
A Survey of Web Cache Replacement Strategies

STEFAN PODLIPNIG AND LASZLO BÖSZÖRMENYI

University Klagenfurt

Web caching is an important technique to scale the Internet. One important
performance factor of Web caches is the replacement strategy. Due to specific
characteristics of the World Wide Web, there exist a huge number of proposals for cache
replacement. This article proposes a classification for these proposals that subsumes
prior classifications. Using this classification, different proposals and their advantages
and disadvantages are described. Furthermore, the article discusses the importance of
cache replacement strategies in modern proxy caches and outlines potential future
research topics.

Categories and Subject Descriptors: A.1 [Introductory and Survey]; B.3.2 [Memory
Structures]: Design Styles—Cache memories; C.2.4 [Computer-Communication
Networks] Distributed Systems; C.2.5 [Computer-Communication Networks]:
Local- and Wide-Area Networks—Internet

General Terms: Algorithms

Additional Key Words and Phrases: Web caching, replacement strategies

1. INTRODUCTION

Since its introduction, the Web has been
constantly growing and so has the load
on the Internet and Web servers. To over-
come these obstacles, different techniques,
like caching, have been introduced. Web
caching has proven to be a valuable tool.

Three features of Web caching make it
attractive to all Web participants, includ-
ing users, network managers, and content
creators [Davison 2001]:

—Caching reduces network bandwidth
usage.

—Caching reduces user-perceived delays.
—Caching reduces loads on the origin

server.

One central problem in Web caching is
the cache replacement strategy. Cache

Author’s addresses: Institute of Information Technology, University Klagenfurt, Universitätsstrasse 65-67,
A-9020 Klagenfurt, Austria, e-mail: {spodlipn,laszlo}@itec.uni-klu.ac.at.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee.
c©2003 ACM 0360-0300/03/1200-0374 $5.00

replacement refers to the process that
takes place when the cache becomes full
and old objects1 must be removed to make
space for new ones.

Although the amount of literature and
information on Web caching is stagger-
ing, there exist only a few survey arti-
cles and books. A concise survey of many
different topics (including cache replace-
ment) was given in Wang [1999]. A survey
of techniques and trends in Web caching
was given in Barish and Obraczka [2000].
There are a few books about Web caching.
Wessels [2001] presented a practical intro-
duction to Web caching. Krishnamurthy
and Rexford [2001] gave a state-of-the-art

1We use the term Web object for all possible objects
(HTML pages, images, videos, etc.) that can be stored
in a proxy cache. It is more general than Web docu-
ment, a denotation used in some papers.

ACM Computing Surveys, Vol. 35, No. 4, December 2003, pp. 374–398.

Survey of Web Cache Replacement Strategies 375

overview of Web caching. Rabinovich and
Spatscheck [2002] presented a very read-
able overview of Web caching with inter-
esting critiques.

There exist no single in-depth sur-
vey of cache replacement strategies.
Krishnamurthy and Rexford [2001] and
Rabinovich and Spatscheck [2002] pre-
sented short discussions of cache replace-
ment. They listed different arguments
against the importance of cache replace-
ment and argued that simple strategies
are sufficient. We will comment on this
in Section 4. Small overviews of replace-
ment strategies have been presented, for
example, in Aggarwal et al. [1999], Arlitt
et al. [2000], Bahn et al. [2002], Cao
and Irani [1997], Chang et al. [1999], Jin
and Bestavros [2000], Tatarinov [1998b],
and Williams et al. [1996]. A concise
overview of some replacement strategies
was given in Wang [1999]. In the follow-
ing we present a comprehensive survey.

2. CLASSIFICATION OF REPLACEMENT
STRATEGIES

To present the different proposals in a
structured way, we want to give a clas-
sification of replacement strategies. Such
classifications were also used by other au-
thors. Before we describe the used clas-
sification, we summarize the important
factors (characteristics) of Web objects
that can influence the replacement pro-
cess (most of these factors are described
in Krishnamurthy and Rexford [2001]):

—recency: time of (since) the last refer-
ence to the object;

—frequency: number of requests to an ob-
ject;

—size: size of the Web object;
—cost of fetching the object: cost to fetch

an object from its origin server;
—modification time: time of (since) last

modification;
—(heuristic) expiration time: time when

an object gets stale and can be replaced
immediately.

These factors can be incorporated into the
replacement decision. Most of the propos-

als in the literature use the first four
factors.

A first classification of replacement
strategies was given in Aggarwal et al.
[1999]. They proposed three categories:

—Direct extensions of traditional strate-
gies. This category subsumes traditional
strategies known from other areas (e.g.,
database buffer management, paging)
and extensions thereof.

—Key-based replacement strategies. Re-
placement strategies in this category
sort objects upon a primary key (factor).
Ties are broken based on secondary key,
tertiary key, etc.

—Function-based replacement strategies.
The idea in function-based replacement
is to use a potentially general function
derived from the different factors de-
scribed above.

A similar classification was given in
Krishnamurthy and Rexford [2001]: one-
level strategies that use one factor, two-
level strategies that use a primary and
secondary factor, and combination strate-
gies that use a weighted approach for the
combination of factors.

There are two major problems with
these proposals. First, the first two classes
could be merged as every traditional al-
gorithm can be regarded as a key-based
strategy using one key (factor). A number
of strategies apply various additional tech-
niques (more lists, etc.), that is, they are
not only key-based. Second, randomized
strategies can not be classified according
to the above described classification. The
pure random strategy can not be classi-
fied into any of these categories. It uses no
key and no function. Some sophisticated
random strategies can be combined with
key-based decisions or function-based de-
cisions. Therefore, they can be classified
into more than one category.

A different classification was given in
Jin and Bestavros [2000]:

—Recency-based strategies: strategies
that incorporate recency (and size
and/or cost) into the replacement
process.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

376 Podlipnig and Böszörmenyi

—Frequency-based strategies: strategies
that incorporate frequency (and size
and/or cost) into the replacement pro-
cess.

—Recency/frequency-based strategies:
strategies that consider both recency
and frequency under fixed or variable
cost/size assumptions.

This classification has the advantage that
it distinguishes between recency and fre-
quency being by far the most impor-
tant factors. Furthermore, they represent
different ways of describing the impor-
tance of a Web object. This classifica-
tion still has a problem with random-
ized strategies. It also has a problem with
strategies that do not use recency and
frequency.

In the following, we propose a combined
classification with the following classes:

—recency-based strategies;
—frequency-based strategies;
—recency/frequency-based strategies;
—function-based strategies;
—randomized strategies.

The following justifications can be given
for the above classification:

—Recency and frequency are important
but very different factors. Therefore,
separate classes are advantageous for
strategies that use these factors inde-
pendently. This supports a more consis-
tent critique of similar strategies. Fur-
thermore, some strategies mix recency
and frequency and should be treated in
their own class.

—Some strategies evaluate a specific
function incorporating different fac-
tors. Mostly they use weighting pa-
rameters for the different factors. Al-
though they could be classified into one
of the first three classes, a separate
class supports a more consistent re-
view and critique of this special sort of
strategies.

—Randomized strategies constitute a
different (nondeterministic) approach
to cache replacement. Therefore, they
should be treated in a separate class.

In the following, we use this classification
to survey different proposals for cache re-
placement.

We do not explicitly deal with the place
of replacement. Caches may reside at the
client, at a proxy near to the client, or at
the server. Replacement is an important
issue in all these places. In the following,
we will not distinguish the place as most
replacement strategies were proposed for
proxy caches. We will comment explicitly
on this topic if necessary.

3. SURVEY OF REPLACEMENT
STRATEGIES

This section presents a comprehensive
overview of different proposals for cache
replacement strategies. We assume the
following simple replacement process. On
a cache miss, the cache acquires and stores
the requested object. If the size of all
cached objects exceeds the given cache
size, the cache evicts a certain number
of objects. In practical implementations,
the cache uses two marks H (high wa-
termark) and L (low watermark), with
H > L, to guide the replacement pro-
cess. If the size of all cached objects ex-
ceeds H, the cache evicts objects until the
size of the remaining objects is below L. It
should be noted that some authors assume
that the cache stores initially only descrip-
tive information about the object. Dur-
ing the replacement process the cache de-
cides whether this new object is accepted
(physically) into the cache and some ob-
jects are removed or the new object is not
accepted and the cache content remains
unmodified.

To represent the replacement strategies
in a consistent way, we use a set of uni-
form identifiers for often used keys (fac-
tors). These identifiers are given in Table I.
Some replacement strategies use addi-
tional special identifiers.

In the following, we mainly survey the
applied caching literature. This means
that these proposals were evaluated em-
pirically (in simulated or real environ-
ments). There exists another scientific
camp that studies caching from a more
theoretical point of view. The proposed

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 377

Table I. Often Used Identifiers
Identifier Description
si Size of object i
ti Last request time of object i
Ti Time since last request to object i
fi Number of past requests to object i
li Access latency for object i
ci Cost to fetch object i from its origin

server; ci has a more general
meaning than li (e.g., number of
networks hops, latency)

algorithms are compared to optimal al-
gorithms via so-called competitive analy-
sis. A large part of this literature handles
known strategies (like LRU, FIFO) and
their worst-case performance on all pos-
sible request sequences. We will comment
on some results later on.

There are also new proposals for cache
replacement in this theoretical research.
Most of these algorithms were proposed
for scenarios with equally sized objects
(paging). Some algorithms were proposed
for the more general case where objects
can have different size and/or different
costs, etc. In the following we will com-
ment on some of these algorithms and
present them if it is possible. Some al-
gorithms require a more exhaustive de-
scription of the assumed model and the
proposed procedure. Although their the-
oretical performance bounds are known
and often better than the performance
bounds of more simple algorithms, it is
questionable if these algorithms will be
implemented in practical environments.

We present for each replacement algo-
rithm a short synopsis that describes the
essence of the proposed algorithm. We will
not try to describe any algorithm in detail
because this goes beyond the scope of this
survey. The interested reader can contact
the original literature to get information
about the incentives of the authors and ex-
tended aspects of the algorithms.

Note that we have included all propos-
als we are aware of. Clearly there will
be further replacement algorithms we are
not aware of, but we have tried to be
as exhaustive as possible. Furthermore,
there exist replacement algorithms that
are used in other domains (e.g., database
systems) that were not tested in the

Web domain. We did not include such
algorithms.

3.1. Recency-Based Strategies

These strategies use recency as a main
factor. Most of them are more or less ex-
tensions of the well-known LRU strat-
egy. LRU has been applied successfully
in many different areas. LRU is based on
the locality of reference seen in request
streams. Locality of reference character-
izes the ability to predict future accesses to
objects from past accesses. There are two
main types of locality: temporal and spa-
tial. Temporal locality refers to repeated
accesses to the same object within short
time periods. It implies that recently ac-
cessed objects are likely to be accessed
again in the future. Spatial locality refers
to access patterns where accesses to some
objects imply accesses to certain other ob-
jects. It implies that references to some ob-
jects can be a predictor of future references
to other objects. Recency-based strategies
exploit the temporal locality seen in Web
request streams.

