
MAAN: A Multi-Attribute Addressable Network for Grid Information Services

Min Cai, Martin Frank, Jinbo Chen, Pedro Szekely

Information Sciences Institute
University of Southern California

Marina del Rey, CA 90292
{mcai,frank,jinbo,szekely}@isi.edu

Abstract

Recent structured Peer-to-Peer (P2P) systems such as
Distributed Hash Tables (DHTs) offer scalable key-based
lookup for distributed resources. However, they cannot be
simply applied to grid information services because grid
resources need to be registered and searched using multi-
ple attributes. This paper proposes a Multi-Attribute Ad-
dressable Network (MAAN) which extends Chord to support
multi-attribute and range queries. MAAN addresses range
queries by mapping attribute values to the Chord identifier
space via uniform locality preserving hashing. It uses an
iterative or single attribute dominated query routing algo-
rithm to resolve multi-attribute based queries. Each node
in MAAN only has O(log N) neighbors for N nodes. The
number of routing hops to resolve a multi-attribute range
query is O(log N + N × smin), where smin is the minimum
range selectivity on all attributes. When smin = ε, it is
logarithmic to the number of nodes, which is scalable to a
large number of nodes and attributes. We also measured the
performance of our MAAN implementation and the experi-
mental results are consistent with our theoretical analysis.

1. Introduction

Grid computing is emerging as a novel approach of
employing distributed computational and storage resources
to solve large-scale problems in science, engineering, and
commerce. Grid computing on a large scale requires ef-
ficient resource registration and lookup. Traditional ap-
proaches maintain a centralized server or a set of hierarchi-
cally organized servers to index resource information. For

example, Globus [5] uses an LDAP-based directory service
named MDS [4] for resource registration and lookup. How-
ever, this centralized approach has the inherent drawback
of a single point of failure. The centralized server(s) can
also become a registration bottleneck in a highly dynamic
environment where many resources join, leave, and change
characteristics (such as CPU load) at any time. Thus, it does
not scale well to a large number of grid nodes across au-
tonomous organizations.

To overcome the above shortcomings of centralized ap-
proaches, Adriana Iamnitch et al. [8] proposed a P2P ap-
proach to organize the MDS directories in a flat, dynamic
P2P network. Every virtual organization in the grid dedi-
cates a certain amount of its resources as peers which host
information services. Those peers constitute a P2P network
between organizations. Resource requesters can search de-
sired resources through query forwarding which is similar
to unstructured P2P systems such as Gnutella. However,
this approach does not scale well because of the large vol-
ume of query messages generated by flooding [13, 17]. In
order to avoid flooding of the complete network, the num-
ber of hops on the forwarding path is typically bounded by
the Time to Live (TTL) field of query messages. Thus, the
search results are not deterministic and this approach cannot
guarantee to find the desired resource even if it exists.

In contrast, recent structured P2P systems use message
routing instead of flooding by leveraging a structured over-
lay network among peers. These systems typically support
distributed hash table (DHT) functionality and the basic op-
eration they offer is lookup (key), which returns the identity
of the node storing the object with the key [12]. Current
proposed DHT systems include Tapestry [18], Pastry [14],
Chord [16], CAN [11] and Koorde [6]. In these DHT sys-
tems, objects are associated with a key which can be pro-

duced by hashing the object name. Nodes have identifiers
which share the same space as the keys. Each node is re-
sponsible for storing a range of keys and corresponding ob-
jects. The DHT nodes maintain an overlay network with
each node having several other nodes as neighbors. When
a lookup (key) request is issued from one node, the lookup
message is routed through the overlay network to the node
responsible for the key. Different DHT systems construct
different overlay networks and employ different routing al-
gorithms. They can guarantee to finish lookup in O(log N)
or O(dN1/d) hops and each node only maintains the infor-
mation of O(log N) or d neighbors for a N nodes network
(where d is the dimension of the hypercube organization of
the network). Therefore, they provide very good scalability
as well as failure resilience.

While DHTs have some desirable properties, they can
not be directly applied to grid information services. This is
because DHTs can only look up a resource which exactly
matches the given key. Current DHT systems typically as-
sume their applications already know the key of the target
resource. For example, file systems such as CFS use DHT
to index each file block and use the unique block identifier
as a key to store and retrieve the block.

