiple languages within the x-frames (XVCL, ASP, HTML) and
this kind of complexity may have impact on productivity and
maintainability [5]. There is a great opportunity here for XVCL-
specific tools to help developers analyze “mixed strategy”
solutions offered by Web technology plus XVCL.
Another problem occurs when using XVCL together with
Integrated Development Environments (IDE) that perform code
generation. Since many popular IDE’s support such features (such
as MS Visual Studio, Eclipse, etc), the perception of some
software engineers may be that XVCL is a step backwards in time,
and even though the XVCL Workbench being developed at NUS
makes a move in the direction of visual support for XVCL, we see
the need for further industrial collaboration in this area.
Debugging is yet another area into which XVCL induces extra
complexities. In WP project, the runtime debugging was
performed on the ASP code generated by the XVCL processor
(Figure 6). As a result, developers had to maintain a ‘mental
picture’ of mappings from x-frames to the runtime ASP code. This
extra step made debugging more complex. Again, proper tool
support can help developers better cope with those problems.
Engineering processes play an important role in industrial
software development, and even though SES has demonstrated
how XVCL can help in development of a Web Portal Product
Line Architecture, the experience comes from application in a
small development team, with primary focus on software change

 8

management (as defined by [7]). Future studies should focus on
how to apply XVCL in larger development teams, using full-
fledged software engineering processes.

8. Related work
Studies show much similarities at the design and code levels
across Web Portals, both inside portal modules and across
modules [17][26]. To save effort, developers often use “copy-
paste-modify” to reuse existing functionality. While such ad hoc
reuse cuts development cost, in long run it does not pay-off, as it
hinders maintenance [17]. Tight schedules and much repetition
make Web domain an attractive candidate for exploring more
systematic forms of reuse [28], including the product line
approach [6].
Advanced scripting languages such as PHP [21] help developers
unify certain patterns of repetition, but it is yet to be shown if and
how such languages can support systematic reuse as required in
the product line approach. A number of authors explored
modeling of Web application with UML for both requirement
elicitation and reuse [2][27]. Our model-based design techniques
described in this paper uses UML conventions to create models
that drive reuse-based design of portal modules in a similar way as
extended Entity-Relationship models facilitated generation of user
interfaces, database schema, and sometimes parts of business logic
in CASE tools [18].
Among Krueger’s three approaches to building a product line
[18], SES first applied extractive approach to build a first-cut Web
Portal product Line Architecture, and then reactive approach to
refine it with new features. SES project experiences resemble
Salion’s experiences [19]. By applying reactive approach, both
projects achieved similar productivity figures, despite differences
in application domains (Web Portals vs. Supplier-Customer
systems) and reuse techniques applied (XVCL vs. GEARS [5]).

9. Conclusions
SES Systems Pte. Ltd. applied a reuse technique of XVCL to
build a Web Portal Product Line. In the paper, we described a
process that led to building the solution, and project experiences.
Unique features of the adopted technical approach is a successful
merger of advanced conventional techniques (such as a model-
based design), with light-weight application of meta-level reuse
technique of XVCL. SES built a Web Portal Product Line
Architecture (WP Architecture, for short) incrementally, applying
extractive approach [18] to convert the personal Web Portal
developed by the first author of this paper, into the fist-cut
“generic Web Portal”. The “generic Web Portal” was then refined
into a WP Architecture with reactive approach.
Unique benefits observed in this project include:

 Significant productivity gains when building new portals.
Based on the WP Architecture, we could build new portal
modules by writing as little as 10% of unique custom code,
while the rest of code could be reused. This code reduction
translated into estimated eight-fold reduction of effort
required to build new portals with reuse of the WP
Architecture, as opposed to the original situation.

 Significant reduction of maintenance effort when enhancing
individual portals. The overall managed code lines for nine
portals were 22% less than the original single portal.

 Ease of enhancing individual portal products with new
features in without loosing the connection between reusable
base of portal components in the WP Architecture and the
portal code.

 Short time (less than 2 weeks) and small effort (2 persons) to
transform the TCP into the first version of the WP
Architecture

 Ease of evolving the WP Architecture in new, unexpected
directions.