—LRU. This strategy removes the least
recently referenced object. It is widely
used in different areas (e.g., database
buffer management, paging, disk
buffers).

—LRU-Threshold [Abrams et al. 1995].
An object i is not cached when si exceeds
a given threshold. Otherwise this strat-
egy works like LRU.

—Pitkow/Reckeŕs strategy [Pitkow and
Recker 1994]. This uses LRU. Objects
that are requested on the same day
are differentiated by their size and the
largest files are removed first.

—SIZE [Williams et al. 1996]. This strat-
egy removes the biggest object. The LRU
strategy is applied to objects with the
same size. One variant is LOG2-SIZE
which uses �log2(si)� instead of si.

—LRU-Min [Abrams et al. 1995]. This is
a variant of LRU that tries to minimize
the number of documents replaced. Let
Lo and T denote, respectively, a list and
a threshold. (1) Set T to S, where S
is the size of the requested document.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

378 Podlipnig and Böszörmenyi

(2) Set L0 to all documents whose size
is equal to or larger than T . (Lo may be
empty.) (3) Apply LRU to L0 until the
list is empty or the free cache space is at
least T . (4) If the free cache space is not
at least S, set T to T

2 and go to step (2).
—EXP1 [Reddy and Fletcher 1998]. LRU

uses the time period between the cur-
rent time and the last request time
to weight the importance of an ob-
ject. This can be extended to an al-
gorithm that uses more time periods.
EXP1 chooses object i if 1

µi
= min{ 1

µ j
}

with j = 1, . . . , N (set of N objects).
µi is calculated by applying exponential
smoothing techniques to the successive
time periods between different requests
to object i. For further datails see Reddy
and Fletcher [1998].

—Value-Aging [Zhang et al. 1999]. Value
aging uses the following formula for re-
placement (Vnew(i) is updated at each
request to object i):

Vnew(i) = Vold(i) + Ct ∗
√

Ct − ti

2
, (1)

where Ct is the current time.
—HLRU [Vakali 2000]. HLRU introduces

a scheme to support the history of the
number of references to a specific Web
object. Let r1, r2, . . . , rn be the requests
for cached Web objects at the times
t1, t2, . . . , tn. A history function is de-
fined as follows:

hist(x, h) =

ti if there are exactly
h − 1 references
between ti and tn,

0 otherwise.

(2)
hist(x, h) defines the time of the past
hth reference to a specific cached object
x. HLRU replaces the object with the
maximum hist value. If there are many
cached objects with hist = 0, the origi-
nal LRU is considered for replacement.

—PSS(Pyramidal Selection Scheme)
[Aggarwal et al. 1999]. This strategy
makes a pyramidal classification of
objects depending upon their size. All
objects of class i have sizes ranging
between 2i−1 and 2i − 1. Thus, there

are N = �log2(M + 1)� different classes,
where M is the cache size. Each class
has a separate LRU list. Whenever
there is a replacement, the values of
the least recently used objects in each
class are compared. PSS chooses object
i if its value si�Ti is the largest one
among all values of these objects. �Ti
is the number of accesses since the last
time object i was requested.

—LRU-LSC [Hosseini-Khayat 1997].2
This strategy uses a normal LRU list to
determine the “activity” of the different
cache objects. During replacement,
objects with less activity (starting from
the end of the LRU list) are placed in
a second list as long as the total size
of this new list is less than �B. B is
the total cache size and �(0 < � < 1)
a threshold parameter that determines
the fraction of the cache list to be moved
to the new list. It can be set statically
or dynamically. The new list is sorted
according to some value spci = ci/si. ti
(activity) is used as a tie breaker. Then
objects are removed from this new list
until their accumulated size subtracted
from the size of all cached objects is
lower than a specific mark.

—Partitioned Caching [Murta et al. 1998].
This strategy classifies all Web objects
according to their size into three differ-
ent groups (small, medium, large). The
thresholds for this classification are de-
rived from prior Web traces. Each class
has its own cache space and is man-
aged independently from the other two
classes with the LRU strategy.3 Let SC
be the size of the cache and Sc1, Sc2, Sc3
(with Sc1 + Sc2 + Sc3 = SC) the
size of the three partitions (small = 1,
medium = 2, large = 3). Murta et al.
[1998] showed experimentally that the

2Hosseini-Khayat [1997] discussed generalized
caching in a very exhaustive way. Many theoretical
aspects of different algorithms (on-line or off-line)
were discussed. We limit our discussion to the most
important algorithm that can be implemented in
practical environments
3Note that this proposal is very general and could
use any replacement strategy in each class. LRU is
a simple and fast algorithm and therefore used in
Murta et al. [1998].

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 379

following should hold: Sc1 < Sc2 <
Sc3.

The advantages of recency-based strate-
gies are as follows:

—They consider temporal locality, as a
main factor. As Web request streams
usually exhibit some sort of temporal
locality, this is an advantageous pro-
cedure. Furthermore, these strategies
are rather adaptive to workload changes
(e.g., new very popular objects).

—They are simple to implement and fast.
Most of these strategies use an LRU list.
New requested objects are inserted at
the head of the list. On a hit the object
is removed from its current position and
inserted at the head. Replacement takes
place at the end of the list. So insertion
and deletion add low complexity. Fur-
thermore, searching can be supported
by hashing techniques.

The disadvantages are as follows:

—Simple LRU variants do not combine
recency and size in a useful, balanced
way. As Web objects are usually of dif-
ferent size, size should be considered at
every replacement. The SIZE strategy
does this; however, it is too aggressive
as it places too much emphasis on the
size of objects. LRU-Min is also focused
more on size. The PSS strategy is a laud-
able exception, as it is simple to im-
plement, is fast, and combines size and
recency in a more balanced way. Addi-
tionally, a properly parameterized parti-
tioned LRU caching strategy can be very
simple and fast.

—They do not consider frequency informa-
tion. This could be an important indica-
tor in more static environments.

Nevertheless recency-based strategies are
often used in proxy caches. Many cache
vendors use a simple LRU strategy or vari-
ants of it. We will comment on this in
Section 4.

3.2. Frequency-Based Strategies

These strategies use frequency as a main
factor. Frequency-based strategies are

more or less extensions of the well known
LFU strategy. They are based on the fact
that different Web objects have different
popularity values and that this popular-
ity values result in different frequency
values. Frequency-based strategies track
these values and use them for future de-
cisions. It should be noted that LFU (and
its extensions) can be implemented in two
different forms:

—Perfect LFU. Perfect LFU counts all re-
quests to an object i. Request counts
persist across replacements. On the one
hand, this assures that the request
counts represent all requests from the
past. On the other hand, these statis-
tics have to be kept for all objects seen
in the past (space overhead).

—In-Cache LFU. With in-cache LFU, the
counts are defined for cache objects only.
Although this does not represent all re-
quests in the past, it assures a simpler
management (less space overhead).

In the following we assume in-cache LFU:

—LFU. Removes the least frequently re-
quested object.

—LFU-Aging [Arlitt et al. 2000]. With
LFU, objects that were very popular dur-
ing one time period can remain in the
cache even when they are not requested
for a long time period. This is due to
their high frequency count. To avoid
this cache pollution, an aging effect can
be introduced. LFU-Aging uses, there-
fore, a threshold. If the average value
of all frequency counters exceeds this
threshold, all frequency counters are di-
vided by 2. Furthermore, this strategy
uses a maximal value for the frequency
counters.

—LFU-DA [Arlitt et al. 2000]. The perfor-
mance of LFU-Aging depends heavily on
the chosen parameters (threshold, max-
imal frequency value). LFU-DA tries to
remove this problem. A request for ob-
ject i triggers a (re)calculation of its
value Ki:

Ki = fi + L, (3)
where L is an aging factor. L is initial-
ized to zero. LFU-DA chooses the object

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

380 Podlipnig and Böszörmenyi

with the smallest Ki-value. The value of
this object is assigned to L.

—α-Aging [Zhang et al. 1999]. This is an
explicit aging method with a periodic
aging function

f (v) = α ∗ fi 0 ≤ α ≤ 1. (4)
Each virtual clock tick (e.g., 1 hr) the
value of every object is decreased to α
times its original value. Each hit causes
f (v) to be increased by one. Changing α
from 0 to 1, one can obtain a spectrum
of algorithms ranging from LRU (α = 0)
to LFU (α = 1).

—swLFU (Server-Weighted LFU) [Kelly
et al. 1999]. This strategy uses a
weighted frequency counter. The weight
wi for an object i indicates how much
the server of i appreciates the caching
of object i. Therefore, the server can in-
fluence the caching of object i. The LRU
strategy is applied to objects with the
same weighted frequency value, that
is, LRU is used as a tie breaker. One
extension to this original strategy is
A-swLFU (Aged-swLFU). This strategy
evicts the LRU-object on every k re-
placement. k = 0 corresponds to the
original swLFU strategy. k = 1 corre-
sponds to LRU. k > 1 gives a mixture of
recency and frequency.

The advantage of the frequency-based
strategies is as follows:

—They consider the frequency of access.
This is valuable in static environments
where the popularity of objects does not
change very much over a specific time
period (day, week).

The disadvantages are as follows:

—Complexity. LFU-based strategies re-
quire a more complex cache manage-
ment. LFU can be implemented, for ex-
ample with a priority queue.

—Cache pollution. Frequency counts are
to static for dynamic changes in the
workload. Therefore, aging was intro-
duced. But aging is nothing but a
recency-based technique. It is question-
able if sophisticated aging techniques
are better than simple recency-based
techniques in dynamically changing

environments. Furthermore, they add
complexity to the replacement process.

—Similar values. Many objects can have
the same frequency count. In this case,
a tie breaker factor is needed.

3.3. Recency/Frequency-Based Strategies

These strategies use recency and fre-
quency and maybe further factors to find
an object for replacement:

—SLRU (Segmented LRU) [Arlitt et al.
1999b]. The SLRU strategy partitions
the cache into two segments: an unpro-
tected segment and a protected segment
(reserved for popular objects). On the
first request for an object, this object is
inserted into the unprotected segment.
On a cache hit, the object is moved to
the protected segment. Both segments
are managed with the LRU strategy,
but only objects from the unprotected
segment are removed. Objects from the
protected segment are moved back in
the unprotected segment as the most
recently used object. This strategy re-
quires a parameter which determines
what percentage of the cache space is
allocated to the protected segment.

—Generational Replacement [Osawa et al.
1997]. All objects are stored in n(n > 1)
lists. Each list i < n contains objects
that were requested i times. List n con-
tains all objects with n or more requests.
A request to an object causes its deletion
in its current list and its insertion in the
next list (at the beginning). Objects in
list n are inserted at the beginning of
list n. Replacement takes place at the
end of list 1.

