
P2P-RPC: Programming Scientific Applications on Peer-to-Peer Systems with
Remote Procedure Call

Samir Djilali
Laboratoire de Recherche en Informatique
UMR 8623 CNRS - Paris-Sud University

91405 ORSAY Cedex - France
djilali@lri.fr

Abstract

This paper presents design and implementation of a re-
mote Procedure call (RPC) API for programming applica-
tions on Peer-to-Peer environments. The P2P-RPC API is
designed to address one of neglected aspect of Peer-to-Peer
- the lack of a simple programming interface. In this pa-
per we examine one concrete implementation of the P2P-
RPC API derived from OmniRPC (an existing RPC API for
the Grid based on Ninf system). This new API is imple-
mented on top of low-level functionalities of the XtremWeb
Peer-to-Peer Computing System. The minimal API defined
in this paper provides a basic mechanism to make migrate
a wide variety of applications using RPC mechanism to the
Peer-to-Peer systems. We evaluate P2P-RPC for a numer-
ical application (NAS EP Benchmark) and demonstrate its
performance and fault tolerance properties.

1 Introduction

The main goal of Peer-to-Peer programming is the study
of programming models, tools and methods that support
the effective development of high-performance algorithms
and applications on Peer-to-Peer environments. Program-
ming applications on top of Peer-to-Peer systems will re-
quired properties beyond that of simple sequential program-
ming or even parallel and distributed programming. Besides
managing simple operations over private or distributed data
structures, programmer of applications to be run on a Peer-
to-Peer system will have to deal with an environment that
is typically open-ended, heterogeneous and dynamic. The
programming model must give those heterogeneous and dy-
namic resources a common ”look-and-feel” to the program-
mer. This transparency that should be provided by the run-
time system is a paramount condition to facilitate program-
ming for Peer-to-Peer systems. However, it would be nec-

essary to keep in mind that Peer-to-Peer programming is
restricted to a limited applications scope. A message pass-
ing API (MPICH-V) [1] has been proposed for the Peer-
to-Peer environments, but the weak communication perfor-
mances make it difficult to consider applications with high
communication/computation ratio. On the contrary, param-
eter sweep, bag of tasks and Master-Worker applications are
suitable to such environments.

2 Related Work

The concept of Remote Procedure Call (RPC) [2] has
been used for a long time in distributed computing as it pro-
vides a simple way to allow communication between dis-
tributed components. Most of the previous works have fo-
cused on the development of high performance RPC mech-
anisms and RPC for the Grid.

In Peer-to-Peer computing environments, high perfor-
mance can be expected in application and run-time environ-
ment fulfill several constraints: Fault tolerance, Adaptation
to the peer group size, and Adaptation to the peer’s available
resources capacities (memory, disc, communication,...).

Currently, RPC is used as an enabling program-
ming paradigm for building Peer-to-Peer platforms (Web
Services[3], SOAP[4], JXTA[5], ...) but not as a program-
ming paradigm for applications built on top of the infras-
tructure.

To our knowledge, no programming model exists for
Peer-to-Peer systems. This is due to the fact that, actu-
ally, Peer-to-Peer systems are mostly used for file sharing
[6, 7] and not for deploying scientific applications. Scien-
tific applications that consume large computing power are
generally intended to dedicated machines or Grids, because
these environments are better controlled. This is why sev-
eral programming environments has been proposed for the
Grid. The most known are GridRPC[8] and OmniRPC[9].

GridRPC is a proposal to standardize a remote procedure

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

call (RPC) mechanism for Grid computing. It implements
an API (Application Programming Interface) on two differ-
ent Grid computing systems: NetSolve[10] and Ninf[11].
NetSolve is a client-server system which provides remote
access to hardware and software resources through a variety
of client interfaces, such as C, Fortran, and Matlab. A Net-
Solve system consists of three entities: a) the client, which
needs to execute some functions remotely, b) the server ex-
ecutes functions on behalf of the clients and c) the agent
maintains a list of all available servers and performs re-
source selection for a client request. Ninf is another client-
server based API for Grid. Its last implementation: Ninf-G
uses the Globus[12] toolkit to manage the execution of a
client request (remote call) on a server. Netsolve and Ninf
have not been designed to handle the volatility of nodes in
Peer-to-Peer systems.