However, this kind of hash table functionality is not
enough for grid information services because resources typ-
ically have multiple attributes and thus need to be registered
with a list of attribute-value¿ pairs. For example, a resource
provider would want to register its multiple attributes like
this:

register name=pioneer && url=gram://pioneer.isi.edu:8000
&& os-type=linux && cpu-speed=1000MHz
&& memory-size=512M

Consequently, resource requesters want to be able to
search for resources that qmeet multiple attribute require-
ments (as demonstrated by e.g. the Resource Specification
Language (RSL) [3] in Globus), using a query like:

search os-type=linux && 800MHz<=cpu-speed<=1000MHz
&& memory-size>=512MB

The attributes in the above example have two different
types: string and numerical. Attribute ”name”, ”url” and
”os-type” are string based and only have a limited number
of values, while attribute ”cpu-speed” and ”memory-size”
have continuous numerical values. For numerical types of
attributes, being able to query with attribute ranges instead
of exact values is a critical requirement. However, current
DHT systems can neither handle multi-attribute queries nor
range queries.

In this paper, we proposed a new structured P2P system
for grid information services that we call Multi-Attribute
Addressable Network (MAAN). In MAAN, resources can
be registered with a set of attribute-value pairs and can be
searched by multi-attribute based range queries.

The remainder of this paper introduces Chord in Sec-
tion 2, describes MAAN and its routing algorithms in Sec-
tion 3, presents experimental performance results of MAAN
in Section 4, discusses related work in Section 5, and
presents conclusions and future work in Section 6.

2. Chord

In this section, we briefly describe the Chord DHT sys-
tem proposed by Ion Stoica al el. [16]. Like all other
DHT systems, Chord supports scalable < key, object >
pairs registration and lookup operations. Chord uses a one-
dimensional circular identifier space with modulo 2m where
m is the number of bits in node identifiers and object keys.
Every node in Chord is assigned a unique m-bit identifier
(called the node ID) and all nodes self-organize to a ring
topology based on their node IDs. The node ID can be
chosen locally by hashing the node’s IP address and port
number using a hashing function, such as SHA1. Each ob-
ject is also assigned a unique m-bit identifier (called ob-
ject key). Chord uses consistent hashing to assign keys to
nodes. Key k is assigned to the first node whose identifier is
equal to or follows the identifier of k in the identifier circle.
This node is called the successor node of key k, denoted by
successor(k). Every object is registered on the successor
node of its object key.

Each Chord node maintains two sets of neighbors, the
successor list and finger table. The nodes in the succes-
sor list immediately follow the node in the identifier space,
while the nodes in the finger table are spaced exponen-
tially around the identifier space. The finger table has at
most m entries. The i-th entry in the table for the node
with ID n contains the identity of the first node s, that suc-
ceeds n by at least 2i−1 on the identifier circle, i.e. s =
successor(n + 2i−1), where 1 ≤ i ≤ m (and all arith-
metic is modulo 2m) . In Chord, s is called the i-th finger
of node n, and denoted by n.finger[i]. The first finger is
the immediate successor of n (i = 1). The finger table
contains more close nodes than far nodes at a doubling dis-
tance. When node n wants to search the object with key
k, it will route a search request to the successor node x of
key k, x = successor(k). If node x is far away from n,
n can forward the request to a far node in its finger table,
which is much closer to x than n. The routing algorithm
works as follows: given a search request with key k, the
node searches its successor list for the successor of k and
forwards the request to it if possible. If it does not know the
successor of k, it forwards the request to the node j whose
identifier most immediately precedes k in its finger list. By
repeating this process, the request gets closer and closer to
the successor of k. In the end, x receives the search re-
quest for object with key k, searches the object locally and
sends the search response back to n. Because the fingers

in the node’s finger table are spaced exponentially around
the identifier space, each hop from node n to the next node
covers at least half the identifier space (clockwise) between
n and k. So the average number of hops for a lookup is
O(log N) for a Chord system with N nodes. Also each
node only needs to maintain the state for O(log N) neigh-
bors. Chord achieves the load balancing of nodes by us-
ing consistent hashing and virtual nodes. Chord also has a
stabilization algorithm for constructing finger tables when
a node joins and for maintaining finger tables when nodes
fail.