—LRU* [Chang et al. 1999]. All requested
objects are stored in one LRU list. Each
object has a request counter. When a
cached document is hit, it is moved to
the start of the list and its hit count is in-
cremented by one. At each replacement
run, the hit count of the least recently
used object is checked. If it is zero, the
object is discarded. Otherwise the hit
count is decreased by one, and the object
is moved to the beginning of the list.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 381

—LRU-Hot [Menaud et al. 2000]. LRU-
Hot manages two LRU lists: one for hot
(popular) objects and one for cold (not so
popular) objects. An object is hot, if its
request frequency at the original server
is above a threshold. This information
is sent with the object to the client (and
proxy). According to this information,
the object is inserted into the corre-
sponding list. These lists are treated
differently. LRU-Hot uses two reference
counters: a base counter and a counter
for hot objects. Both counters are initial-
ized to zero. Each request increases the
base counter by one. The hot counter
is increased by one at every α(α > 1)
requests. When an object is requested
(miss or hit), it is stored at the begin-
ning of the corresponding list, and it is
assigned an access value that is equal
to the actual base counter value. Upon a
replacement, the cache recomputes val-
ues for the two objects at the end of the
two lists. Let tail hot and tail cold be
the values of these objects. Then the
reaccessibility values for these two ob-
jects are given as

hot value =
tail hot − hot reference counter, (5)

cold value =
tail cold − cold reference counter.

The object with the smaller value is re-
moved from the cache. The algorithm it-
erates until there is enough space for the
new incoming object.

—HYPER-G [Williams et al. 1996]. This
strategy combines LRU, LFU, and SIZE.
At first the least frequently used object
is chosen. If there is more than one ob-
ject that meets this criterion, the cache
chooses the least recently used among
them. If this still does not give a unique
object to replace, the largest object is
chosen.

—CSS(Cubic Selection Scheme)
[Tatarinov 1998a]. CSS is an extension
of the PSS strategy. CSS is based on a
cube-like data structure. The CSS cube
is formed by a matrix whose elements
are lists of objects that correspond to
one class. Objects in one class have size

�log si� and request frequency �log fi�.
Let MaxF be the maximum possible
value for fi. Then the height of the
matrix is given by �log MaxF� + 1
and the width by �log M� + 1. The
consideration of size and frequency
requires more cache management. A
modification of the frequency value
can cause a reorganization of the lists,
because the corresponding object has
to be inserted in a new list. CSS also
uses a more sophisticated replacement
procedure, where the LRU objects of
the diagonals of the CSS matrix are
considered. Furthermore, CSS applies
an aging mechanism to the frequency
counters.

—LRU-SP [Cheng and Kambayashi
2000]. LRU-SP is another extension of
PSS. Similarly to PSS, LRU-PS uses
different classes. The class of object
i is determined by �log(si/ fi)�. Each
class maintains a separate LRU list. A
request to a cached object i can cause
its rearrangement into another list. On
a replacement, the values of the least
recently used objects in each class are
compared. LRU-SP chooses object i if
its value (�Tisi)/ fi is the largest one
among all values of this objects. �Ti is
the number of accesses since the last
time object i was requested (like in
PSS).

The advantage of these strategies is as
follows:

—They combine recency and frequency.
If designed properly, such strategies
can avoid the problems of recency- and
frequency-based strategies described
above.

The disadvantage is as follows:

—Due to special procedures, most of these
strategies introduce additional com-
plexity. Only Generational Replacement
and LRU* try to combine the simple
implementation of LRU with frequency
counts. However, they do not consider
size.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

382 Podlipnig and Böszörmenyi

3.4. Function-Based Strategies

These strategies use a potentially general
function to calculate the value of an object.
In the following we assume (if not stated
otherwise) that the strategy chooses the
object with the smallest value.

—GD(Greedy Dual)-Size [Cao and Irani
1997]. GD-Size maintains for each ob-
ject a characteristic value Hi. A request
for object i (new request or hit) requires
a recalculation of Hi. Hi is calculated as

Hi = ci

si
+ L. (6)

L is a running aging factor, similar to
LFU-DA, which is initialized to zero.
GD-Size chooses the object with the
smallest Hi-value. The value of this
object is assigned to L.

GD-Size can be seen as a modification
of the so-called Landlord algorithm pro-
posed in Young [1998]. This simple de-
terministic on-line algorithm general-
izes many well-known caching (paging)
strategies. Young [1998] showed that
the worst case performance for any re-
quest sequence is bounded.

—GDSF [Arlitt et al. 2000]. GDSF calcu-
lates Hi as

Hi = fi
ci

si
+ L. (7)

A generalized form of GDSF was
described in Cherkasova and Ciardo
[2001]. It calculates Hi as

Hi = f α
i

sβ
i

+ L. (8)

ci is set to 1. α and β are weighting
parameters, which indicate the impor-
tance of the used factors.

—GD* [Jin and Bestavros 2000]. GD*
calculates Hi as

Hi =
(

(fi ∗ ci)
si

) 1
β

+ L. (9)

β is a weighting factor, which is es-
timated in an online fashion. β char-
acterizes reference correlation. Refer-
ence correlation is measured by the dis-
tribution of reference interarrivals for
equally popular objects.

—Server-assisted cache replacement
[Cohen et al. 1998]. This strategy
enhances replacement policies by
providing the proxy with the distri-
bution function of the next request
time for each object. The distribution
is estimated by collecting per-object
statistics on interrequest times. In
server-assisted replacement, the server
generates a histogram of interrequest
times by observing its request logs.
These statistics are incorporated into
the calculation of the profit of an object.
For further details concerning these
and additional calculations, see Cohen
et al. [1998].

—TSP(Taylor Series Prediction) [Yang
et al. 2001]. TSP calculates Hi as

Hi = fi ∗ ci

si ∗ TT
. (10)

TT describes the temporal “accelera-
tion” of requests to object i. TT = tp − tc,
where tp is the predicted time for the
next request and tc is the current time.
tp is determined with a second-order
Taylor series that uses the last and the
next to last request times.

—Bolot/Hoschka’s strategy [Bolot and
Hoschka 1996]. This strategy uses the
following function for calculating the
value of object i:

f (i) = W1li + W2si + W3 + W4si

Ti
, (11)

where W1, W2, W3, and W4 are tuning
parameters. The values of the tuning
parameters depend on the performance
metric that should be maximized.

—MIX [Niclausse et al. 1998]. The MIX
strategy uses the following function for
calculating the value of object i:

f (i) = l r1
i f r2

i

Tr3
i sr4

i
. (12)

ri(i = 1, . . . , 4) are tuning parameters,
that should be determined through ex-
perimental cache runs. There are no de-
fined ranges for these tuning parame-
ters. The authors of the algorithm used
ri = 1 for i = 2, 3, 4 and r1 = 0.1.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 383

—M-Metric [Wessels 1995]. The value of
an object i is given by:

M − Metric = f f
i Tr

i ss
i . (13)

f , s, and r are weighting parameters. f
should have a positive value to weight a
higher number of requests. r should be
negative to give more weight to recent
requests. s could be positive or nega-
tive. A positive value gives more weight
to larger object, a negative value gives
more weight to smaller objects.

—HYBRID [Wooster and Abrams 1997].
The function for an object i from server
s depends on the following parameters:
cs (time to contact server s), bs (available
bandwidth to server s). The function is
defined as

f (i) =
(

cs + Wb
bs

)
fi

Wn

si
, (14)

where Wb and Wn are weighting param-
eters. Estimates for cs and bs are based
on the time to fetch documents from
server s in the recent past.

—LNC-R-W3 [Scheuermann et al. 1997].
The so called profit p(i) of an object i is
calculated as

p(i) = fili

si
. (15)

For this calculation, fi is calculated
in consideration of the last K (K >
1) request times (sliding window of K
requests):

fi = K
(t − tk)sb

i
, (16)

where t corresponds to the actual time
and tk is the time of the oldest request
time in the sliding window. b is used to
weight the importance of different ob-
ject sizes.

—LRV [Rizzo and Vicisano 2000]. This
strategy chooses the object with low-
est relative value which is a function
of the probability that the document is
accessed again. This probability Pr is
calculated as
Pr (fi, Ti, si) ={

P (1, si)(1 − D̃(Ti)), if fi = 1, (18)
P (fi)(1 − D̃(Ti)) otherwise.

P (fi) is the probability that object i
is requested fi + 1 times given that it
is requested fi times. For objects with
only one request, this probability de-
pends on the size of the object and is
given by (P (1, si)). D̃(Ti) denotes the
distribution of the interaccess times.
Rizzo and Vicisano [2000] showed effec-
tive ways to compute adaptively P (fi),
P (1, si) and the parameters that influ-
ence D̃(Ti) (based on the history of pre-
vious accesses).

—LUV [Bahn et al. 2002]. This strategy
calculates for every object i a value V (i)
as

V (i) = W (i)p(i). (19)

W (i) is the relative cost to fetch the ob-
ject from its original server and is de-
fined as W (i) = ci/si. p(i) is the “proba-
bility” that object i is referenced in the
future. p(i) is calculated as

p(i) =
fi∑

k=1

F (tc − tk), (20)

where tc is the actual time and tk is the
oldest request time in a sliding window
of k request times. F (x) should be de-
creasing, to give more weight to more
recent references. One possibility is

F (x) =
(

1
2

)λx

(0 ≤ λ ≤ 1). (21)

Bahn et al. [2002] showed how to calcu-
late V (i) in an efficient way even if all
request times are used for p(i).

—LR(Logistic Regression)-Model [Foong
et al. 2000]. The goal of this model is
to express the outcome of a dependent
variable Y , in terms of its predictors,
(1, X 1, . . . , X k) and their respective co-
efficients (β0, β1, . . . , βk). The LR proba-
bility is given by

PLR = P (Y = 1 or 0|1, X 1, . . . , X k)

= 1
1 − e−z ,

where (22)

z =
k∑

j=0

β j X j − ∞ < z < +∞.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

384 Podlipnig and Böszörmenyi

Given a set of observed data, the coeffi-
cients are obtained using the method of
maximum likelihood estimation (learn-
ing phase). Once these coefficients are
known, the LR probability can be cal-
culated for other objects (prediction
phase). In the caching context, the event
of interest is whether a document is
reaccessed at least once in the next N
accesses. The predictors are factors like
recency, frequency, size, and cost.

This class contains most of the proposed
replacement strategies. Many of these
strategies use similar factors and weight-
ing schemes. The advantages of these pro-
posals are as follows:

—They do not assume a fixed combination
of factors or fixed usage of data struc-
tures. There exists no built-in bias for
some objects. Through the proper choice
of weighting parameters, one can try to
optimize any performance metric.

—They consider a number of factors for
handling different workload situations.

The disadvantages are as follows:

—Choosing appropriate weights is a diffi-
cult task. Some proposals assume that
the weights are derived from Web trace
studies. This is a simple but errorprone
approach. Web workloads change over
time and require some adaptive setting
of the parameters. Adaptivity adds new
complexity to the replacement process.
Furthermore, there exist no exhaustive
treatment of this sort of adaptivity in
the literature.