The approach allowed SES to successfully face a number of
product line challenges such as explosion of variant feature and
their combinations, and evolution of the WP Architecture and
individual products.
SES Systems Pte. Ltd. has a seven-year long partnership with the
Reuse Group at the National University of Singapore (NUS). A
joint research project under the Singapore-Ontario research
programme, which also included University of Waterloo and
Netron, Inc. from Toronto, resulted in the XVCL method and first
pilot projects at SES Systems. This collaboration culminated in
the application of XVCL to supporting the Web Portal Product
Line, as described in this paper. It is hoped that the future joint
NUS/SES projects can bridge the gap between XVCL as a mere
powerful language and its integration into the best practices of
industrial software engineering. In particular, it is planed to apply
reuse techniques in more application domains, formulate
systematic methods based on project experiences, define
processes, and implement tools that can bring XVCL into
industrial applications.

References
[1] Active Server Pages – ASP,

http://msdn.microsoft.com/library/default.asp?url=/nhp/defau
lt.asp?contentid=28000522

[2] Aversano, L., Canfora, G., De Lucia, A., Gallucci, P., “Web
site reuse: cloning and adapting” Proc. 3rd Intl. Workshop on
Web Site Evolution, (WSE’01), pp.107 – 111

[3] Basit, H.A., Rajapakse, D.C., and Jarzabek, S. “Beyond
Templates: a Study of Clones in the STL and Some General
Implications,” accepted for Int. Conf. Software Engineering,
ICSE’05; available at http://fxvcl.sourceforge.net

[4] Bassett, P. Framing software reuse - lessons from real world,
Yourdon Press, Prentice Hall, 1997

[5] BigLever Software Inc. www.biglever.com
[6] Capilla, R., Duenas, J.C., “Light-weight product-lines for

evolution and maintenance of Web sites,” Proc. Seventh
European Conference on Software Maintenance and
Reengineering, (CSMR’ 2003), pp. 53 - 62

[7] Crnkovic, I. “Change Measurements in an SCM process,”
System Configuration Management SCM-8 proceedings,
Brussels, Belgium. January 1998

[8] System Configuration Management SCM-8 proceedings,
Brussels, Belgium. January 1998

[9] Clements, P. and Northrop, L. Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002

[10] Cordy, J. R., "Comprehending Reality: Practical Challenges
to Software Maintenance Automation," Proc. 11th IEEE Intl.
Workshop on Program Comprehension, (IWPC 2003), pp.
196-206

 9

http://www.comp.nus.edu.sg/~stan/PAPERS/STL.pdf
http://www.comp.nus.edu.sg/~stan/PAPERS/STL.pdf
http://www.comp.nus.edu.sg/~stan/PAPERS/STL.pdf
http://fxvcl.sourceforge.net/
http://www.amazon.com/exec/obidos/ASIN/013327859X/qid%3D1001153685/ref%3Dsr%5F11%5F0%5F1/002-1439406-3218410

[11] Czarnecki, K. and Eisenecker, U. Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000

[12] Deelstra, S., Sinnema, M. and Bosch, J. “Experiences in
Software Product Families: Problems and Issues during
Product Derivation,” Proc. Software Product Lines
Conference, SPLC3, Boston, Aug. 2004, LNCS 3154,
Springer-Verlag, pp. 165-182

[13] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns – Elements of Reusable Object-Oriented Software,
1995, Addison-Wesley

[14] Ginge, A., and Murugesan, S. “Web Engineering: An
Introduction,” IEEE MultiMedia, 8(2), 2001, pp. 14-18

[15] Ginge, A., and Murugesan, S.: “The Essence of Web
Engineering,” IEEE MultiMedia, 8(2), 2001, pp 22-25

[16] Jarzabek, S. and Li, S. "Eliminating Redundancies with a
“Composition with Adaptation” Meta-programming
Technique," Proc. ESEC-FSE'03, European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering, September 2003,
Helsinki, pp. 237-246

[17] Lanubile, F., Mallardo, T., “Finding function clones in Web
applications,” Proc. Seventh European Conference on
Software Maintenance and Reengineering, (CSMR’ 2003).
pp.379 – 386