3. Multi-Attribute Addressable Network

Like many other DHT systems, Chord offers efficient
and scalable single-key based registration and lookup ser-
vice for decentralized resources. However, it can not
support range queries and multi-attribute based lookup.
Our MAAN approach addresses this problem by extend-
ing Chord with locality preserving hashing and a recursive
multi-dimensional query resolution mechanism.

3.1. Range Queries in MAAN

Chord assigns each node and key an m-bits identifier us-
ing a base hashing function such as SHA1, and uses consis-
tent hash to map keys to nodes. This approach can achieve
load balancing because SHA1 hash can generate uniform
distribution for identifiers no matter the distribution of ac-
tual node addresses and keys. However, SHA1 hashing de-
stroys the locality of keys, and cannot support range queries
for numerical attribute values.

MAAN uses SHA1 hashing to assign an m-bits identifier
to each node and the attribute value with string type. How-
ever, for attributes with numerical values MAAN uses lo-
cality preserving hashing functions to assign each attribute
value an identifier in the m-bit space.

Definition 1 Hash function H is a locality preserving hash-
ing function if it has the following property: H(vi) <
H(vj) iff vi < vj , and if an interval [vi, vj] is
split into [vi, vk] and [vk, vj], the corresponding inter-
val [H(vi),H(vj)] must be split into [H(vi),H(vk)] and
[H(vk),H(vj)].

Suppose we have an attribute a with numerical values
in the range of [vmin, vmax]. A simple locality preserv-
ing hashing function we can use could be H(v) = (v −
vmin) × (2m − 1)/(vmax − vmin), where v ∈ [vmin, vmax].
So for each attribute value v, it has the corresponding iden-
tifier H(v) in the [0, 2m − 1] identifier space. MAAN
also use the same consistent hashing as Chord and assign
attribute value v to the successor node of its identifier,
i.e. successor(H(v)).

Theorem 1 If we use locality preserving hash function H
to map attribute value v to the m-bit circular space [0, 2m−
1], given a range query [l, u] where l and u are the lower
bound and upper bound respectively, nodes which contain
attribute value v in [l, u] must have an identifier equal to
or larger than successor(H(l)) and equal to or less than
successor(H(u)).

Proof: Attribute value v is assigned to successor(H(v))
and successor(H(v)) is the first node whose identifier is
equal to or follows the identifier of H(v) in the identifier
circle. Since l ≤ v ≤ u and from Definition 1, we can see
that attribute value v can only be assigned to node n and
successor(H(l)) ≤ n ≤ successor(H(u)) �.

Thus we can use the following algorithm to resolve
range queries for numeric attribute values. Suppose node n
wants search for resources with attribute value v between
l and u for attribute a, i.e. l ≤ v ≤ u, where l and u
are the lower bound and upper bound respectively. Node
n composes a search request and uses the Chord routing
algorithm to route it to node nl, the successor of H(l). The
search request is as following: SEARCH REQUEST(k, R,
X). k is the key used for Chord routing, initially k = H(l).
R is the desired attribute value range: [l, u] and X is a list
of resources discovered in the range. Initially, X is empty.
When node nl receives the search request, it searches its
local resource entries and appends those resources that
satisfy the range query to X in the request. Then it checks
whether it is the successor of H(u) also. If true, it sends
back the search response to node n with the search result
in X of the search request. Otherwise, it forwards the
search request to its immediate successor ni. Node ni

also searches its local resource entries, appends matched
resources to X , and forwards the request to its immediate
successor until the request reaches node nu, the successor
of H(u). In terms of Theorem 1, the resources that have
attribute values in the range of [l, u] must be registered on
the nodes between nl and nu (clockwise) in the Chord ring.
So the above search algorithm is complete. Obviously,
routing the search request to node nl using Chord routing
algorithm takes O(log N) hops for N nodes. The next
sequential forwarding from nl to nu takes O(K) , where
K is the number of nodes between nl and nu. So there are
total O(log N + K) routing hops to resolve a range query
for single attribute. Since there are K nodes that might
contain the resources matching the range query, we have to
visit all of those K nodes to guarantee to find the correct
search result. In this sense, O(log N + K) routing hops is
optimal for range queries in Chord.