—Using latency in the value calculation
can introduce some problems. Recency
and frequency information can be at-
tained easily from the past request
stream at the proxy. Latency is sampled
at the proxy but influenced by many
components on the path between server
and proxy (or client). Statistical fluctu-
ations complicate any accurate decision
making. Furthermore, new technologies
that support the movement of Web ob-
jects (content distribution networks) in-
troduce further sources for inaccurate
latency estimations. Therefore, using la-

tency can lead to inferior replacement
decisions.

3.5. Randomized Strategies

These strategies use randomized decisions
to find an object for replacement. The fol-
lowing strategies were proposed:

—RAND. This strategy removes a random
object.

—HARMONIC [Hosseini-Khayat 1997].
Whereas RAND uses equal probability
for each object, HARMONIC removes
from cache one item at random with a
probability inversely proportional to its
specific cost cost = ci/si.

—LRU-C and LRU-S [Starobinski and Tse
2001]. LRU-C is a randomized version
of LRU. Let cmax = max{c1, c2, . . . , cN }
be the maximum of the access costs of
all N objects of a request sequence. Let
c̃i = ci/cmax be the normalized cost for
object i. When an object i is requested,
it is moved to the head of the cache
with probability c̃i; otherwise, nothing
is done.

LRU-S uses the size instead of the
cost. Let smin = min{s1, s2, . . . , sN } be the
size of the smallest objects among the N
documents, and di = smin/si be the nor-
malized density of object i. LRU-S acts
as LRU with probability di; otherwise
the cache state is left unmodified.

Furthermore, Starobinski and Tse
[2001] proposed an algorithm which
deals with both varying-size and
varying-cost objects. The following
quantities were defined:

βi = ci

si
; βmax = max

i
{βi};

β̃i = βi

βmax
. (23)

Upon a request for object i, this algo-
rithm performs the same operation as
LRU with probability β̃i and with 1 − β̃i
will leave the cache state unmodified.

—Randomized replacement with general
value functions [Psounis and Prabhakar
2001]. This strategy draws N objects
randomly from the cache and evicts the
least useful object in the sample. The

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 385

usefulness of a document can be deter-
mined by any utility function. After re-
placing the least useful object, the next
M (M < N) least useful objects are re-
tained in memory. At the next replace-
ment, N − M new samples are drawn
from the cache and the least useful of
these N − M and M previously retained
is evicted. The M least useful of the re-
maining are stored in memory and so on.

Randomization presents a different ap-
proach to cache replacement. Randomized
strategies try to reduce the complexity of
the replacement process without sacrific-
ing the quality too much. The advantages
are as follows:

—Randomized strategies do not need spe-
cial data structures for inserting and
deleting objects. Searching can be sup-
ported by special data structures.

—Randomized strategies are simple to im-
plement.

The disadvantage is as follows:

—Randomized strategies are more cum-
bersome to evaluate. For example, dif-
ferent simulation runs on the same Web
request trace will give slightly different
results.

4. ON THE IMPORTANCE OF CACHE
REPLACEMENT STRATEGIES

Cache replacement was an important is-
sue in the early days of caching. Nowa-
days cache replacement is often consid-
ered less important [Krishnamurthy and
Rexford 2001; Rabinovich and Spatscheck
2002]. The following arguments are pre-
sented:

—Steadily falling costs of storage lead to
caches of sizes large enough to hold most
of the requested objects.

—The fraction of traffic that is cacheable
steadily decreases.

—There exist “good-enough” algorithms
that satisfy most situations in which
cache replacement is used. Algorithms
such as GD-Size are in the good-enough
category.

—Changes to objects over time reduce the
value of having a large cache that can
store them longer.

We will comment on these arguments in
the following sections.

4.1. Large Caches

This is the main argument against an ex-
haustive discussion of replacement strate-
gies. It is based on numbers often found
in the literature [Gray and Shenoy 2000].
The most striking argument is, that disk
space doubles every 18 months (100 × in
10 years). Therefore the capacity of caches
grows steadily. So replacement strate-
gies are not seen as a limiting factor of
the progress of proxy caching. This ar-
gument is underpinned with an example
in Rabinovich and Spatscheck [2002]. We
give a similar example in the following.
Assume a cache that handles 1000 re-
quests per second (average rate). At an av-
erage size of 10 kbytes, this request rate
produces approximately 82 Mbps of data
sent to the clients. Assuming 40% of un-
cacheable data that is not stored and a
40% overall byte hit rate, we get 16.4 Mbps
(2.05 MBps) of incoming data. The afore-
mentioned cache has a total disk capacity
of 200 Gbytes. At 2.05 MBps, it would re-
quire about 28 h to fill the cache. Once it
is filled, the cache will hold about 21 mil-
lions 10-kbyte-sized objects. Although the
opinions vary on how long it should take a
cache to collect a working set for its clients,
a study of a large proxy cache [Arlitt et al.
1999a] has found the median stack dis-
tance to be 60,000, with a mean of 640,000
and a standard deviation of 1.5 million.
Even the maximum stack distance was
just over 16 million. These numbers indi-
cate that even a basic LRU replacement
strategy would be sufficient for this cache.
Furthermore, cache vendors never differ-
entiate themselves based on replacement
strategies because they assume that disk
space is currently not the limiting factor
in proxy performance.

Although these arguments seem to be
convincing, one has to bear in mind the

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

386 Podlipnig and Böszörmenyi

following aspects:

—The example assumes a proxy cache
with large disk capacity. Using replace-
ment strategies in more limited systems
can still be an important issue. Further-
more, main memory caches can benefit
from advanced replacement strategies
summarized in this survey.

—Due to new content (especially multime-
dia content), the average size of Web ob-
jects will grow with orders of magnitude
in the future.

4.2. Reduction of Cacheable Traffic and Rate
of Change

A response to a Web request is called
cacheable if it is allowed to be stored
in a cache and used for future requests;
otherwise, it is uncacheable. Similarly a
request is cacheable if it is satisfied by
a cache, and uncacheable otherwise. A
request to an uncacheable object is al-
ways uncacheable. Normally proxy caches
do not cache dynamically generated ob-
jects, requests with a cookie header and
responses with a set-cookie header (cook-
ies are often used to personalize Web ob-
jects to a particular client or even par-
ticular request, e.g., no reuse possible),
requests using methods other than GET or
HEAD, and responses with certain codes,
although they could be cached under cer-
tain circumstances (defined in HTTP 1.1.).
Overall, around 40% of all requests are
uncacheable [Rabinovich and Spatscheck
2002]. This clearly presents a big obstacle
to caching and not only to cache replace-
ment.

A cache has to deliver fresh informa-
tion (Web objects) on each hit. If an object
changes at the origin server, the cached
data is stale. Therefore, the cache has to
implement a consistency policy. Normally
a certain amount of objects changes over
time, that is, these objects are fresh only
for a specific time period. A larger cache
that can store these objects for a longer
time period is not very useful, that is,
the cache will have a moderate number
of fresh objects during each time interval
only.

4.3. Good-Enough Algorithms

In the early days of caching, simple re-
placement strategies were used. There-
fore, research for more sophisticated
replacement strategies was an important
issue. Nowadays there exist a multitude of
strategies. Although most of the papers in
the literature provide evidence that their
actually proposed strategies are the best
of all, one can find some strategies that
give good results in different evaluations.
Such algorithms are considered as “good-
enough” for general Web cache replace-
ment but it is questionable if they are good
enough for future requirements (e.g., mul-
timedia, QoS). We comment on this topic
in Section 5.

Examples of algorithms that are consid-
ered as good enough are: GD-Size and ex-
tensions thereof, LUV, PSS and extensions
thereof. A definite performance ranking
of the different replacement strategies
is not possible as there exists no best
strategy for different workload situations.
Furthermore, replacement strategies give
different results for different metrics.
Often used metrics are hit-rate, byte-hit-
rate, and delay-savings-ratio. Let hi be the
number of hits for video i, si the size of
video i, di the latency seen when down-
loading object i from its original server,
and ri the number of requests to video i.
The hit-rate of a cache for a request se-
quence with n different videos is given
by

∑n
i=1 hi/

∑n
i=1 ri, the byte-hit-rate by∑n

i=1 sihi/
∑n

i=1 siri, and the delay-savings-
ratio by

∑n
i=1 dihi/

∑n
i=1 diri. The following

statements concerning these performance
metrics can be made:

—Hit-rate. By far the most often used
cache performance metric. Strategies
that favor smaller objects (like SIZE,
LRU-Min, or function-based strategies
with a strong weighting of object size)
optimize for hit-rate. This performance
metric is interesting for users that want
to have a high percentage of local hits.

—Byte-hit-rate. Strategies that tend to re-
move bigger objects improve the hit-
rate and decrease the byte-hit-rate.
The different weighting of object sizes

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 387

influences this tradeoff. This perfor-
mance metric is interesting for ISPs
when they try to minimize the download
volume from the Internet.

—Delay-savings-ratio. Intuitively this
metric seems to be appropriate for in-
teractive systems as it tries to minimize
the expected download time. It was
introduced to show the improved
performance of algorithms using down-
load delays, in their calculations (like
Hybrid). Due to the statistical fluctua-
tions of download delays, performance
results based on this metric can be
unstable. Therefore, this metric is used
seldom.

Good-enough algorithms give good per-
formance for more than one perfor-
mance metric. They represent a solu-
tion to the tradeoff introduced by diverse
performance metrics. Furthermore some
function-based strategies with weighting
parameters can be optimized for any per-
formance metric.

4.4. Strategy Usage

The previous section described some gen-
eral aspects of so-called good-enough al-
gorithms. Although it is difficult to give a
definite list of good-enough algorithms, in
the following section we give some guide-
lines for the proper selection.

4.4.1. Product-Based Approaches. Most of
the caching products use a form of LRU
replacement. There are two main reasons
for that:

—It is easy to implement. An LRU imple-
mentation is less complex than the im-
plementation of more elaborated strate-
gies. Furthermore, LRU imposes less
overhead than strategies that sort ob-
jects to a certain criterion. Inserting and
removing have a complexity of O(1) (for
original LRU or strategies that preserve
the LRU procedure of inserting and re-
moving, e.g., LRU-S, LRU-C).

—Most cache vendors assume that
disk space is not the limiting factor
of the performance of their caching

products. We discussed this topic in
Section 4.1.

One popular caching product realized in
software is the freely available Squid
proxy cache. In its original implementa-
tion Squid uses LRU with some modifi-
cations. The replacement algorithm is not
triggered on demand but runs periodically
every second. Squid has a low and a high
water mark. When the disk usage is close
to the low water mark, the replacement
is less aggressive (fewer objects removed).
When the usage is close to the high wa-
ter mark, the replacement is more aggres-
sive (more objects removed). The replace-
ment depends among other things on an
LRU-threshold that is dynamically calcu-
lated, based on the current cache size and
the low and high water marks. An object
is removed if the time since last access
is greater than this threshold. Further-
more, Squid supports a version of LFU-
DA and GDSF. For specific implementa-
tion details, see Dilley et al. [1999].