OmniRPC is another RPC based programming environ-
ment for cluster and Grid computing. OmniRPC automat-
ically allocates calls dynamically on appropriate remote
computers. It also support parallel programming (multi-
threaded) by allowing client to issue multiple requests on
different remote computers simultaneously.

We can also cite the CondorMW [13] based on master-
worker paradigm. The master distributes computation to
condor connected workers when they are idle. The master
has to manage worker loss by assigning their jobs to others
available workers. The most significant inconvenient of this
system is that it is not robust in the presence of failure of
the master.

Such environments propose a programming model based
on RPC that not feet Peer-to-Peer paradigm. As P2P-RPC
is intended to be used for parallel applications and to pro-
vide a fault tolerance system for the client, an asynchronous
RPC layer provides a suitable programming model for such
environments. Fault tolerance can be managed by the pro-
grammer from returned value of RPC calls or automatically
by the P2P-RPC framework. In this paper we consider the
second approach.

3 Principles of Peer-to-Peer Programming

There are several general properties that are desirable for
all programming models. Properties for Grid programming
models have also been discussed in [14]. The Peer-to-Peer
environment presents many major challenges.

� Portability and Adaptability: Some current high-
level languages (Java[15],.Net[16]) allow codes to be
processor independent. Peer-to-Peer programming
models should enable codes to have similar portabil-
ity. This is a necessary prerequisite for coping with
dynamic, heterogeneous configurations. Also, a Peer-
to-Peer program should be able to adapt itself to differ-
ent configurations based on available resources. It will

be preferable to have such adaptability as transparent
property of the run-time environment.

� Network Performance: Due to the specific nature
of the network infrastructure used to deploy Peer-to-
Peer environments (nodes interconnected over Inter-
net), low bandwidth and high latency limit the perfor-
mance of highly communicating applications.
The ratio communication/computation is a key for the
tasks placement in such systems. It is necessary to
adapt the placement of the tasks, depending on the net-
work performance and their communication require-
ments.

� Fault Tolerance: The dynamic nature (volatility of
resources) of Peer-to-Peer systems means that fault
tolerance is a significant aspect to be taken into ac-
count. For example, highly distributed codes like
Monte Carlo or parameter sweep applications, should
initiate thousands of simulations which are indepen-
dent jobs on thousands of hosts. In this context, the
system or the programmer has to manage jobs lost, by
re-allocating them to other host.

� Security: A Peer-to-Peer environment gather several
thousands of resources. It is clear that traditional login
identification mechanisms are impossible in such con-
text. But, minimum security mechanisms are required
to guarantee confidentiality of data and protection of
participant resources.

� Simplicity: To ensure the survival of a programming
model, it must be simple and easy to use. The fact of
being able to adapt existing applications easily, consti-
tutes a major asset.

4 Programming Peer-to-Peer Systems with
RPC

One definition of Peer-to-Peer computing is the sharing
of computer resources and services by exchange between
systems.

4.1 XtremWeb

We have implemented our RPCs programming interface
for XtremWeb[17]. XtremWeb is an experimental Global
Computing platform. The key idea of Global Computing is
to harvest idle time of Internet connected computers which
may be widely distributed across the world, to run a very
large and distributed application. All the computing power
is provided by volunteers computers, which offer some of
their idle time to execute a piece of the application. Thus
Global Computing extends the cycle stealing model across

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

the Internet. In such environment, we can distinguish be-
tween three entities: a) the worker is the volunteer machine
executing a task, b) the client is the end user requesting
for some services provided by c) the coordinator which en-
sure the dialog between clients and workers, and the system
management.

coordinator

worker

worker

worker

getTaskResult(outputFile)

submitTask(inputFile)

getW
ork(in

putFile
)

write
Result(o

utputFile
)

client

Figure 1. General organization of XtremWeb
P2P environment

When the user wants to run an application on the
XtremWeb platform, he has to express his application as
a set of independent tasks. After building a task, the client
submits it to the coordinator. On the other side, if a worker
machine is idle, it contacts the coordinator to ask for job.
If the coordinator has some remaining tasks in his queue, it
sends it as a response to the worker machine request. The
worker executes the task locally and returns the result file
to the coordinator when it finish. As soon as results are
available on the coordinator side, they can be sent to the
user. This communication mode (all communications are
initiated by client or worker) allows an easier deployment
bypassing fire-walls blocking incoming request from the
server located outside of the administrative domain. This
protocol is independent of the communication layer.

bindings to OmniRPC,
GridRPC, CondorMW ...