Uniform Locality Preserving Hashing
Though our simple locality preserving hashing function
keeps the locality of attribute values, it does not produce
uniform distribution of hashing values if the distribution of

attribute values is not uniform. Consequently, the load bal-
ancing of resource entries can be poor across the nodes. To
address this problem, we propose a uniform locality pre-
serving hashing function which can always produce uni-
form distribution of hashing values if the distribution func-
tion of input attribute values is continuous and monoton-
ically increasing, and is known in advance. This condi-
tion is satisfied for many common distributions, such as
Gaussian, Pareto, and Exponential distributions. Suppose
attribute value v of resources conforms to a certain distribu-
tion with continuous and monotonically increasing distribu-
tion function D(v) and possibility function P (v) = D(v)

dv ,
and v ∈ [vmin, vmax]. We can design a uniform locality
preserving hashing function H(v) as following: H(v) =
D(v) × (2m − 1).

Theorem 2 Hash function H(v) is a locality preserving
hashing function.

Proof: Since D(v) is monotonically increasing, H(v) is
monotonically increasing too. Obviously, H(v) is a locality
preserving hashing function according to definition 1 �.

Theorem 3 Suppose attribute value v ∈ [vmin, vmax] and
v has distribution function D(v). Let hashing value y =
H(v), then y conforms to a uniform distribution in the
range of [H(vmin),H(vmax)].

Proof: The possibility distribution of y, denoted P (y)dy, is
determined by the fundamental transformation law of prob-
abilities, which is

|P (y)dy| = |P (v)dv|
or

P (y) = P (v)
∣
∣
∣dv
dy

∣
∣
∣ (1)

Since
y = H(v) = D(v) × (2m − 1)

we have ∣
∣
∣dy
dv

∣
∣
∣ = d(D(v))

dv × (2m − 1)
or ∣

∣
∣dy
dv

∣
∣
∣ = P (v)× (2m −1) (2)

From (1) and (2), we have
P (y) = 1

(2m−1) (3)
Since attribute value v ∈ [vmin, vmax] and its probability
function P (v) is normalized by definition, as in∫ vmax

vmin
P (v)dv = 1

or
D(vmax) − D(vmin) = 1

Also since
vmin∫

−∞
P (v)dv = 0

we have
D(vmin) = 0 and D(vmax) = 1

Therefore,
H(vmin) = D(vmin) × (2m − 1) = 0

and
H(vmax) = D(vmax) × (2m − 1) = 2m − 1,

so that ∫ H(vmax)

H(vmin)
P (y)dy =

∫ 2m−1

0
1

(2m−1)dy = 1 (4)
From (3) and (4), we can see that hashing value y
conforms to a uniform distribution in the range of
[H(vmin),H(vmax)] �.

Thus, with this uniform locality preserving hashing func-
tion, resources will be uniformly distributed on all nodes if
the node identifiers are uniformly distributed on the m-bit
circular space. We know that the latter is true because we
use SHA1 hashing for the node identifiers which is known
to yield a uniform distribution of hash values for any input
distribution [9].

3.2. Multi-Attribute Query Resolution

Instead of only supporting one attribute based lookup,
our MAAN scheme also extends the above routing algo-
rithm for range queries to support multi- attribute lookup. In
this multi-attribute setting, we assume each resource has M
attributes a1, a2, . . . , aM and corresponding attribute value
pairs< ai, vi >, where 1 ≤ i ≤ M . For each attribute ai,
its attribute value vi is in the range of [vi min, vi max] and
conforms to a certain distribution with distribution function
Di(v). Thus, we can generate a uniform locality preserv-
ing hashing function Hi(v) = Di(v) × (2m − 1) for each
attribute ai. With these hashing functions we can map all
attribute values to the same m-bit space in Chord.