4.4.2. Considerations Based on Statistical
Properties. As stated earlier, it is not pos-
sible to identify the best replacement
strategy. First, different replacement
strategies optimize for different perfor-
mance metrics. Second, different workload
situations can result in different perfor-
mance rankings for a specific set of re-
placement strategies. It is this workload
sensitivity that produces the different re-
sults described in the literature.

There are typical workload factors that
influence the performance of replacement
strategies. The following factors are im-
portant in a object request stream (succes-
sion of object requests) to a proxy cache:

—Object size. This is the mainspring for
a big part of replacement research. The
size of Web objects can vary signifi-
cantly. The size of Web objects is often
modeled with a heavy-tailed distribu-
tion, a combination of light-tailed (body
of the distribution) and heavy-tailed
(tail of the distribution)(e.g., Barford
et al. [1998]), or with a log-normal dis-
tribution (e.g., Downey [2001]).

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

388 Podlipnig and Böszörmenyi

—Temporal locality. Temporal locality de-
scribes the characteristic that an object
just referenced has an increased proba-
bility of being referenced in the near fu-
ture. Temporal locality has two aspects:
popularity and correlation. Popularity
describes the long-term probability of
an object seen in a request stream. The
skewed distribution of the popularity of
a set of objects is often characterized by
a Zipf distribution [Breslau et al. 1999]
or recently by the empirical entropy of
the request stream [Fonseca et al. 2003].
Temporal correlation focuses on the way
in which references to a given object are
separated by references to other objects.
It is often characterized by the LRU-
Stack distance model [Almeida et al.
1996; Mahanti et al. 2000] or recently
by the coefficient of variation of the in-
terreference gap (number of references
to other objects between two consecutive
requests for a certain object)[Fonseca
et al. 2003].

These factors have a decisive influence
on the performance of replacement strate-
gies. Therefore, any evaluation should
consider the interplay between workload
and replacement strategy.

Considering these factors and results
described in the literature, the following
general rules for choosing a replacement
strategy can be derived:

—Replacement strategies should contain
some size differentiation. This size dif-
ferentiation can be incorporated into a
value function (like in most function-
based strategies). This complicates the
management of a sorted list of cached
objects. Therefore, if the proxy has fewer
CPU resources, such a differentiation
could be too heavy-weight. A simple al-
ternative is to separate the cache into
a small number of caches. Each cache
handles objects of a specific size range.
Objects are inserted in their correspond-
ing cache and managed with a simple
replacement strategy inside this cache
(examples for this procedure are PSS
and variations thereof or partitioned
caching).

—As described above, the complexity of
the (re)calculation of object values (not
only size-based) can be a decisive factor
against a replacement strategy. Prox-
ies that are CPU-bounded should not
integrate such complex strategies (e.g.,
function-based replacement). Less com-
plex alternatives are LRU and certain
variations thereof.

—If the cache space is very small com-
pared to the overall size of all Web ob-
jects seen in a workload, the cache re-
placement strategy should favor recency
over frequency. This is due to the fact
that temporal correlations between re-
quests to the same object exist in the
short term.

—If the cache space is large enough (few
Gigabytes for actual workloads), long-
term frequency should be incorporated
into the caching decision because doc-
ument popularity is the main contrib-
utor to temporal locality. Frequency
should always be combined with an ag-
ing mechanism to reduce the effect of
cache pollution.

These rules can be seen as general guide-
lines. Indeed, the performance of a cache
replacement strategy depends heavily on
the seen workload. Therefore, it is a valu-
able question how caches can be made
adaptive to different workloads. We will
comment on this topic in the following sec-
tion about future research topics.

4.5. Alternative Models for Cache
Management

Normally cache management is associated
with cache replacement. If the cache fills
up, some objects are removed to make
space for further objects. A different ap-
proach to cache management constitutes
static caching. With static caching the con-
tent of the cache is updated periodically.
The popularity of objects is determined by
information derived from prior periods. Al-
though this approach is easy to implement
and puts load on the cache at predeter-
mined time points, it is only suitable for
specific systems with a well-defined (prior
known) number of objects. Therefore such

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 389

approaches are used in caches for Web
servers [Liu et al. 1998; Tatarinov et al.
1997].

An even simpler approach is to cache ob-
jects for a certain time period. If all ob-
jects are stored for the same time period
T , the objects can be stored in a FIFO
queue. Periodically the cache checks the
end of the queue if some objects have
exceeded their time limit and removes
them from the cache. This approach is sim-
ple to implement and allows a simple anal-
ysis. The problem of this approach is that
the used storage space increases strongly
with increasing T . One remedy to this sit-
uation is to store only objects that were
requested n(n > 1) times. This filtering
policy removes objects that do not con-
tribute very much to the hit-rate but waste
storage space. A similar technique for a
slightly different approach was described
in Rodriguez [2000].

4.6. Potentials for Capacity Improving

Proxy caching has a substantial impact on
the average load of servers and networks.
Therefore, this load reduction is often de-
scribed as the main advantage of proxy
caching. Although the reduction of the av-
erage load is useful to users due to the re-
duction in the average response time, it is
less effective for servers and networks that
are typically provisioned based on the high
percentile of the load distribution. Inter-
estingly, proxy caches have a diminishing
impact on the tail of the load distribution.
Raunak et al. [2002] described three key
results for typical Web workloads:

—Proxy caches have a diminished impact
on the tail of the load distribution. The
reduction in the tail of the load distri-
bution and the corresponding capacity
savings depend on the percentile of the
distribution chosen for provisioning:
the higher the percentile, the smaller
the savings.

—Although proxy caches smooth out some
of the burstiness in the load, the result-
ing traffic continues to be bursty and
heavy-tailed.

—Intense bursts in the load are caused by
an increase in the request rate as well as
the size of requested objects. Requests
for large objects diminish the impact of
caching because the locality exhibited
by these objects is often poor.

It should be noted that these results are
workload-dependent but they are based
on typical workloads seen in the Web. Al-
though some parameters of these work-
loads change over years, the basic aspects
(e.g., heavy-tailed object sizes) will not
change.

5. FUTURE RESEARCH TOPICS

In the previous section we have dis-
cussed the importance of cache replace-
ment strategies. Although Web cache re-
placement in its general form seems to be
a solved topic, there are new areas that
need further investigation. The following
areas can be identified:

—Adaptive replacement. Evaluations
show that there exists no “best” re-
placement strategy. Depending on
the workload, different strategies can
give the best result. As workloads on
the Web can change, it is a valuable
question how a proxy can use different
replacement strategies in an adaptive
manner. Furthermore, function-based
strategies can be made adaptive by
changing the weighting parameters.

—Coordinated replacement. Replacement
decisions affect the state of one proxy.
In a caching hierarchy or distributed
caching scheme, a coordination of re-
placement decisions at different prox-
ies could give a superior performance.
Furthermore, coordinated placement of
Web objects could improve the perfor-
mance further.

—Combination of cache replacement and
cache coherence. Traditionally cache re-
placement and cache coherence are
treated as separate topics. Neverthe-
less, there is a relationship between
these topics because a cache should not
return stale Web objects. The interplay
between replacement and coherence has
not been studied in detail.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

390 Podlipnig and Böszörmenyi

—Multimedia cache replacement. Multi-
media caches pose a new problem for re-
placement strategies. First, multimedia
objects (especially videos) are very large
and place a heavy load on caches. There-
fore, partial caching techniques (the
cache contains only important parts)
were introduced. Second, multimedia
caches can use adaptation techniques to
augment replacement strategies.

—Differentiated cache replacement. Origi-
nal caching does not support quality of
service (QoS), that is, caching can be
seen as a best-effort service. All objects
are handled equally. Introducing some
sort of differentiation can make the re-
placement process QoS aware.

The following sections provide a more
thorough discussion of these topics.

5.1. Adaptive Replacement

The efficiency of replacement strategies
depends on the actual workload. Differ-
ences in workloads can lead to different
results for replacement strategies. There-
fore, a cache should be adaptive with
respect to different workloads. We dis-
tinguish between the following forms of
adaptivity:

—Adaptive replacement strategies. Many
function-based replacement strategies
use weighting parameters to guide the
replacement process. These parameters
can be changed according to workload
changes.

—Adaptive application of different re-
placement strategies. Original replace-
ment strategies that are good enough
for different workload scenarios can be
used as building blocks for a combined
replacement strategy.

Examples for the first category are
proposed in Bolot and Hoschka [1996],
Kelly et al. [1999], Niclausse et al. [1998],
Wessels [1995], and Wooster and Abrams
[1997]. A change of the proposed param-
eters will result in a different behavior.
To what extent this can be done dynami-
cally is an open question. Parameter adap-
tation was not discussed in any of the

above-mentioned papers. Therefore, the
online adaptation constitutes an interest-
ing research topic.

Two proposals in the category of
function-based replacement strategies use
some sort of adaptation. The so-called
LR-model in Foong et al. [2000] is adap-
tive in principle. The used coefficients
are learned from past workloads period-
ically. Therefore, this strategy adapts to
new workload situations. The problem is
the additional overhead introduced by this
machine learning technique. Another sim-
ple adaptive calculation is proposed for
the LUV strategy proposed in Bahn et al.
[2002]. The weighting parameter λ can
adopt a value between 0 and 1. A sim-
ple strategy for adapting this parameter
according to the actual workload was de-
scribed in Lee et al. [1999].4

Aspects of the second category were
discussed in Aguilar and Leiss [2001]
and Aubert and Beugnard [1999]. Aubert
and Beugnard [1999] discussed general
conditions for adaptation in Web caches.
They did not propose certain procedures
but discussed some problems that can
arise from this form of adaptivity. Aguilar
and Leiss [2001] proposed a simple semi-
adaptive procedure. By means of some
rules, the cache determines according to
the given workload the used replacement
strategy.

Although adaptation constitutes an in-
teresting aspect for cache replacement,
one should not ignore the possible prob-
lems. Introducing adaptation in function-
based replacement strategies adds ad-
ditional complexity to the replacement
process. Furthermore, the adaptation pro-
cedure should be intelligent enough to
avoid unnecessary adaptations that could
deteriorate the performance of the re-
placement strategy. A similar problem
exists when the cache uses different
replacement strategies adaptively. The
changeover between different strategies
should be done prudently to avoid wrong
decisions. Furthermore, this kind of adap-
tivity adds another form of complexity

4This adaptation procedure was described for a strat-
egy that forms the basis for LUV.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 391

to the replacement process. The cache
has to manage data (and data structures)
for all the different replacement strate-
gies. It is questionable if this is reason-
able in a Web cache. Future research
should therefore concentrate on the fol-
lowing two topics: design and evaluation
of intelligent adaptation procedures (or
rules) and verification of the applicability
of these procedures to Web caches in real
environments (e.g., high loads, bursty re-
quest sequences).