XWrpc.Call
XWrpc.CallAsync

XWrpc.Wait

submitTask
getTaskResult

socket

P2P−RPC API

Low−level API

XWrpc API

TCP/IP

Figure 2. Different client API layers

Figure 2 shows the different levels of interfaces avail-
able in XtremWeb system. The low-level API is a set of
basic functions allowing the communication between client
and coordinator. Its main goal is to permit a client submit
an XtremWeb task and retrieve its result from the coordina-
tor. XWrpc API is a set of functions implementing a RPC
mechanism by using XtremWeb low-level functions. This

new interface is more efficient to use for programming ap-
plications where it provides a limited set of simple to use
functions.

The two following subsections describe the implemen-
tation of these two interfaces (low-level and XWrpc API)
and the manner to use them for programming applications
on XtremWeb.

4.2 XtremWeb Low-level API

Here is the outline of an example using XtremWeb’s
low-level API. It is a master/worker implementation of
EP (Embarrassingly Parallel) benchmark from the NAS
NPB-2.3 suite. This new version is widely inspired from
the MPI one. The master initiates the EP computation,
spawn several tasks and submit them to the XtremWeb co-
ordinator. When all tasks are done, the master retrieves all
results from the coordinator and make the final reduction.

main(String [] args) f

connect(clientId, coordinator);

sid = createSession();

gid = createGroup(sid);

for(k=0;k<nbNodes;k++) f

/* build task k */

tid[k]=submitTaskInGroup(gid,task[k]);

g

k = 0;

while (k < nbNodes)

k = k + getGroupResult(gid);

/* processing result files */

/*and making final reduction */

...

deleteSession(sid);

g

First, the client have to open a connection with the co-
ordinator. If it is successfully identified by the coordinator
it can open a work session. In a session, the client have
two possibilities: 1) create groups and submit his tasks in
a group, or 2) submit his tasks in the session. In the first
case, the tasks can be retrieved even the connection with
coordinator was closed. At contrary, all tasks submitted in
the session will be lost if the client is disconnected before
retrieving results i.e. we have two modes of communication
between the client and the coordinator: connected and not
connected.

A program written in XtremWeb low-level API com-
ports three main steps: initializing run-time environment,
submitting tasks and retrieving results, and finalizing. In the
following, we informally describe the XtremWeb program-
ming model and the functions that comprise the low-level
API. Most of these functions are used in the program above.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

� Initializing and Finalizing Functions:

– connect(clientId, coordinator) and discon-
nect(): establish or release the communication
link between client and coordinator.

– createSession(), createGroup(sessionId),
deleteSession(sessionId) and delete-
Group(groupId): managing sessions and
groups of tasks. note that deleting a session
causes the loss of all groups and tasks created
during it. Deleting a group causes the loss of all
its tasks.

� Sending Tasks and Retrieving Results:

– submitTaskInGroup(task) and submitTask-
InSession(task): send a task, to be executed by
a volunteer worker, to the coordinator. Accord-
ing to the function, the task will be included in a
session or a group. These functions return imme-
diately after submitting tasks and do not wait for
task results.

– taskStatus(taskId), groupStatus(groupId)
and SessionStatus(sessionId): return execu-
tion state of a task, a group or a session.

– getTaskResult(taskId), getGroupRe-
sult(groupId) and getSessionRe-
sult(sessionId): retrieve results of submitted
tasks. These functions blocks until, at least, one
result is available.

� Configuring Execution Environment:

– addApplication(app) and removeApplica-
tion(appId): allow to add or remove a client
codes (binaries or byte code) to the set of
applications registered at the coordinator.

– setWorkersNb(int): defines the number of com-
puters to use during a session.