Each resource will register its information (attribute
value pairs) at node ni = successor(H(vi)) for each at-
tribute value vi, where 1 ≤ i ≤ M . Resource registra-
tion request for attribute value vi is routed to its succes-
sor node using Chord routing algorithm with key identifier
H(vi). Each node categorizes the indices of <attribute-
value, resource-info> pairs by different attributes. When a
node receives a resource registration request from resource
x with attribute value ai = vix and resource information
rx, it adds the < vix, rx > pair to corresponding list for
attribute ai.

When a node searches for interested resources, it com-
poses a multi-attribute range query which is the combina-
tion of sub-queries on each attribute dimension, i.e. vil ≤
ai ≤ viu where 1 ≤ i ≤ M , vil and viu are the lower
bound and upper bound of the query range respectively.

We support two approaches to search candidate re-
sources for multi-attribute range queries: iterative and sin-
gle attribute dominated query resolution.
Iterative Query Resolution
The iterative query resolution scheme is very straightfor-
ward. If node n wants to search resources by a query of
M sub-queries on different attributes, it iteratively searches
all candidate resources for each sub-query on one attribute

dimension, and intersects these search results at query orig-
inator. We can reuse the search algorithm we proposed for
single attribute based lookup in Section 3.1. The only mod-
ification is to carry a < attribute > field in each search
request to indicate which attribute we are interested in.
The search request is as follows: SEARCH REQUEST(k,
a, R, X), where a is the name of the attribute we are in-
terested in, and k, R and X are the same as in a single
attribute based query. When a node receives a query re-
quest and it intersects with the query range, it only searches
the index which matches the attribute name in the search
request. Though this approach is simple and easy to im-
plement, it is not very efficient. For M -attribute queries,

it takes O(
M∑

i=1

(log N + Ki)) routing hops to resolve the

queries, where Ki is the number of nodes intersects the
query range on attribute ai. We define selectivity si as the
ratio of query range width in identifier space to the size of
the whole identifier space, i.e. si = H(viu)−H(vil)

2m . Sup-
pose attribute values are uniformly distributed on all N
nodes, then we have Ki = si × N and routing hops would

be O(
M∑

i=1

(log N + N × si)). Thus, the routing hops for

searching increase linearly with the number of attributes in
the query.

Single Attribute Dominated Query Resolution
Obviously, the search result of a multi-attribute query must
satisfy all the sub-queries on each attribute dimension and
it is the intersection set of all resources which satisfies each
individual sub-query. Suppose X is the set of resources sat-
isfying all sub-queries, and Xi is the set of resources satis-
fying the sub-query on attribute ai, where 1 ≤ i ≤ M . So
we have X =

⋂
Xi and each Xi is a superset of X . The

iterative query resolution approach computes all Xi using
M iterations and calculates their intersection set. However,
since we register the resource information for each attribute
dimension, resources in the set of Xi also contain the in-
formation of other attribute value pairs. The single attribute
dominated query resolution approach can utilize this extra
information and only need to compute a set of candidate
resources Xk which satisfies the subquery on the attribute
ak. Then it apply the sub-queries for other attributes on
these candidate resources and computes the set X which
satisfies all sub-queries. Here, we call attribute ak domi-
nated attribute. There are two possible approaches to ap-
ply these sub-queries. One approach is to apply them at
the query originator after it receives all candidate resources
in Xk. Since the set Xk is typically much larger than X ,
search requests and responses might contain many candi-
date resources which do not satisfy other sub-queries. Thus
this approach will introduce unnecessarily large search mes-
sages and increase communication overhead. Another ap-
proach is to carry these sub-queries in the search request,

and apply them locally at the nodes which contains can-
didate resources in Xk. This approach is more efficient
because search requests and responses only carry the re-
sources satisfying all sub-queries.

The search request in single attribute dominated ap-
proach is as following: SEARCH REQUEST(k, a, R, O, X).
k, a, R are the same as those in iterative query resolve ap-
proach. O is a list of sub-queries for all other attributes
except a, and X is a list of discovered resources satisfy-
ing all sub-queries. When node n wants to issue a search
request with R = [l, u], it first routes the request to node
nl = successor(H(l)). The node nl, searches its local
index corresponding to attribute a for the resources with
attribute value in the range of [l, u] and with all other at-
tributes satisfying sub-queries in O, and appends them to
X . Then it checks whether it is also the successor of H(u).
If true, it sends back a search response to node n with the
resources in X . Otherwise, it forwards the search request to
its immediate successor ns. ns repeats this process until the
search request reaches node nu = successor(H(u)).