5.2. Coordinated Replacement

Most of the cache replacement research
has concentrated on cache replacement
strategies for one proxy. The decisions
are derived for one proxy. In cooperat-
ing caching architectures (caching hier-
archies, distributed caches), such local
decisions could be inferior to coordinated
replacement decisions. One example was
described in Korupolu and Dahlin [1999].
They modified GD-Size for caching hierar-
chies. If an object is evicted from the cache,
it is passed up to a parent cluster for possi-
ble inclusion in one of its caches. A specific
admission control test checks if this object
should be included into the parent cluster
replacing a less valuable object.

Besides this simple replacement en-
hancement, Korupolu and Dahlin [1999]
proposed optimal and heuristic coordi-
nated placement algorithms. Such algo-
rithms attempt to solve the following prob-
lem: Given a set of cooperating caches,
the network distance between the caches
and predictions of the access rates from
each cache to each object determine where
to place each object in order to mini-
mize the average access cost. Another ap-
proach to coordinated placement was de-
scribed in Ramaswamy and Liu [2002]
which takes into account the contentions
at individual caches in order to limit
the replication of documents within a
cache group and increase document hit
rate. The concept of cache expiration age
(average cache expiration age) is used
to measure the contention of individual
caches.

In contrast to cache replacement, co-
ordinated cache replacement and place-
ment has not attracted very much atten-
tion. Therefore, there is still some place
for algorithmic research. On the one hand,
this can mean enhancements of the ap-
proaches described above. On the other
hand, this can mean new proposals. Be-
sides this, an exhaustive performance
evaluation is needed.

5.3. Cache Replacement and Cache
Coherence

Caching creates numerous copies of Web
objects distributed throughout the Inter-
net. If an object is updated at the origin
server, copies of that object become stale.
Therefore, a proxy should apply special
mechanisms to enforce the freshness of
cached objects. While this problem of cache
coherence is a widely studied topic in dif-
ferent areas of (distributed) computing sci-
ence, it is especially difficult in the Web.
This is due to its scale and loose coupling
between servers and proxies and clients.

There are two approaches to cache
consistency [Rabinovich and Spatscheck
2002]: validation and invalidation. With
validation, the clients verify the valid-
ity of their cached objects with the ori-
gin server. This is typically done period-
ically and therefore this approach ensures
weak consistency only. With invalidation,
the origin server notifies clients if a cached
object has changed. This approach has a
potential for providing strong consistency.

Less work exists investigating the in-
terplay between cache coherence tech-
niques and cache replacement. Shim et al.
[1998] described an enhancement of the
LNC-R-W3 replacement strategy that con-
siders the TTL (Time-to-live)-values of
cached objects. They showed an increased
performance over their previous algo-
rithm and a simple enhanced version of
LRU but did not compare it with better
replacement algorithms. Krishnamurthy
and Wills [1999] compared various com-
binations of coherence and replacement
strategies. They found among other things
that the inclusion of cache coherency is-
sues in cache replacement yields little

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

392 Podlipnig and Böszörmenyi

improvement in over-all performance.
Belloum and Hertzberger [2002] described
the impact of cache coherence techniques
on different cache replacement strategies
with respect to hit-rate. They showed
among other things that a simple coher-
ence technique can improve the perfor-
mance in terms of hit-rate and that cer-
tain coherence techniques can result in
an decreasing hit-rate for increasing cache
sizes.

Over-all, these are initial results that
need more investigation. Considering re-
placement and coherence together intro-
duces more complexity into the evaluation
(e.g., more factors to consider during the
evaluation process).

5.4. Multimedia Cache Replacement

Due to the increasing amount of mul-
timedia data, multimedia caching has
increased in importance. In contrast to
HTML pages, the size of multimedia ob-
jects can be reduced to a certain point
without sacrificing too much quality. Qual-
ity reduction was first used for images
in original Web caches. In the so-called
Soft Caching approach [Kangasharju et al.
1998], unpopular images are not removed
but recoded to a lower resolution. The idea
is to provide a client with a lower image
resolution until she asks explicitly for the
original version. Menaud et al. [2000] de-
scribed an LRU enhancement (LRU-QoS)
that uses a separate LRU list for degrad-
able objects and recompressable videos.
Furthermore, some authors tried to com-
bine transcoding of (multimedia) objects
with cache replacement. Acharya et al.
[1999] proposed to create different ver-
sions of an object, store them in the cache,
and replace them independently. Under
specific workload situations, this can give
better results than simple cache replace-
ment. Another proposal for a combina-
tion of cache replacement and transcod-
ing can be found in Yeung et al. [2001].
Furthermore, there exist some proposals
for combining transcoding and caching of
streaming videos in heterogeneous client
environments [Shen and Lee 2002; Tang
et al. 2002].

Especially video data will increase in
the near future and pose a heavy load
on the network and caches. To overcome
this problem, different proposals for video
caching exist in the literature. Most of
the proposals assume that video files are
huge and that normal sized caches can-
not store the many videos necessary to
achieve a certain hit rate. Therefore, par-
tial caching strategies have been pro-
posed. Examples are caching of a pre-
fix [Sen et al. 1999], caching of prefix
and selected frames [Miao and Ortega
1999; Ma and Du 2000], prefix-assisted
periodic broadcast of popular videos [Guo
et al. 2002], optimal proxy prefix alloca-
tion integrated with server-based reactive
transmission (batching, patching, stream-
merging) [Wang et al. 2002], caching of
bursty parts of a video [Zhang et al. 2000],
caching of hotspot segments [Fahmi et al.
2001], popularity-based prefix caching
[Park and E. J. Lim 2001], segment-
based prefix caching [Wu et al. 2001],
variable-sized chunk-based video caching
[Balafoutis et al. 2002], and distributed
architectures for partial caching [Acharya
and Smith 2000; Bommaiah et al. 2000] of
a video. Some of these caching schemes do
not use any dynamic replacement but use
periodic cache decision. Some use simple
replacement (LRU) combined with partial
caching decisions.

Other authors proposed to cache the
whole video but adapt the quality of the
videos according to some criteria. Ex-
amples are periodic caching of layered
coded videos [Kangasharju et al. 2001],
a combination of replacement strate-
gies and layered coded videos [Paknikar
et al. 2000], quality-adjusted caching of
GoPs (group of pictures) [Sasabe et al.
2001], adaptive caching of layered coded
videos in combination with congestion
control [Rejaie and Kangasharju 2001],
simple replacement strategies (patterns)
for videos consisting of different quality
steps [Podlipnig and Böszörmenyi 2002],
or a combination of transcoding and
cache replacement as described in a prior
section.

Future multimedia caching research
will be dominated by video caching

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 393

research because of the following reasons:

—Videos are by far the biggest objects in
a multimedia workload.

—Images and audio data (another source
for load) are not so big and especially
audio does not allow major adaptation.

The main problem of video caching re-
search is not the lack of sufficient differ-
ent proposals but the lack of practical ex-
periences in real environments. Most of
the proposals are evaluated by simula-
tion. Some proposals are implemented in
proprietary systems. Therefore future re-
search should concentrate on the applica-
tion of different proposals in real environ-
ments. Especially two aspects should be
worked out in more detail:

—Cooperation of caching proposals and
modern communication standards like
RTP and RTSP. One example can be
found in Gruber et al. [2000].

—Applicability of (quality-based) video
caching to modern multimedia stan-
dards like MPEG-4 or MPEG-7. One
example is described in Schojer et al.
[2002].

Furthermore, the implemented systems
should be evaluated with different met-
rics. Besides conventional metrics, newly
defined specialized metrics should be eval-
uated. From prior evaluations, it is not
clear which metric is suitable for video
caching.

5.5. Differentiated Cache Replacement

Traditional caching (cache replacement)
does not not support QoS (Quality of Ser-
vice). Caching can be seen as a best-effort
service. The inevitability of cache misses
implies that caches cannot be relied upon
to deliver the most popular objects in a
consistent and predictable way. To sup-
port QoS, cache replacement has to be en-
hanced or replaced by other cache man-
agement techniques.

One discussion of the combination of
network storage and QoS was presented
in Chuang and Sirbu [1999]. They pro-
posed the stor-serv framework, which was

inspired by the intserv and diffserv frame-
works in the data transmission domain.
The framework supports multiple service
classes, each with varying degrees of QoS.
The proposed classes can be summarized
as follows:

—Best-effort caching. This is original
caching that does not support custom
placement or custom replacement.

—Differential caching. This supports no
custom placement but adds custom re-
placement. It does not provide any ser-
vice guarantee, but offers preferential
treatment to certain objects while they
are in cache.

—Push caching. Push caching is the oppo-
site of differential caching. The content
provider specifies the cache nodes to
which objects are pushed (custom place-
ment). Once they arrive at the cache,
they are subject to the local replacement
strategy.

—Replication. Replication allows the con-
tent provider to specify custom place-
ment and replacement strategies for its
objects.

Replication corresponds to a guaranteed
service, for example, it provides perfor-
mance guarantees such as object lifetime
and latency bounds. Resource reservation
and admission control are necessary for
this kind of service. From the network
domain it is known that reservation adds
additional complexity that deteriorates
scalability. Therefore, we will concentrate
on the simpler approach of differential
caching (which we will call differentiated
caching in the following). On the one
hand, it is easier to implement and adds
(hopefully) less complexity to the replace-
ment process. Similar arguments hold for
the differentiated service approach in the
network domain. On the other hand, it is
the second real QoS approach described
above. Push caching does not realize any
QoS guarantee at the local caching node.

The idea of differentiated caching
is not new. There are a few propos-
als that try to introduce preferential
treatment of certain cached objects.
Examples are LRU-Hot and swLFU

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

394 Podlipnig and Böszörmenyi

described in Section 3. They assume
that the server provides additional
information identifying the privileged
objects, for example, some “marking”
of objects. A different approach is pre-
sented in Lu et al. [2001]. Digital feedback
control theory is used to manage cache re-
sources (cache space) for different classes
(HTML pages, images) in a way that
guarantees bounded convergence time to
a specified performance (specified hit-rate
for each class). At fixed time intervals the
resource allocations are corrected based
on the measured performance error.

These different proposals for differen-
tiation can be divided into two classes:
the first class (LRU-Hot, swLFU) tries
to transfer the differentiation principle
from the network domain to the caching
domain. Servers mark specific objects, and
caches use this information for differenti-
ated replacement. The second class (dif-
ferentiation via feedback control) does not
depend on any information sent by the
server. The differentiation approach is
handled at the proxy.

Although transferring known tech-
niques from one domain to another could
be an interesting idea one has to bear in
mind the following problems:

—Any form of differentiation needs some
accompanying pricing policy. Otherwise
content providers will try to get the best
service for all objects. These principles
are well studied in the network domain
but not in the caching domain.

—In contrast to the network domain, con-
tent providers have to mark individual
objects. A priori knowledge of the impor-
tance of an object is sometimes difficult
to attain.

Therefore the second approach where the
proxy determines the differentiation with-
out any server information is easier to im-
plement. Furthermore, it seems to be the
more intuitive approach for this domain,
as the proxy can rely on the actual local
workload.

