
Z Approach to Semantic Web

Jin Song Dong, Jing Sun, and Hai Wang

School of Computing,
National University of Singapore,

{dongjs,sunjing,wangh }@comp.nus.edu.sg

Abstract. The Semantic Web (SW) service is a web application using Seman-
tic Web techniques which usually involve cooperation between several intelligent
agents. The design of SW systems requires precise modelling techniques to cap-
ture ontology domain properties and application functionalities. We believe that Z
as a specification technique can contribute to the Semantic Web-based system de-
velopment in many ways. In this paper, we firstly conduct a case study of applying
Z to the design of a SW service system (online talk discovery), and then present
translation techniques and tools which can extract the SW ontology from the Z
model automatically. Furthermore, we discuss how existing Z tools, i.e. Z/EVES,
can be used to improve the quality of SW ontology design.

Keywords: Z, Semantic Web

1 Introduction

In recent years, researchers have begun to explore the potential of associating web
content with explicit meaning so that the web content becomes more machine-readable
and intelligent agents can retrieve and manipulate pertinent information readily. The
Semantic Web (SW) [3] proposed by W3C is one of the most promising and accepted
approaches. It has been regarded as the next generation of the web. The Semantic Web
service is a web application using Semantic Web techniques which usually involve
cooperation between several intelligent agents. Some Semantic Web services have been
successfully developed recently, e.g. ITTAKLS [2].

The development of Semantic Web systems requires precise modelling techniques to
capture ontology domain properties and application functionalities. The Z notation[12]
is a formal specification language based on set theory and predicate calculus. We believe
that Z as a specification technique can contribute to the Semantic Web-based system
development in many ways. In this paper, we take a Semantic Web service example,
i.e. the online talk discovery system, and apply Z to the design this Semantic Web
service system. This online talk discovery system is a simplified version of the ITTALKS
system [2] which is a real life Semantic Web service case study.

The remainder of the paper is organized as follows. Section 2 briefly introduces
the Semantic Web. Section 3 formally specifies the functionalities of the Semantic Web
service example (Talks discovery system). Section 4 presents the tools which extract
the ontology used by the SW service from the Z design model automatically. Section 5
discusses how Z tools can be used to improve the quality of Semantic Web design.
Section 6 concludes the paper.

C. George and H. Miao (Eds.): ICFEM 2002, LNCS 2495, pp. 156–167, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Z Approach to Semantic Web 157

2 Semantic Web Overview

The Semantic Web is a series of technologies proposed by W3C as the next generation
web. It extends the current one by giving the web content a well-defined meaning, better
enabling computers and people to work in cooperation. HTML, the current Web data
standard, is aimed at delivering information to the end user for human-consumption (e.g.
display this document). XML is aimed at delivering data to systems that can understand
and interpret the information. XML is focused on the syntax (defined by the XML
schema or DTD) of a document and it provides essentially a mechanism to declare and
use simple data structures. However there is no way for a program to actually understand
the knowledge contained in the XML documents.

Resource Description Framework (RDF) [7] is a foundation for processing metadata;
it provides interoperability between applications that exchange machine-understandable
information on the Web. RDF uses XML to exchange descriptions of Web resources and
emphasizes facilities to enable automated processing. The RDF descriptions provide
a simple ontology system to support the exchange of knowledge and semantic infor-
mation on the Web. RDF Schema [4] provide the basic vocabulary to describe RDF
vocabularies. RDF Schema can be used to define properties and types of the web re-
sources. Similar to XML Schema which give specific constraints on the structure of an
XML document, RDF Schema provide information about the interpretation of the RDF
statements. The DARPA Agent Markup Language (DAML) [10] is a semantic markup
language based on RDF/RDF-Schema and XML for Web resources. DAML currently
combines Ontology Interchange Language (OIL) [5] and features from other ontology
systems. It is now called DAML+OIL (DAML for short) and contains richer modeling
primitives. DAML+OIL can dramatically improve traditional ad hoc information re-
trieval because its semantics will improve the quality of retrieval results. Semantic Web
is highly distributed, and different parties may have different understanding for the same
concept. Ideally, the program must have a way to discover the common meanings from
the different understandings. It is central to another important conception in Semantic
Web service – ontology. The ontology for a Semantic Web service is a document or
file that formally defines the relations among terms. The most typical kind of ontology
for the Web has a taxonomy and a set of inference rules. Ontologies can enhance the
functioning of the Web in many ways, and RDFS and DAML supply the language to
define the ontologies. For example, the following DAML code specifies that a ‘talk’ (a
DAML class) has a property ‘talkplace’, having only one value ‘place’ (also a DAML
class).