Since this approach only need to do one iteration for the
dominated attribute ak, it takes O(log N + N × Sk) rout-
ing hops to resolve the query. We can further minimize the
routing hops by choosing the attribute with minimum se-
lectivity as the dominated attribute. Thus, the routing hops
will be O(log N + N ×Smin), where Smin is the minimum
selectivity for all attributes.

In the single attribute dominated approach, the number
of routing hops is independent of the number of attributes,
and thus scales perfectly in the number of attributes of a
query. On the other hand, it incurs the memory cost of reg-
istering all attributes for a resource if any of its attributes is
registered; and it incurs more updating overhead of attribute
values change. However, the good query performance of the
single attribute dominated approach will typically outweigh
the greater updating cost in the Grid environment since node
registration operations (of OS-Type, CPU-Speed, Memory-
Size, CPU-Count, etc.) are typically far less frequent than
query operations (to find suitable machines).

4. Implementation and Evaluation

We verified our theoretical MAAN results by measur-
ing the performance of an implementation in Java. It can
easily be configured to support different attribute schemas,
such as an example for grid nodes shown in Table 1. Our
implementation runs each distributed node in its own Java
virtual machine as a separated process. The implementa-
tion uses sockets to communicate between the peers, and
supports the “register” and “search” commands described
in the Introduction. New nodes can be added by contacting
any existing peer at its IP address and port number.

To collect the performance data from the distributed

Attribute Name Type Min Max Unit

Name String / / /
URL String / / /
OS-Type String / / /
CPU-Speed Numerical 1 105 MHz
Memory-Size Numerical 1 106 MBytes
Disk-Size Numerical 1 106 GBytes
Bandwidth Numerical 10−3 104 MBps
CPU-Count Numerical 1 104 CPU

Table 1. An example attribute schema for grid
nodes

nodes, we implemented a status message which is flooded to
all nodes (it exists for experimental measurement purposes
only). The message causes every node to dump its neigh-
borhood state to a log file. We also instrumented MAAN
messages with additional fields, such as hops taken. We
ran our experiments on a Pentium 4 2.4GHz laptop running
Redhat 7.2 with 1GB memory. Since each instantiation of
a peer consumes about 8MB of main memory, our experi-
ments include up to 128 nodes.

We measured the number of neighbors per node against
network size. Similar to Chord, the number of neighbors at
each node increases logarithmically with the network size,
as shown in Figure 1. So the node state in MAAN can scale
well to a large number of nodes.

Figure 1. The number of neighbors as a loga-
rithmic function of network size

Another important performance metric is the number of
routing hops a search request would take to resolve a query.
From Section 3.2, we know that the number of routing hops
is O(log N + N × smin), where N is the total number of
nodes in network, M is the number of attributes in the query
and smin is the minimum range selectivity for all attributes.
So if we want to search resources with at least one exact
matching sub-query, i.e. smin = ε%, the number of rout-
ing hops is O(log N), which is logarithmic to network size.

Figure 2(a) shows our measurement result for 5-attribute
queries with ε% range selectivity on a network with up to
128 nodes. This result roughy matches with our theoretical
analysis.

(a)

(b)

Figure 2. The routing hops as a function of
network size, (a) logarithmic for 5-attribute
range query with ε% range selectivity, (b) lin-
ear for 2-attribute range query with 10% range
selectivity

However, for normal range queries whose selectivity
si > ε% , the number of routing hops increase linearly with
network size. This is because si of total N nodes have to
be visited by the search queries if we want to balance the
load to all the nodes. Figure 2(b)shows this linear relation-
ship between the number of routing hops and the number
of nodes for 2-attribute range queries with 10% range se-
lectivity. For the same reason, the number of routing hops
also increases linearly with the range selectivity of search
queries. This is shown in figure 3. So we can see that range
queries with large range selectivity are very costly – they
will basically flood the whole network.