The proposed feedback approach con-
stitutes an intelligent way for adapta-
tion but adds some overhead to the

implementation and performance of the
replacement strategy. It is an interesting
future research question how differenti-
ation can be applied with simpler tech-
niques. One example is given in Feldman
and Chuang [2002], where the well-known
LRU strategy is enhanced to consider dif-
ferent classes of objects.

6. CONCLUSIONS

This article has given an exhaustive sur-
vey of cache replacement strategies pro-
posed for Web caches. We concentrated on
proposals for proxy caches that manage
the cache replacement process at one spe-
cific proxy. A simple classification scheme
for these replacement strategies was given
and used for the description and gen-
eral critique of the described replacement
strategies. Although cache replacement is
considered as a solved problem, we showed
that there are still numerous areas for in-
teresting research.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable comments that helped to improve the
quality of this paper.

REFERENCES

ABRAMS, M., STANDRIDGE, C. R., ABDULLA, G., WILLIAMS,
S., AND FOX, E. 1995. Caching proxies: Limi-
tations and potentials. In Proceedings of the 4th
International World Wide Web Conference.

ACHARYA, S., KORTH, H. F., AND POOSALA, V. 1999.
Systematic multiresolution and its application
to the World Wide Web. In Proceedings of the
15th International Conference on Data Engineer-
ing. IEEE Computer Society, Piscataway, NJ,
40–49.

ACHARYA, S. AND SMITH, B. 2000. Middleman: A
video caching proxy server. In Proceedings of
the 10th International Workshop on Network and
Operating System Support for Digital Audio and
Video.

AGGARWAL, C. C., WOLF, J. L., AND YU, P. S. 1999.
Caching on the World Wide Web. IEEE Trans.
Knowl. Data Eng. 11, 1 (Jan.), 94–107.

AGUILAR, J. AND LEISS, E. 2001. A Web proxy cache
coherency and replacement approach. In Pro-
ceedings of the 1st Asia-Pacific Conference on
Web Intelligence.

ALMEIDA, V., BESTAVROS, A., CROVELLA, M., AND

DE OLIVEIRA, A. 1996. Characterizing refer-
ence locality in the WWW. In Proceedings of

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 395

the IEEE Conference on Parallel and Distributed
Information Systems. IEEE Computer Society,
Piscataway, NJ, 92–103.

ARLITT, M., FRIEDRICH, R., AND JIN, T. 1999a. Work-
load characterization of a Web proxy in a cable
modem environment. ACM SIGMETRICS Per-
form. Eval. Rev. 27, 2, 25–36.

ARLITT, M. F., CHERKASOVA, L., DILLEY, J., FRIEDRICH,
R. J., AND JIN, T. Y. 2000. Evaluating content
management techniques for Web proxy caches.
ACM SIGMETRICS Perform. Eval. Rev. 27, 4
(Mar.), 3–11.

ARLITT, M. F., FRIEDRICH, R. J., AND JIN, T. Y. 1999b.
Performance evaluation of Web proxy cache
replacement policies. Tech. rep. HPL-98-97(R.1),
Hewlett-Packard Company, Palo Alto, CA.

AUBERT, O. AND BEUGNARD, A. 1999. Towards a fine-
grained adaptivity in Web caches. In Proceedings
of the 4th International Web Caching Workshop.

BAHN, H., KOH, K., MIN, S. L., AND NOH, S. H. 2002.
Efficient replacement of nonuniform objects in
Web caches. IEEE Comput. 35, 6 (June), 65–73.

BALAFOUTIS, E., PANAGAKIS, A., LAOUTARIS, N., AND

STAVRAKAKIS, I. 2002. The impact of replace-
ment granularity on video caching. In IFIP
Networking 2002. Lecture Notes in Computer
Science, vol. 2345. Springer-Verlag, Berlin,
Germany, 214–225.

BARFORD, P., BESTAVROS, A., CROVELLA, M., AND BRADLEY,
A. 1998. Changes in Web client access pat-
terns: Characteristics and caching implications.
World Wide Web J.: Special Issue on World Wide
Web Characterization and Performance Evalua-
tion 2, 15–18.

BARISH, G. AND OBRACZKA, K. 2000. World Wide
Web caching: Trends and techniques. IEEE
Commun. Mag. 38, 5 (May), 178–185.

BELLOUM, A. S. Z. AND HERTZBERGER, L. O. 2002.
Concurrent evaluation of Web cache replace-
ment and coherence strategies. Simulation 78, 1
(Jan.), 28–35.

BOLOT, J. AND HOSCHKA, P. 1996. Performance engi-
neering of the World Wide Web: Application to
dimensioning and cache design. In Proceedings
of the 5th International World Wide Web Confer-
ence. Elsevier, Amsterdam, The Netherlands.

BOMMAIAH, E., GUO, K., HOFMANN, M., AND PAUL, S.
2000. Design and implementation of a caching
system for streaming media over the internet.
In Proceedings of the IEEE Real-Time Technol-
ogy and Applications Symposium (RTAS). IEEE
Computer Society, Piscataway, NJ.

BRESLAU, L., CAO, P., PHILIPS, G., AND SHENKER, S.
1999. Web caching and Zipf-like distributions:
Evidence and implications. In Proceedings of
the IEEE INFOCOM. IEEE Computer Society,
Piscataway, NJ, 126–134.

CAO, P. AND IRANI, S. 1997. Cost-aware WWW
proxy caching algorithms. In Proceedings of the
USENIX Symposium on Internet Technologies
and Systems. 193–206.

CHANG, C.-Y., MCGREGOR, T., AND HOLMES, G. 1999.
The LRU* WWW proxy cache document re-
placement algorithm. In Proceedings of the Asia
Pacific Web Conference.

CHENG, K. AND KAMBAYASHI, Y. 2000. A size-
adjusted and popularity-aware LRU replace-
ment algorithm for Web caching. In Proceed-
ings of the 24th International Computer Soft-
ware and Applications Conference (COMPSAC).
IEEE Computer Society, Piscataway, NJ, 48–53.

CHERKASOVA, L. AND CIARDO, G. 2001. Role of ag-
ing, frequency and size in Web caching replace-
ment strategies. In Proceedings of the 2001 Con-
ference on High-Performance Computing and
Networking (HPCN’01). Lecture Notes in Com-
puter Science, vol. 2110. Springer-Verlag, Berlin,
Germany, 114–123.

CHUANG, J. AND SIRBU, M. 1999. Adding quality-
of-service to network storage. In Proceedings
of the Workshop on Internet Service Quality
Economics.

COHEN, E., KRISHNAMURTHY, B., AND REXFORD, J. 1998.
Evaluating server-assisted cache replacement
in the Web. In Proceedings of the 6th Euro-
pean Symposium on Algorithms. Lecture Notes
in Computer Science, vol. 1461, Springer-Verlag,
Germany, 307–319.

DAVISON, B. D. 2001. A Web caching primer. IEEE
Internet Comput. 5, 4 (July), 38–45.

DILLEY, J., ARLITT, M., AND PERRET, S. 1999. En-
hancement and validation of the Squid cache re-
placement policy. In Proceedings of the 4th Inter-
national Web Caching Workshop.

DOWNEY, A. B. 2001. The structural cause of file
size distributions. In Proceedings of the 9th Inter-
national Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems. IEEE Computer Society, Piscataway,
NJ.

FAHMI, H., LATIF, M., SEDIGH-ALI, S., GHAFOOR, A.,
LIU, P., AND HSU, L. H. 2001. Proxy servers
for scalable interactive video support. IEEE
Comput. 43, 9 (Sept.), 54–60.

FELDMAN, M. AND CHUANG, J. 2002. Service differ-
entiation in Web caching and content distribu-
tion. In Proceedings of the IASTED International
Conference on Communications and Computer
Networks. IASTED/ACTA Press, Calgary, Alta.,
Canada.

FONSECA, R., ALMEIDA, V., CROVELLA, M., AND ABRAHAO,
B. 2003. On the intrinsic locality properties
of Web reference streams. In Proceedings of
the IEEE INFOCOM. IEEE Computer Society,
Piscataway, NJ.

FOONG, A. P., HU, Y., AND HEISEY, D. M. 2000.
Essence of an effective Web caching algorithm.
In Proceedings of the International Conference
on Internet Computing. 269–276.

GRAY, J. AND SHENOY, P. 2000. Rules of thumb in
data engineering. In Proceedings of the 16th
International Conference on Data Engineering.
IEEE Computer Society, Piscataway, NJ, 3–12.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

396 Podlipnig and Böszörmenyi

GRUBER, S., REXFORD, J., AND BASSO, A. 2000.
Protocol considerations for a prefix-caching
proxy for multimedia streams. In Proceedings of
the 9th World Wide Web Conference.

GUO, Y., SEN, S., AND TOWSLEY, D. 2002. Prefix
caching assisted periodic broadcast for stream-
ing popular videos. In Proceedings of ICC (Inter-
national Conference on Communications). IEEE
Computer Society, Piscataway, NJ.

HOSSEINI-KHAYAT, S. 1997. Investigation of gener-
alized caching. Ph.D. dissertation. Washington
University, St. Louis, MO.

JIN, S. AND BESTAVROS, A. 2000. GreedyDual*: Web
caching algorithms exploiting the two sources
of temporal locality in Web request streams.
In Proceedings of the 5th International Web
Caching and Content Delivery Workshop.

KANGASHARJU, J., HARTANTO, F., REISSLEIN, M., AND

ROSS, K. W. 2001. Distributing layered en-
coded video through caches. In Proceedings of
the IEEE INFOCOM. IEEE Computer Society,
Piscataway, NJ, 1791–1800.

KANGASHARJU, J., KWON, Y. G., AND ORTEGA, A. 1998.
Design and implementation of a soft caching
proxy. Comput. Netw. ISDN Syst. 30, 22-23
(Nov.), 2113–2121.

KELLY, T., JAMIN, S., AND MACKIE-MASON, J. K. 1999.
Variable QoS from shared Web caches: User cen-
tered design and value-sensitive replacement.
In Proceedings of the MIT Workshop on Internet
Service Quality Economics.

KORUPOLU, M. P. AND DAHLIN, M. 1999. Coordinated
placement and replacement for large-scale dis-
tributed caches. In Proceedings of the IEEE
Workshop on Internet Applications. IEEE Com-
puter Society, Piscataway, NJ, 62–71.

KRISHNAMURTHY, B. AND REXFORD, J. 2001. Web Pro-
tocols and Practice: HTTP/1.1, Networking
Protocols, Caching, and Traffic Measurement.
Addison-Wesley, Reading, MA.

KRISHNAMURTHY, B. AND WILLS, C. E. 1999. Proxy
cache coherency and replacement—towards a
more complete picture. In Proceedings of the
19th International Conference on Distributed
Computing Systems. IEEE Computer Society,
Piscataway, NJ, 332–339.

LEE, D., CHOI, J., KIM, J.-H., NOH, S., MIN, S. L., CHO,
Y., AND KIM, C. S. 1999. On the existence of
a spectrum of policies that subsumes the least
recently used (LRU) and least frequently used
(LFU) policies. In Proceedings of ACM SIGMET-
RICS. ACM Press, New York, NY, 134–143.