[18] Krueger, C. “Eliminating the Adoption Barrier,” Point-
Counter Point Column, in IEEE Software, special issue on
Initiating Software Product Lines, July/August 2002, pages
28-31

[19] Krueger, C. “Salion’s Experience with a Reactive Software
Product Line Approach,” 5th Int. Workshop Product Family
Engineering PFE5, 2003, LNCS 3014, Springer-Verlag, pp.
317-322

[20] McClure, C. CASE is Software Automation, Prentice Hall,
1989

[21] Minsky, M., “A framework for representing knowledge,” The
Psychology of Computer Vision, P. Winston (ed.), New
York: McGraw-Hill, 1975

[22] Personal Web Portal, http://www.ulfpettersson.com/.
[23] PHP: http://www.php.net/
[24] Pressman, R.S., et al. “Can Internet-Based Applications Be

Engineered?,” IEEE Software, vol. 15, no. 5, Sept 1998, pp.
104 – 110

[25] Prieto-Diaz, R. “Domain analysis for reusability,” Proc.
COMPSAC’87, October 1987, Tokyo, Japan, pp. 23-29

[26] Rajapakse, D. and Jarzabek, S. “An Investigation of Cloning
in Web Portals,” submitted for publication

[27] Rossi, G., Schwabe, D., and Lyardet, F., "Abstraction and
Reuse Mechanisms in Web Application Models," Proc.
Conceptual Modeling for E-Business and the Web(Er 2000),
Workshops on Conceptual Modeling Approaches for E-
Business and the World Wide Web and Conceptual
Modeling, pp.76-90

[28] Schwabe, D. ,Esmeraldo, L., Rossi, G., Lyardet, F.,
"Engineering Web Applications for Reuse," IEEE
MultiMedia, vol. 8, no. 1, 2001, pp. 20-31

[29] Wong, K., “Toward Reusable and Evolvable Web Sites,”
Proc. 1st Annual Workshop on Web Site Evolution, (WSE'99),
pp. 49 - 52

[30] Wong, T.W., Jarzabek, S., Myat Swe, S., Shen, R. and
Zhang, H.Y. “XML Implementation of Frame Processor,”
Proc. ACM Symposium on Software Reusability, SSR’01,
Toronto, Canada, May 2001, pp. 164-172

[31] Zhang, H. and Jarzabek, S., “An XVCL-based Approach to
Software Product Line Development”, Proc. 15th Int. Conf.
on Software Engineering and Knowledge Engineering
(SEKE’03), San Francisco, USA, 1 - 3 July, 2003

[32] XVCL (XML-based Variant Configuration Language)
method and tool for managing software changes during
evolution and reuse, http://fxvcl.sourceforge.net

 10

http://www.comp.nus.edu.sg/~stan/PAPERS/ssr01.pdf
http://fxvcl.sourceforge.net/

	Industrial Experience with Building a Web Portal Product Lin
	Ulf Pettersson
	SES Systems Pte. Ltd.
	ulfp@stee.stengg.com
	Stan Jarzabek
	National University of Singapore
	Department of Computer Science
	stan@comp.nus.edu.sg
	ABSTRACT
	Imprecise, frequently changing requirements and short time-t
	Categories and Subject Descriptors
	D.2.2 [SOFTWARE ENGINEERING]: Design Tools and Techniques; D
	General Terms
	Design, Languages, Experimentation
	Keywords
	Web engineering, reuse, software product lines, maintenance,
	Introduction
	Imprecise and frequently changed requirements, and short tim
	SES created a Web Portal Product Line incrementally, applyin
	Unique characteristics of our approach and project experienc
	Short time (less than 2 weeks) and small effort (2 persons)
	High productivity in building new portals from the WP Archit
	Wide range of portals differing in a large number of inter-d
	Ease of evolving the WP Architecture in new, unexpected dire
	Ease of handling multiple portal products during evolution (
	The above characteristics and productivity indicators are of
	We attribute the above to a successful merger of two design
	In the paper, we describe the Web Portal Product Line projec
	The Team Collaboration Portal (TCP)
	The starting point for the project was a Web-based Team Coll
	Figure 1: Partial functional view of the TCP.
	A subset of the functional modules of the TCP is illustrated
	Initial design of the TCP for reuse
	Though a Web Portal product line was not our explicit target
	At SES Systems, we characterize and scope applications in te
	At the top level, the TCP was designed around a Portal Found
	Figure 2. Top-level architecture of the TCP.
	While some of the functional modules implemented specific an
	Create an entity
	Edit/update of entity
	Delete of entity
	Display of entity
	Display of entity listing
	Capture and display of entity history
	There were also similarities in the way infrastructure servi
	We built a number of models to identify and explicate simila
	Entity Modules