We also compared the two multi-attribute query resolu-
tion algorithms we proposed in Section 3.2, i.e. iterative vs.
single attribute dominated. Figure 4 shows the comparison
result of these two approaches. It is consistent well with our
theoretical analysis.

Figure 3. The routing hops as a linear func-
tion of query’s range selectivity (64 nodes, 1
attribute)

Figure 4. The expected number of routing
hops as a function of the number of attributes
(64 nodes, 10% range selectivity)

5. Related Work

Many recent structured P2P systems are related to our
research. These systems can be classified into three broad
categories: DHTs, tree-based, and skiplist-based.

Besides Chord, other DHT systems include Tapestry
[18], Pastry [14], CAN [11], and Koorde [6]. The routing
algorithms used in Tapestry and Pastry are both inspired by
Plaxton [10]. The idea of the Plaxton algorithm is to find a
neighboring node which shares the longest prefix with the
key in lookup message, repeat this operation until find a des-
tination node which shares the longest possible prefix with
the key. In Tapestry and Pastry, each node has O(log N)
neighbors and the routing path takes at most O(log N)
hops. CAN maps its keys to a d-dimensional Cartesian co-
ordinate space which is partitioned into n zones. Each CAN
node owns the zone corresponding to the mapping of its
node id’s on the coordinate space. The neighbors in each
node are the nodes that own the contiguous zones to its lo-
cal zone. Routing in CAN is straightforward: a message
is always greedily forwarded to a neighbor that is closer

to the key’s destination in the coordinate space. Nodes
in CAN have O(d) neighbors and routing path length are
O(dN1/d) hops. M. F. Kaashoek el al [6] proved that for
any constant neighborhood state k, Θ(log N) routing hops
is optimal. But in order to provide a high degree of fault
tolerance, a node must maintain O(log N) neighbors. In
that case, O(log N/ log log N) optimal routing hops can be
achieved. Koorde is a neighborhood state optimal DHT
based on Chord and de Bruijn graphs. It embeds a de
Bruijn graph on the identifier circle of Chord for forwarding
lookup request. To lookup a key k, Koorde find the succes-
sor of k by walking down the de Bruijn graph.

TerraDir [15] is a tree-based structured P2P system. It
organizes nodes in a hierarchical fashion according to the
underlying data hierarchy. Each query request will be for-
warded upwards repeatedly until reaching the node with
the longest matching prefix of the query. Then the query
is forward to the destination downwards the tree. In Ter-
raDir, each node maintains constant number of neighbors
and routing hops are bounded in O(h), where h is the height
of the tree.

Skip Graphs [2] and SkipNet [7] are two skip-list based
structured P2P systems. Skip Graphs and SkipNet maintain
O(log N) neighbors in their routing table. For each node,
the neighbor at level h has the distance of 2h to this node,
i.e. they are 2h nodes far away. This is very similar to the
fingers in Chord. There are 2h rings at level h with n/2h

nodes per ring. Searching a key in Skip Graphs or SkipNet
is started at the top-most level of the node seeking the key. It
proceeds along the same level without overshooting the key,
continuing at a lower level if required, until it reaches level
0. Their routing hops of searching a key are also O(log N).

Artur Andrzejak et al [1] is most closely related to our
work. It extends CAN for handling range queries on single
attributes by using Space Filling Curves as hash functions.
For a range query [l, u], they first route to a node whose
zone includes the middle point (l+u)/2. Then the node re-
cursively propagates the request to its neighbors until all the
nodes which intersect the query are visited (a flooding strat-
egy). They propose three different flooding strategies: brute
force, controlled flooding and directed controlled flooding.
However, the brute force strategy might visit nodes that do
not actually intersect the query. In the controlled flood-
ing strategy, nodes may receive duplicate messages for the
same query. Both controlled flooding and directed con-
trolled flooding decrease the parallelism comparing with the
brute force approach. In addition, this work did not address
multi-attribute range queries.

In summary, to our knowledge, no other structured peer-
to-peer system has been proposed yet that addresses both
multi-attribute and range queries.