LIU, Z., NAIN, P., NICLAUSSE, N., AND TOWSLEY, D. 1998.
Static caching of Web servers. In Multimedia
Computing And Networking, vol. 3310, SPIE
Press, Bellingham, WA, 179–190.

LU, Y., SAXENA, A., AND ABDELZAHER, T. F. 2001.
Differentiated caching services: A control-
theoretical approach. In Proceedings of the 21st
International Conference on Distributed Com-
puting Systems (ICDCS). IEEE Computer Soci-
ety, Piscataway, NJ, 615–624.

MA, W.-H. AND DU, D. H.-C. 2000. Reducing band-
width requirement for delivering video over wide
area networks with proxy server. In Proceed-
ings of the IEEE International Conference on
Multimedia and Expo. IEEE Computer Society,
Piscataway, NJ, 991–994.

MAHANTI, A., EAGER, D., AND WILLIAMSON, C. 2000.
Temporal locality and its impact on Web proxy
cache performance. Perform. Eval. 42, 2–3
(Sept.), 187–203.

MENAUD, J.-M., ISSARNY, V., AND BANATRE, M. 2000.
Improving effectiveness of Web caching. In Re-
cent Advances in Distributed Systems. Lecture
Notes in Computer Science, vol. 1752. Springer-
Verlag, Berlin, Germany, 375–401.

MIAO, Z. AND ORTEGA, A. 1999. Proxy Caching for
Efficient Video Services over the Internet. In
Proceedings of the 9th International Packet Video
Workshop (PVW’99).

MURTA, C. D., ALMEIDA, V. A. F., AND MEIRA, W. 1998.
Analyzing performance of partitioned caches for
the WWW. In Proceedings of the 3rd Interna-
tional WWW Caching Workshop.

NICLAUSSE, N., LIU, Z., AND NAIN, P. 1998. A new ef-
ficient caching policy for the World Wide Web. In
Proceedings of the Workshop on Internet Server
Performance. 119–128.

OSAWA, N., YUBA, T., AND HAKOZAKI, K. 1997. Gener-
ational replacement schemes for a WWW proxy
server. In High-Performance Computing and
Networking (HPCN’97). Lecture Notes in Com-
puter Science, vol. 1225. Springer-Verlag, Berlin,
Germany, 940–949.

PAKNIKAR, S., KANKANHALLI, M., RAMAKRISHNAN, K. R.,
SRINIVASAN, S. H., AND NGOH, L. H. 2000. A
caching and streaming framework for multime-
dia. In Proceedings of ACM Multimedia. ACM
Press, New York, NY, 13–20.

PARK, S. H., LIM, E. J., AND CHUNG, K. D. 2001.
Popularity-based partial caching for VOD sys-
tems using a proxy server. In Proceedings of
the Workshop on Parallel and Distributed Com-
puting in Image Processing, Video Processing
and Multimedia. IEEE Computer Society, Pis-
cataway, NJ.

PITKOW, J. AND RECKER, M. 1994. A simple yet ro-
bust caching algorithm based on dynamic access
patterns. In Proceedings of the 2nd International
World Wide Web Conference. 1039–1046.

PODLIPNIG, S. AND BÖSZÖRMENYI, L. 2002. Replace-
ment strategies for quality based video caching.
In Proceedings of the IEEE International Con-
ference on Multimedia and Expo (ICME). Vol. 2.
IEEE Computer Society, Piscataway, NJ, 49–
53.

PSOUNIS, K. AND PRABHAKAR, B. 2001. A randomized
Web-cache replacement scheme. In Proceedings
of the IEEE INFOCOM. IEEE Computer Society,
Piscataway, NJ, 1407–1415.

RABINOVICH, M. AND SPATSCHECK, O. 2002. Web
Caching and Replication. Addison-Wesley,
Reading, MA.

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

Survey of Web Cache Replacement Strategies 397

RAMASWAMY, L. AND LIU, L. 2002. A new document
placement scheme for cooperative caching on
the internet. In Proceedings of the International
Conference on Distributed Computing Systems
(ICDCS). IEEE Computer Society, Piscataway,
NJ, 95–103.

RAUNAK, M. S., SHENOY, P., GOYAL, P., RAMAMRITHAM, K.,
AND KULKARNI, P. 2002. Implications of proxy
caching for provisioning servers and networks.
IEEE J. Sel. Areas Commun. (JSAC): Special
Issue on Internet Proxy Services 20, 7 (Sept.),
1276–1289.

REDDY, M. AND FLETCHER, G. P. 1998. Intelligent
Web caching using document life histories: A
comparison with existing cache management
techniques. In Proceedings of the 3rd Interna-
tional Web Caching Workshop.

REJAIE, R. AND KANGASHARJU, J. 2001. Mocha: A
quality adaptive multimedia proxy cache for In-
ternet streaming. In Proceedings of the 11th In-
ternational Workshop on Network and Operating
Systems Support for Digital Audio and Video.
ACM Press, New York, NY, 3–10.

RIZZO, L. AND VICISANO, L. 2000. Replacement poli-
cies for a proxy cache. IEEE/ACM Trans.
Netw. 8, 2 (Apr.), 158–170.

RODRIGUEZ, P. 2000. Scalable content distribu-
tion in the Internet. Ph.D. dissertation, Ecole
Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland.

SASABE, M., WAKAMIYA, N., MURATA, M., AND MIYAHARA,
H. 2001. Proxy caching mechanisms with
video quality adjustment. In Proceedings of
the SPIE Conference on Internet Multimedia
Management Systems, vol. 4519, SPIE Press,
Bellingham, WA, 276–284.

SCHEUERMANN, P., SHIM, J., AND VINGRALEK, R. 1997.
A Case for delay-conscious caching of Web-
documents. In Proceedings of the 6th Interna-
tional WWW Conference.

SCHOJER, P., BÖSZÖRMENYI, L., AND HELLWAGNER,
H. 2002. An adaptive MPEG-4 proxy cache.
In Proceedings of DAPSYS 2002. Kluwer,
Dordrecht, The Netherlands.

SEN, S., REXFORD, J., AND TOWSLEY, D. 1999. Proxy
prefix caching for multimedia streams. In Pro-
ceedings of IEEE INFOCOM’99. IEEE Com-
puter Society, Piscataway, NJ, 1310–1319.

SHEN, B. AND LEE, S.-J. 2002. Transcoding-enabled
caching proxy for video delivery in heteroge-
neous network environments. In International
Conference on Internet and Multimedia Systems
and Applications (IMSA). IASTED/ACTA Press,
Calgary, Alta, Canada, 360–365.

SHIM, J., SCHEUERMANN, P., AND VINGRALEK, R.
1998. A unified algorithm for cache replace-
ment and consistency in Web proxy servers.
In International Workshop on the Web and
Databases. Lecture Notes in Computer Science,
vol. 1590, Springer-Verlag, Berlin, Germany, 1–
13.

STAROBINSKI, D. AND TSE, D. 2001. Probabilistic

methods for Web caching. Perform. Eval. 46, 2–3
(Oct.), 125–137.

TANG, X., ZHANG, F., AND CHANSON, S. 2002. Stream-
ing media caching algorithms for transcoding
proxies. In Proceedings of the International Con-
ference on Parallel Processing. IEEE Computer
Society, Piscataway, NJ.

TATARINOV, I. 1998a. An efficient LFU-like policy
for Web caches. Tech. Rep. NDSU-CSORTR-
98-01, Computer Science Department, North
Dakota State University, Wahpeton, ND.

TATARINOV, I. 1998b. Performance analysis of cache
policies for Web servers. In Proceedings of the
9th International Conference on Computing and
Information.

TATARINOV, I., ROUSSKOV, A., AND SOLOVIEV, V. 1997.
Static caching in Web servers. In Proceedings of
the IEEE International Conference on Computer
Communications and Networks. IEEE Com-
puter Society, Piscataway, NJ.

VAKALI, A. 2000. LRU-based algorithms for Web
cache replacement. In International Conference
on Electronic Commerce and Web Technologies.
Lecture Notes in Computer Science, vol. 1875.
Springer-Verlag, Berlin, Germany, 409–418.

WANG, B., SEN, S., ADLER, M., AND TOWSLEY, D. 2002.
Optimal proxy cache allocation for efficient
streaming media distribution. In Proceedings of
the IEEE INFOCOM. IEEE Computer Society,
Piscataway, NJ, 1726–1735.

WANG, J. 1999. A survey of Web caching schemes
for the internet. ACM Comput. Commun.
Rev. 29, 5 (Oct.), 36–46.

WESSELS, D. 1995. Intelligent caching for World-
Wide-Web objects. M.S. thesis, University of
Colorado at Boulder, Boulder, CO.

WESSELS, D. 2001. Web Caching. O’Reilly,
Sebastopol, CA.

WILLIAMS, S., ABRAMS, M., STANDRIDGE, C. R., ABDULLA,
G., AND FOX, E. A. 1996. Removal policies in
network caches for World-Wide Web documents.
In Proceedings of ACM SIGCOMM. ACM Press,
New York, NY, 293–305.

WOOSTER, R. P. AND ABRAMS, M. 1997. Proxy
caching that estimates page load delays. In Pro-
ceedings of the 6th International World Wide Web
Conference.

WU, K.-L., YU, P. S., AND WOLF, J. L. 2001. Segment-
based proxy caching of multimedia streams. In
Proceedings of the 10th International World Wide
Web Conference. ACM Press, New York, NY, 36–
44.

YANG, Q., ZHANG, H. H., AND ZHANG, H. 2001. Taylor
series prediction: A cache replacement pol-
icy based on second-order trend analysis. In
Proceedings of the 34th Hawaii International
Conference on Systems Sciences. IEEE Computer
Society, Piscataway, NJ.

YEUNG, K. H., WONG, C. C., AND WONG, K. Y. 2001. A
cache replacement policy for transcoding proxy
servers. In Proceedings of World Multiconference

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

398 Podlipnig and Böszörmenyi

on Systemics, Cybernetics and Informatics.
Vol. 12, 234–237.

YOUNG, N. E. 1998. On-line file caching. In Pro-
ceedings of the 9th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms. ACM Press, New
York, NY, 82–86.

ZHANG, J., IZMAILOV, R., REININGER, D., AND OTT,
M. 1999. Web caching framework: Analytical

models and beyound. In Proceedings of the IEEE
Workshop on Internet Applications. IEEE Com-
puter Society, Piscataway, NJ.

ZHANG, Z.-L., WANG, Y., DU, D. H. C., AND SHU, D. 2000.
Video staging: A proxy-server-based approach
to end-to-end video delivery over wide-area net-
works. IEEE/ACM Trans. Netw. 8, 4 (Aug.), 429–
442.

Received October 2002; revised August 2003; accepted August 2003

ACM Computing Surveys, Vol. 35, No. 4, December 2003.