4.3 First Implementation of P2P-RPC

In this section, we propose an API for a RPC mechanism
dedicated to Peer-to-Peer systems. The first implementation
has been done on top of XtremWeb platform as its low-level
API is well adapted to RPC programming model.

Our API extends OmniRPC’s one by changing radically
its runtime environment. OmniRPC is dedicated to Grid
problematic: a client connects to a resource manager which
send association lists between network hosts and services.
Then, the client choose locally the host which compute the
RPC result.

In our runtime environment, the client request a RPC ex-
ecution. A coordinator manages workers in order to com-
plete the request. The client is not aware of the location of
the computation host and get back the result in a finite time.

This kind of behavior provides three new functionalities:
Fault-tolerance, Asynchrony, and Connection-less commu-
nications.

To illustrate the use of our P2P-RPC model, we have
ported the parallel version of EP (subsection4.2) on
XtremWeb Peer-to-Peer system, using XWrpc interface.
The master initiates the run-time environment, launch
workers and get results using RPC calls, make the final
reduction, then finalize the computation. This program
uses asynchronous call in order to benefit from parallelism:
many tasks are launched in parallel on different workers
according to available resources in the system.

main(String [] args)f

XWrpc.Init(args);

for(k=0;k<nbNodes;k++)

XWrpc.CallAsync(‘‘ep’’,k,nbNodes,results[k]);

XWrpc.WaitCallAsyncAll();

/* making EP final reduction */

...

XWrpc.Finalize();

g

Most of functions used in this program are described
hereafter. We detailed how XWrpc interface is implemented
on top of XtremWeb low-level API.

4.3.1 XtremWeb RPC API

The API is divide in two parts:

� A common part with OmniRPC including the three
standard functions of the RPC mechanism:

– XWrpc.Init(initializing argu-
ments): Initialize the run-time environment.
This consist to call these low-level functions:
connect(clientId, coordinator); sessionId
= createSession(); groupId = create-
Group(sessionId); in order to connect the
coordinator and create a default session and
group.

– XWrpc.Call(function, input and
output parameters): Call the specified
function with the given parameters, and blocks
until the call results are coming back to the
client side. Remote functions are implemented
as executable files. The remote call is simply
implemented by using the low-level API de-
scribed above: first, a task is build by describing
the function to execute and it’s parameters (the

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

function is described by the executable name,
and the parameters of the call are gathered in an
input file for the task) ; then the task is submitted
to the coordinator by using tid = submitTask-
InSession(sessionId, task). Submit a task
in a session means that the call result must
be retrieved before the end of the session. As
XWrpc.Call is a synchronous call, then we ask
for the task result by using getTaskResult(tid)
which blocks until the file result is coming on.
After what, a handler is called automatically
to process the result file and fill in the output
parameters.

– XWrpc.Finalize(): Free all allocated re-
sources. This can be done by cleaning the coordi-
nator database and closing the connection with it:
deleteSession(sessionId); disconnect(); are
the low-level functions used in this case.

These functions correspond to the OmniRPC init, Om-
niRPC call and OmniRPC finalize functions.

� An asynchronous part:

– XWrpc.CallAsync(function,input
and output parameters): Call the spec-
ified function with the parameters. This function
send the request to the coordinator and returns
immediately, notifying the acceptance and giving
back an identifier for the call. This function is
implemented like the synchronous one but with
two deferences: the task is submitted in a group
(tid = submitTaskInGroup(groupId, task);) in
order to benefit from the non-connected mode
; and it will not ask for the result but return
immediately after submitting the task.

– XMrpc.WaitCallAsync(call identi-
fier): This function blocks until the result of
the call specified by the identifier is available.
Then, the function return the result via the output
parameters. This is implemented by calling the
low-level function getTaskResult(tid) which
will block until the result file is back. Then a
handler is called to process result file and deliver
output parameters of the asynchronous RPC call.

– XWrpc.WaitCallAsyncAll(): This
function is equivalent to execute a
XWrpc.WaitCallAsync() on every pending
asynchronous calls. This is done by calling the
low-level function getGroupResult(groupId)
several times until all results are available at the
client side. Every time getGroupResult returns
some results files, a handler is automatically

called in order to proceed them and provide the
asynchronous call output parameters.