	Table 1 identifies most of the Entity Modules in the TCP.
	Table 1. TCP Entities.
	Entity Module
	Description
	Feedback
	Capture user feedback on the portal.
	Folder
	Container for other entities.
	Forum
	Discussion forum.
	Forum Topic
	Topics within the discussion forum.
	Help
	General and context sensitive help information.
	History
	History records of entities (old versions).
	HTML Content
	Portal content in HTML format (on-line managed HTML content)
	Menu
	Menus for navigation within the portal (and to external URLs
	News
	News/Announcement content.
	Page Access
	Control user access to pages.
	Poll
	Polls for user feedback.
	Post
	Comments posted for entities (such as comments on a HTML Con
	Profile
	User-specific preferences.
	Quiz
	A simple on-line quiz (user self-tests applied after informa
	Rate Log
	Capture user ratings of entities.
	Search Index
	Dynamic search index built as and when entities are updated.
	Session Log
	User session (login) history.
	Site Information
	Portal revision history, etc.
	Task
	Tasks assigned to users (ToDo & Action items).
	User
	Administration of users and their access rights.
	User Action Log
	Logging (audit trail) of all user input actions.
	Figure 3 shows the entity model as a UML class diagram.
	Figure 3. TCP model example.
	As seen in the Figure 3, entities are derived from an abstra
	From the entity model, we identified some reuse opportunitie
	To further understand the common behavior of the entities, w
	Figure 4. Meta-model around Base Entity.
	The roles of the classes in the meta-model are as follows:
	Base Entity: Defines entity attributes and mapping of attrib
	Entity Controller: Handles coordination between entity, enti
	Entity View: Defines a presentation view of the entity (i.e.
	Edit view: A view for editing of an entity.
	Display view: A view for display of all attributes of an en
	List view: A view for displaying a sorted listing of entitie
	Mini list view: A view for a small sorted and/or filtered li
	Module Page: Represents a web page displayed in the Web brow
	Table 2. Module Pages for Entity Module.
	Web Page
	Main View
	Purpose
	List Page
	List View*
	Displays a list of entities.
	Edit Page
	Edit View*
	Displays a form for entity editing.
	Display Page
	Display View*
	Displays all details of an entity
	Print Page
	Display View*
	Displays all details of an entity, but without a page header
	Post Page
	Post Edit View#
	Displays a form for postings related to an entity.
	* Entity specific view.
	# General view shared by entities.
	The personal portal example shown in Figure 5 illustrates ho
	Figure 5. Web page composed by views.
	Portal Foundation

	The Portal Foundation (as illustrated in Figure 2) aimed to
	Session and Access Control.
	Page formatting.
	Site Configuration.
	Database persistency, indexing and search.
	Support for Base Entity meta-model patterns such as:
	Entity visualization.
	Entity persistency.
	Entity indexing (to support generic search feature).
	Entity history capturing (to support on-line history archive
	When the various entity related patterns (supported by the P
	Complexity risk arising from needs to handle too many and to
	Ease of Entity Module creation and modification.
	The amount of clones existing in the Entity Modules.
	This assessment bears many similarities with common practice
	The product line problem
	The Team Collaboration Portal (TCP) was first deployed to a
	During the SARS crisis in May 2003, SES developed a portal t
	Several other portals were later developed and deployed. Eve
	Although a single team was maintaining most of the portals,
	The portals were deployed in a turnkey project manner rather
	Some of the required feature enhancements were only applicab
	Even though some entity modules were required in multiple po
	At the same time, the SES team was given seven days to devel
	In an effort to bring the situation under control, SES consi
	XVCL could unify similarity patterns in Java Buffer Library
	Another team at SES Systems applied XVCL to a C# 3-tier appl
	Introduction to XVCL
	XVCL (XML-based Variant Configuration Language) [32] is a me
	Using XVCL, we design generic, adaptable meta-components cal
	X-frames are organized into a layered hierarchy called an x-
	Figure 6. Construction of ASP Web Portals from a Web Portal
	An x-framework is an XVCL implementation of a product line a
	XVCL is based on Bassett’s frame technology that has been ap
	Project application of XVCL
	Web Portal Product Line with XVCL