<daml:class rdf:ID="talk"> <rdfs:label>Talk</rdfs:label></daml:class>
<daml:class rdf:ID="place"><rdfs:label>Place</rdfs:label></daml:class>
<daml:ObjectProperty rdf:ID="talk_place">
<rdf:type rdf:resource="http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdf:domain rdf:resource="#talk"/><rdf:range rdf:resource="#place"/>

</daml:ObjectProperty>

158 Jin Song Dong, Jing Sun, and Hai Wang

We will use the following notations to summarize the DAML constructs:

Table 1.A Partial Summary of the DAML constructs

Abstract DAML constructs Description
daml class classes
daml subclass[C] subclasses of C
daml objectproperty[D ↔ R] relation properties with domain D, range R
daml objectproperty[D → R] function properties with domain D, range R
daml subproperty[P] sub properties of P
instanceof[C] instances of the DAML class C

3 The Talks Discovery System

In this section, an online talks discovery system is used as an example to demonstrate
how Z notation can be applied to the Semantic Web service development.

3.1 System Scenario

The Talks Discovery system is a web portal offering access to information about talks,
seminars. This web portal can provide not only the talk’s information corresponding to
the user’s profile in terms of his interest and location constraints, but also can further
filter the IT related talks based on information about the user’s personal schedule, etc.

In the course of operation, the Talks Discovery system discovers that there is an
upcoming talk that may interest a registered user based on information in the user’s
preferences, which have been obtained from his online, DAML-encoded profile. Upon
receiving this information, the user’s User Agent needs to know more; it consults with
its Calendar agent to determine the user’s availability, and with the MapQuest agent
to find the distance from the user’s office to the talk’s venue. We assume that a user
only wants to attend the talks located within five miles from his office. Finally, af-
ter evaluating the information and making this decision, the User Agent will send a
notification back to the TALK discovery agent indicating that the user will/will not
plan to attend. The completed functionality of the ITTALKS system can be found at
http://www.ittalks.org/jsp/Controller.jsp.

3.2 Formal Models of the Talk Discovery System

The system involves four different intelligent agents which communicated interactively.
They are the user’s Calendar agent, MapQuest agent, user’s personal agent, and Talks
discovery agent.

Calendar Agent. Firstly, the Date and Time set are defined by the Z given type defi-
nitions. As this paper focuses only on demonstrating the approach, we try to make the

Z Approach to Semantic Web 159

model simple. Z given type is chosen to define TIME, DATE and some other concep-
tions. These conceptions can be subdivided into detailed components, e.g. the TIME
comprises hour, minute, and second. The more detailed the model is, the more detailed
ontology derived automatically from our tool. This tool will be further discussed in the
later section.
TheDateTimewas defined as a schema with two attributes date and time.

[TIME,DATE] DateTime
date: Date; time : Time

Each user has its own Calendar agent which maintains the user’s schedule and supplies
some related services.
Thestatusdefined by the Z free type definition indicates if a person is free or busy.

status ::= FREE | BUSY Calendar
timetable: DateTime→ status

Update is used to update the timetable. The operationCheck free is used to check
whether a person is available or not for a particular time slot.

Update
∆Calendar
t? : DateTime; s? : status

timetable′ = timetable⊕ {(t?, s?)}

Check free
ΞCalendar
dt? : DateTime

timetable(dt?) = FREE

MapQuest Agent. MapQuest agent is a third party agent supplying the service for
calculating the distance between two places.
Firstly, theplace is defined as a Z given type. The MapQuest agent contains a set of
places in its domain and a database storing the distance between any two places.

[PLACE] MapQuest
places: PPLACE
distance: places× places→ R+

OperationGet diswill output the distance between two places.

Get dis
ΞMap
p1?,p2? : places
dis! : R+

distance(p1?,p2?) = dis!

Near
dis? : R+

dis? < 5

Check near =̂ Get dis>> Near

In our system we assume that a user only wants to attend the talks located within five
miles from his office. The schemaNearandCheck nearwill be used to ensure a talk is
held within the desired range.

160 Jin Song Dong, Jing Sun, and Hai Wang

Personal Agent. The personal agent keeps the user’s profile including user’s name,
office location, interesting etc.

[NAME,SUBJECT] Person
name: NAME
office: PLACE
interests: PSUBJECT

OperationGet officewill output the user’s office place. The personal agent uses opera-
tionsTalks timeandFreeto communicate with his calendar agent to check whether the
user is free or not.

Get office
ΞPerson
o! : PLACE

o! = office

Talks time
tk? : Talk
dt! : DateTime

tk?.dt = dt!

Free=̂ Talk time>> Check free

The personal agent use operationsDistanceandCheckNearto communicate with
the MapQuest agent to ensure the talks will be held nearby.

Distance
tk? : Talk; p1! : Place

tk?.place= p1!

CheckNear̂= (Distance∧ Get office[p2!/o!])
>>Check near

The personal agent will notify the Talks discovery system if the client will attend the
talk.