4.3.2 Properties of P2P-RPC

In our implementation of RPCs, RPC request is posted
as a task of XtremWeb, and RPC answer is to be taken
as a result of XtremWeb. This means that an RPC is di-
vided into two phases: 1) asking for a service by sending
an XtremWeb task to the coordinator and 2) getting the re-
sults of the remote service by retrieving file result from the
XtremWeb coordinator. This schema implies many proper-
ties of our P2P-RPC:

� Connection-less: Because sending a call and receiv-
ing results are de-coupled, the client can disappear or
close connection with coordinator without any loss of
RPC results. The results will stay stored in the coor-
dinator side, and the client can request results of its
pending calls at the next re-connection, without resub-
mitting any previous call.

� Asynchrony: Client can submit many calls before
asking for results. Such calls consist to send an
XtremWeb tasks to the coordinator (first phase of a
RPC). In this mode, calls can be executed in parallel,
each one on a worker, according to resources availabil-
ity.

� Recursivity: Our RPC implementation allows user
to easily program recursive applications, which is
a highly used paradigm for a class of large scale
optimization algorithms (Branch and X). This means
that a remote procedure can itself launch a RPC
requests by using the same API. Here is an example
illustrating this operating mode:

function Factorial(in n, out result)

f

if (n == 1) result = 1;

else f

XWrpc.Call(Factorial, (n-1), r);

result = n * r;

g

g

When the client launch its call
(XWrpc.Call(Factorial, m, r) for example),
a task will be send to the coordinator. An available
worker (lets call it w1) will ask the coordinator for
a job and get the initial task (Factorial(m,r)). When
running the task, w1 will launch another client c2 to
compute Factorial(m-1,r1): a task is send to the
coordinator. Another worker w2 will get this task and

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

XWrpc.Call(Factorial, n, r) XWrpc.Call(Factorial, n−1, r1)

XWrpc.Call(Factorial, n−2, r2)

XWrpc.Call(Factorial, 1, rn−1)

client client c1

client c2

client cn−1

worker w1

worker w2

worker wn−1

coordinator

Figure 3. A recursive execution using XWrpc

compute the remote call by launching another client if
necessary and so on. At the end of recursivity process,
when c2 receives its call result, w1 sends a result file
to the coordinator. Then the initial client can get its
results.

� Fault-Tolerance: Fault tolerance is an important is-
sue in Peer-to-Peer environment because resources are
very volatile. In our implementation of P2P-RPC,
fault-tolerance is insured by the underlaying environ-
ment (XtremWeb) and is completely transparent to the
client i.e when the client sends its RPC request he is
sure that he will get the results of the call even if some
failures happened, except if all the system is down. In-
deed, any entity (client, coordinator or worker) of the
Peer-to-Peer system can disappear without affecting
the execution (but the performance) of a RPC for the
client point of view: a) The coordinator stores infor-
mation concerning tasks and workers on reliable media
(disk). On start (or restart), the coordinator reads in-
formation stored on disk to setup its proper state. b) If
the worker is lost (detected by a time-out mechanism)
then its work is scheduled to another available worker,
by the coordinator. If the worker was running a client,
then its client is also rescheduled to another worker. c)
If a client disappear then it can be re-launched (on the
same or another machine) and can retrieve results of all
RPCs launched previously without re-launching them
(all results stay stored at the coordinator side).

4.4 Examples

4.4.1 NAS EP Benchmark

Here, we present the results of running EP Benchmark -
class C on XtremWeb platform at LRI using a coordinator
on a bi-processor PIII 700MHz (256 MB RAM) and work-
ers and a client on AMD 1.5GHz (500MB RAM) PCs. All
these PCs are connected over switched Ethernet 100 Mb/s

network. We decomposed EP in 100 tasks. EP Benchmark
was implemented with XWrpc using strategy described in
subsection 4.3.
We have also measured the overhead of the system when

Figure 4. Execution time of EP benchmark us-
ing XWrpc

submitting one RPC for EP Benchmark. The input parame-
ters where two integers and the output ones where 13 float
numbers. The local computation time was 15 seconds and
the overhead was 3 seconds. This overhead includes the
time to transfer the input file to the coordinator, save this
file in the coordinator side, send this file to the worker, zip-
ping the results file on the worker, sending it to the coordi-
nator, retrieving this file from the coordinator to the client,
and unzipping it on the client side to get output parameters
of the initial remote call. The overhead is quite significant
if we consider execution duration of seconds on the worker
side. However, if we consider execution of suites of tasks,
this overhead is negligible.