	SES team built an XVCL-based Web Portal Product Line in two
	The most immediate business goal was to increase productivit
	There were numerous variations in Entity Modules that requir
	Based on earlier experiments [3][14][31], it could be expect
	As exploiting reuse opportunities across Entity Modules was
	As illustrated in Figure 7, the lowest level of the Entity M
	Figure 7. Entity Module Architecture for Phase 1.
	The Entity Module Architecture was driven by the meta-model
	The second phase targeted at inclusion of the Portal Foundat
	A comparison between the code lines in the portal before and
	A sample comparison between the Entity Module code lines bef
	Table 3. Portal code line comparison
	Original TCP �(ASP)
	WP Architecture (XVCL)
	Generated portal (ASP)
	Portal Foundation*
	15180
	14021
	16401
	Entity Modules*
	16322
	1577
	30474
	Entity Module X-Frames
	N/A
	4119
	N/A
	Σ
	31502
	19717
	46875
	*XVCL code for 8 entities were constructed without use of th
	Table 4. Entity Module code line comparison
	Entity Module
	Original TCP �(ASP)
	WP Architecture (XVCL)
	Generated portal (ASP)
	Help*
	722
	133
	1490
	Web Page
	514
	50
	1428
	User
	755
	54
	1717
	Task (todo)
	1295
	147
	2429
	. . .
	. . .
	. . .
	. . .
	Σ
	16322
	1577
	30474
	From Table 3 we see that the number of code lines have been
	From Table 4, we see that the code line reduction differs ac
	An example of such an improvement is that during the development of the WP Architecture, each entity module x-frame adapted a single page x-frame many times to form all the differe
	Figure 8. Evolving the WP Architecture to eliminate redundan
	Enhancing the WP Architecture

	Having implemented and used the WP Architecture, we continue
	Entity attributes and business logic variations

	The Entity Modules for management of Change Request [7] requ
	For small projects, we handled Change Requests in a quite in
	For larger projects, the Change Request would have additiona
	We started with a Change Request Entity Module for portals s
	Figure 9. Extending the Change Request Module.
	Entity relationship variations

	Even though the entity attributes and business logic may be
	As an example, for certain portals a Log File Entity was cre
	Figure 10. Extending the Change Request with relationships.
	Other variations

	To further support the Web Portal Product Line, we grouped t
	Figure 11. Entity Module organizations.
	A specific portal, WP-A, was typically created using:
	A common set of Fundamental Entity Modules (F1-Fn).
	A selective set of General Entity Modules (a subset of G1-Gn
	A selected set of General Entity Modules adapted in a portal
	A set of Portal Specific Entity Modules (A1-An).
	Within each group of Entity Modules, more specialized modules were created by adapting other modules e). Similar reuse was also applied for construction of General and Specific mod
	The WP Architecture intentionally restricted cross-usage of parts specific to one WP c) and d) in other WPs built upon the WP Architecture. If during evolution such reuse was neede
	Building new portals based on the WP Architecture

	We have developed nine portals based on the WP Architecture.
	Functional Definition: A starting point for an entity model
	Portal Definition: First, we create an x-frame to indicate w
	Coding and testing: Entity Modules of a new portal are built
	New portals may differ in reused entities, the details of th
	The level of customization of the nine first portals is illu
	Table 5. Portal specific code lines
	Portal Abbrev.
	Entities
	Portal specific XVCL
	Reused
	Customized
	Specific
	Apol
	21
	0
	9
	617
	Cq
	17
	0
	3
	271
	Csap
	18
	3
	0
	157
	Demo
	18
	4
	1
	958
	Ecap
	19
	3
	4
	363
	Feptp
	18
	7
	0
	439
	Gered
	21
	0
	10
	665
	Eses
	20
	0
	1
	120
	Ework
	19
	3
	4
	363
	Σ
	N/A
	N/A
	N/A
	3953
	Table 6. WP Architecture code lines for 9 portals
	Item
	XVCL
	Remark
	Portal Foundation
	14021
	(from Table 3)
	Entity Module X-Frames (terminology)
	4119
	(from Table 3)
	Shared entities
	2481
	Entities shared across portals
	Portal specific code
	3953
	(from Table 5)
	Σ
	24574
	Total for 9 portals
	Summary of project experiences
	Strengths of the adopted approach