6. Conclusion and Future Work

In this paper, we proposed a multi-attribute addressable
network (MAAN) for grid information services. It can
register grid resources with a set of (attribute,value) pairs
and search interested resources via multi-attribute based
range queries. MAAN routes search queries to the nodes
where the target resources are registered, and avoids flood-
ing queries to all other irrelevant nodes.

MAAN supports efficient range queries by mapping at-
tribute values to Chord identifier space via uniform locality
preserving hashing. It not only preserves the locality of re-
sources but also distributes resources to all nodes uniformly
and achieves good load balancing among nodes. MAAN
can use iterative or single attribute dominated query rout-
ing algorithm to resolve multi-attribute based queries. In
MAAN, each node only maintains routing information for
O(log N) other nodes. When using single attribute domi-
nated query routing, the number of routing hops to resolve
a query is O(log N+N×smin), where smin is the minimum
range selectivity on all attributes; thus, it scales well in the
number of attributes. Also when smin = ε, the number of
routing hops is logarithmic to the number of nodes.

While MAAN can support multi-attribute range queries
quite well, it does have important limitations. First, the at-
tribute schema of resources has to be fixed and known in
advance with MAAN. We believe that supporing attribute
schemas that evolve during P2P network use is an impor-
tant future research direction. Second, when the range se-
lectivity of queries is very large, flooding the query to the
whole network can actually be more efficient than routing
it to nodes one by one as MAAN does. It would be inter-
esting to analyze the threshold of range selectivity at which
flooding becomes more efficient than routing, and to have
MAAN use different query resolution algorithms for differ-
ent kind of queries.

7. Acknowledgements

We gratefully acknowledge AFOSR program funding
for this project under contract number F49620-01-1-0341.
We thank Ramesh Govindan for helpful discussions, and
Baoshi Yan for contributing the single-attribute-dominated
query resolution idea.

References

[1] A. Andrzejak and Z. Xu. Scalable, efficient range queries
for grid information services. In Proceedings of the Second
IEEE International Conference on Peer-to-Peer Computing
(P2P2002), September 2002.

[2] J. Aspnes and G. Shah. Skip graphs. In Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 384–
393, Baltimore, MD, USA, 12–14 Jan. 2003.

[3] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A resource management archi-
tecture for metacomputing systems. Lecture Notes in Com-
puter Science, 1459, 1998.

[4] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski,
W. Smith, and S. Tuecke. A Directory Service for Config-
uring High-Performance Distributed Computations. In Pro-
ceedings of the 6th IEEE Symposium on High-Performance
Distributed Computing, pages 365–375, 5-8 Aug. 1997.

[5] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[6] D. R. K. Frans Kaashoek. Koorde: A simple degree-optimal
hash table. In 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), February 2003.

[7] N. J. A. Harvey, M. B. Jone, S. Saroiu, M. Theimer, and
A. Wolman. Skipnet: A scalable overlay network with
practical locality properties. In Proceedings of the Fourth
USENIX Symposium on Internet Technologies and Systems
(USITS ’03), Seattle, WA, USA, March 2003.

[8] A. Iamnitchi, I. Foster, and D. Nurmi. A peer-to-peer ap-
proach to resource discovery in grid environments. In Pro-
ceedings of the 11th Symposium on High Performance Dis-
tributed Computing, Edinburgh, UK, August 2002.

[9] N. I. of Standards and T. (NIST). Announcement of weak-
ness in the secure hash standard, 1994.

[10] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environ-
ment. In ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 311–320, 1997.

[11] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In Pro-
ceedings of ACM SIGCOMM 2001, 2001.

[12] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms
for dhts: Some open questions. In 2nd International Work-
shop on Peer-to-Peer Systems (IPTPS ’03), February 2003.

[13] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer sys-
tems and implications for system design, 2002.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. Lecture Notes in Computer Science, 2218, 2001.

[15] B. Silaghi, B. Bhattacharjee, and P. Keleher. Query rout-
ing in the terradir distributed directory. In SPIE ITCOM’02,
August 2002.

[16] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM
2001, 2001.

[17] J. W. Subhabrata Sen. Analyzing peer-to-peer traffic across
large networks. In Proceedings of ACM SIGCOMM Work-
shop on Internet measurment workshop, San Jose, CA,
USA, November 2002.

[18] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing,
2001.