Figure 5. Execution time of EP benchmark in
faulty environment

Figure 5 shows the execution times of EP benchmark -
class C on 16 processors (workers). We have study two kind
of faults: transient and definitive. For the first one, every
second, a worker disappear for few seconds (2 - 3 seconds)
then it re-connect the system. This causes the loss of a task

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

every second. The second kind of faults is definitive, when
a worker crashes, it will never re-contact the coordinator
during the experience (this implies that after detecting this
fault, the coordinator has to re-schedule the task held by the
died worker to another available one). A crash happened
every 15 seconds up to 8 worker (50% of workers loss).
Transient and definitive faults causes respectively 12% and
78% of time overhead. We remark that the degradation of
performance is not very important in transient faults case.
This is mainly due to the fact that a worker saves its last
running job (on disk), and re-execute it when it re-connect
the system ; this avoids useless transfers between worker
and coordinator (in order to get a new job to run, for exam-
ple).
If we take in account that these faults are handled automati-
cally by the system and no programming efforts are needed
from the programmer, then this overhead stay reasonable.

4.4.2 Recursive function: Factorial

On the same platform, at the LRI laboratory, we
have tested a recursive programm (Factorial) written with
XWrpc. In this example, every task Factorial(n) generates
a new one Factorial(n-1) until the last one Factorial(1). In
this scheme, every call is blocked until receiving its results
(the results of the child task). This is an adequate example
to proof the feasability of recursive programming model on
Peer-to-Peer systems.

Figure 6. Execution time of recursive Facto-
rial(n) function using XWrpc

Figure 6 shows execution times of Factorial example.
These times represent primarily the underlaying system
overhead. Because every call issued another and do not
make any computation. It confirms the overhead calculated
before (3̃ seconds per call).

5 Conclusion

We have presented the design of an API for a Peer-
to-Peer programming inspired from similar works for the
Grids. Considering the collaboration work scheme in Peer-
to-Peer environment and more especially in XtremWeb,
it is completely natural to use Remote Procedure Calls in
such conditions. Indeed, a client send a request as a couple
(binary name, input data file) to the coordinator. This task
will be scheduled to a worker who will return a result
(output data file) to the coordinator. Then, the client can
retrieve his result (data output file) from the coordinator.
In a RPC mode, a client request for a function by calling
it with the input parameters. and get results in the output
parameters. function name, input parameters and output
parameters, of a RPC, corresponds respectively to binary
name, data input file and data output file in Peer-to-Peer
system.

As a future work, we plan to implement binding from
our P2P-RPC API to other known API used in Grid
environment like GridRPC or Condor Master-Worker.
These programming models (RPC and Master/Worker) are
very promising for Peer-to-Peer computing environments,
because of their limited needs in communications. Ex-
ploring combinative optimization applications with using
recursivity is another interesting kind of applications that
can use our RPC mechanism.

Another important issue, is fault tolerance. We project
to make our RPC mechanism fully fault tolerant by using
coordinator replication, checkpoints and message logging
techniques.

6 Acknowledgments

The author thanks Mitsuhisa Sato for issuing the chal-
lenge that led to this paper, Franck Cappello for his helpfull
suggestions for improving this paper, George Bosilca and
Frédéric Magniette for reviewing drafts.

References

[1] George Bosilca, Aurelien Bouteiller, Franck Cappello,
Samir Djilali, Gilles Fedak, Cecile Germain, Thomas
Herault, Pierre Lemarinier, Oleg Lodygensky, Fred-
eric Magniette, Vincent Neri, and Anton Selikhov.
MPICH-V: Toward a Scalable Fault Tolerant MPI for
Volatile Nodes. In ACM/IEEE International Confer-
ence on SuperComputing SC 2002, Baltimore, USA,
November 2002.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

[2] Sun Microsystems Inc. RPC: Remote Procedure
Call Protocol specification version 2. In Tech. Rept.
DARPA-Internet RFC 1057, SUN Microsystems, Inc.,
June 1988.