	With WP Architecture, SES observed significant benefits such
	In component-based development, we usually try to stabilize
	Many XVCL concepts, such as parameterization, selection and
	Interestingly, SES built our WP Architecture without conduct
	A common problem with scalability of the product line approa
	Pitfalls of the adopted approach

	XVCL structures organize design and code at the meta-level f
	Another problem occurs when using XVCL together with Integra
	Debugging is yet another area into which XVCL induces extra
	Engineering processes play an important role in industrial s
	Related work
	Studies show much similarities at the design and code levels
	Advanced scripting languages such as PHP [21] help developer
	Among Krueger’s three approaches to building a product line
	Conclusions
	SES Systems Pte. Ltd. applied a reuse technique of XVCL to b
	Unique features of the adopted technical approach is a succe
	Unique benefits observed in this project include:
	Significant productivity gains when building new portals. Ba
	Significant reduction of maintenance effort when enhancing i
	Ease of enhancing individual portal products with new featur
	Short time (less than 2 weeks) and small effort (2 persons)
	Ease of evolving the WP Architecture in new, unexpected dire
	The approach allowed SES to successfully face a number of pr
	SES Systems Pte. Ltd. has a seven-year long partnership with
	References
	Active Server Pages – ASP, http://msdn.microsoft.com/library
	Aversano, L., Canfora, G., De Lucia, A., Gallucci, P., “Web
	Basit, H.A., Rajapakse, D.C., and Jarzabek, S. “Beyond Templ
	Bassett, P. Framing software reuse - lessons from real world
	BigLever Software Inc. www.biglever.com
	Capilla, R., Duenas, J.C., “Light-weight product-lines for e
	Crnkovic, I. “Change Measurements in an SCM process,” System
	System Configuration Management SCM-8 proceedings, Brussels,
	Clements, P. and Northrop, L. Software Product Lines: Practi
	Cordy, J. R., "Comprehending Reality: Practical Challenges t
	Czarnecki, K. and Eisenecker, U. Generative Programming: Met
	Deelstra, S., Sinnema, M. and Bosch, J. “Experiences in Soft
	Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Pa
	Ginge, A., and Murugesan, S. “Web Engineering: An Introducti
	Ginge, A., and Murugesan, S.: “The Essence of Web Engineerin
	Jarzabek, S. and Li, S. "Eliminating Redundancies with a “Co
	Lanubile, F., Mallardo, T., “Finding function clones in Web
	Krueger, C. “Eliminating the Adoption Barrier,” Point-Counte
	Krueger, C. “Salion’s Experience with a Reactive Software Pr
	McClure, C. CASE is Software Automation, Prentice Hall, 1989
	Minsky, M., “A framework for representing knowledge,” The Ps
	Personal Web Portal, http://www.ulfpettersson.com/.
	PHP: http://www.php.net/
	Pressman, R.S., et al. “Can Internet-Based Applications Be E
	Prieto-Diaz, R. “Domain analysis for reusability,” Proc. COM
	Rajapakse, D. and Jarzabek, S. “An Investigation of Cloning
	Rossi, G., Schwabe, D., and Lyardet, F., "Abstraction and Re
	Schwabe, D. ,Esmeraldo, L., Rossi, G., Lyardet, F., "Enginee
	Wong, K., “Toward Reusable and Evolvable Web Sites,” Proc. 1
	Wong, T.W., Jarzabek, S., Myat Swe, S., Shen, R. and Zhang,
	Zhang, H. and Jarzabek, S., “An XVCL-based Approach to Softw
	XVCL (XML-based Variant Configuration Language) method and t