[3] Web Services. www.webservices.org.

[4] D. Box, D. Ehnebuske, G. Kakivaya, A. Lay-
man, N. Mendelsohn, H. F. Nielsen, S. Thatte, and
D. Winer. Simple Object Access Protocol (SOAP) 1.1
(W3C Note). http://www.w3c.org/TR/2000/NOTE-
SOAP-20000508/, 2000.

[5] Li Gong. JXTA: A Network Program-
ming Environment. In IEEE Internet
Computing, Vol. 5, No. 3, pages 88–95,
http://java.sun.com/people/gong/papers/jxta-
ieeeic.pdf, May/June 2001.

[6] I. Clarke, O. Sandberg, B. Wiley, , and T. Hong.
Freenet: A Distributed Anonymous Information Stor-
age and Retrieval System. In Springer, editor, ICSI
Workshop on Design Issues in Anonymity and Unob-
servability. Berkeley, California, volume LNCS 2009,
pages 46–66, July 2000.

[7] Andy Oram and Tim O’Reilly. Peer-to-Peer: Har-
nessing the Power of Disruptive Technologies, chapter
8 and 2. Edited by Andy Oram, March 2001.

[8] Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka,
Jack Dongarra, Craig Lee, and Henri Casanova.
GridRPC: A Remote Procedure Call API for Grid
Computing. In Technical report, Univ. of Tennesse,
ICL-UT-02-06, June 2002.

[9] Mitsuhisa Sato, Motonari Hirano, Yoshio Tanaka, and
Satoshi Sekiguchi. OmniRPC: A Grid RPC Facil-
ity for Cluster and Global Comuting in OpenMP. In
Springer, editor, Proc. of Workshop on OpenMP Ap-
plications and Tools 2001, volume LNCS 2104, pages
130–135, West Lafayette, IN, USA, July 2001.

[10] Henri Casanova and Jack Dongarra. NetSolve: A
Network-Enabled Server for Solving Computational
Science Problems. In Sage Publications, editor, The
International Journal of Supercomputer Applications
and High Performance Computing, volume 11, Num-
ber 3, pages 212–223, 1997.

[11] Mitsuhisa Sato, Hidemoto Nakada, Satoshi Sekiguchi,
Satoshi Matsuoka, Umpei Nagashima, and Hiromitsu
Takagi. Ninf: A Network Based Information Library
for Globla World-Wide Computing Infrastructure. In
Springer, editor, Proc. of High-Performance Comput-
ing ans Networking, International Conference and Ex-
hibition, HPCN Europe, volume LNCS 1225, pages
491–502, Vienna, Austria, April 1997.

[12] I. Foster and C. Kesselman. Globus: A Metacomput-
ing Infrastrucure Toolkit. In MIT Press, editor, The
International Journal of Supercomputer Applications
and High Performance Computing, pages 115–128,
Vol. 11, No. 2, 1997.

[13] Jean-Pierre Goux, Sanjeev Kulkarni, Jeff Linderoth,
and Michael Yoder. An Enabling Framework for
Master-Worker Applications on the Computational
Grid. In IEEE Conputer Society, editor, Proc. 9th
IEEE Symp. on High Performance Distributed Com-
puting, pages 43–50, Pittsburgh, Pennsylvania, USA,
2000.

[14] Craig Lee and Domenico Talia. Grid Program-
ming Models: Current Tools, Issues and Direc-
tions. In Technical report, Indiana university,
USA, http://aspen.ucs.indiana.edu/CCPEwebresource/
c618gridlee/c618Grid2002 LeeTalia.pdf, 2002.

[15] Java. http://java.sun.com.

[16] Meyer Bertrand. .Net Is Coming. In IEEE Computer
Society, editor. volume 34, No. 8, pages 92–97, Au-
gust 2001.

[17] G. Fedak, C. Germain, V. Neri, and F. Cappello.
XtremWeb: A Generic Global Computing System.
In IEEE Computer Society, editor, IEEE Int. Symp.
on Cluster Computing and the Grid, pages 582–587,
Brisbane, Australia. 2001.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