[NOTIFY] Sendnotify
no! : NOTIFY

Talks Discovery Agent.SchemaTalk is defined for a general talk type.interestedtalks
records the interested talks for the users. The SchemaTalksrecords a set of talks and
users in the database.

Talk
place: PLACE
dt : DateTime
subject: PSUBJECT

later : DateTime↔ DateTime

interestedtalks : Person↔ Talk
Talks
talks : P1 Talk
users: P1 Person

Z Approach to Semantic Web 161

The relationlater determines whichDataTimehappens first. The function
find nearestfinds the next talk among a set of talks.

find nearest: P1 Talk→ Talk

∀ tks : P1 Talk, tk : Talk •
tk ∈ tks∧ �tk1 : tks− {tk} • (tk1.dt, tk.dt) ∈ later
find nearest(tks) = tk

The operationFind interestedwill find the upcoming talks in which a user has interest.

Find interested
ΞTalks
u? : users; tk! : talks

tk! = find nearest(interestedtalks(| {u?} |))

Acceptnotify
no? : NOTIFY

System̂=(Find interested>> (Free∧ CheckNear∧ sendnotify)) >> Acceptnotify

The number of instances can be created also.

National University Singapore: Place; atalk : Talk

atalk.place= National University Singapore
...

4 Extracting DAML Ontology from the Z Model

It is important to have a thoroughly designed ontology since it will be shared by different
agents and it forms the foundation of all agents’ service. However designing a clear and
consistent ontology is not a trivial job. It is useful to have some tool support in designing
the ontology.

In this section, we will demonstrate the development of an XSL [11] program to
automatically extract the ontology related domain properties from Z formal models
(encoded in ZML format[9]) to DAML. The ontology for the system can be resolved
readily from the static parts of Z design documents.

ZML is an XML environment for Z family notations. It encodes the Z documents
in XML format so that the Z model can be easily browsed by the Internet Explore 5.
For example, in ZML the schemaGet officedefined n section 3 will be encoded as
following:
<schemadef layout="simpl" align="left">
<name>Get_o ffice</name><xi><type>Person</type></xi>
<decl><name>o?</name><dtype><type>PLACE</type></dtype>
</decl><st/><predicate>o? = office</predicate></schemadef>

This XML file can be manually created by any XML editor. A tool to automatically
transform the Z model in LATEX format into XML format is currently under development.
The eXtensible Stylesheet Language (XSL) [11] is a stylesheet language to describe rules
for matching and transforming XML documents. In our case we transform the ZML to
DAML. A set of transformation rules transforming from Z model (in ZML) to DAML
ontology are developed in the following presentation.

162 Jin Song Dong, Jing Sun, and Hai Wang

4.1 Given Type Transformation

The given types in the Z model are directly transformed into DAML classes. This trans-
formation can be expressed as the following rule:

[T]

T ∈ daml class

For example, given typeTIME can be transformed into two classes in DAML withtime
anddateas ID.

<daml:class rdf:ID="time"> <rdfs:label>TIME</rdfs:label> </daml:Class>

4.2 Z Axiomatic (Function and Relation) Definition Transformation

The transformation from functions and relations in Z to DAML ontology requires several
cases.

R : B↔ (→, �→)C

...

B,C ∈ daml class

R∈ daml objectproperty[B↔ (→, �→)C]

The relationRwill be transformed into a DAML property withB as the domain class
andC as the range class. For total functions we restrict thedaml : cardinalityproperty
to be one and for partial functions we restrict thedaml : maxCardinalityproperty to be
one.

In our Talks Discovery example, the relationinterestedtalks can be transformed
into DAML as:

<daml:ObjectProperty rdf:ID="interested_talks">
<rdfs:domain rdf:resource="#person"/><rdfs:range rdf:resource="#talk"/>
</daml:ObjectProperty>

4.3 Z Axiomatic (Subset and Constant) Definition Transformation

Subset. In this situation, ifN corresponds to a DAML class, thenM will be transformed
into a DAML subclass ofN. If N corresponds to a DAML property, thenM will be
transformed into a DAML subproperty ofN. The transformation rules for the subsets
are:

M : PN

...

N ∈ daml class M : PN

...

N ∈ daml objectproperty

M ∈ daml subclass[N] M ∈ daml subclass[N]

Z Approach to Semantic Web 163

Constant. In this situation,X will be transformed into an instance ofY. The following
is the transformation rule:

x : Y

...

Y ∈ daml class

x ∈ instantceof[Y]

For example, theNational University Singaporeandatalk defined in section 3 can
be transformed to

<place rdf:ID="National_University_Singapore"/>
<talk rdf:ID="atalk">
<rdfs:label>atalk</rdfs:label>
<talk_place rdf:resource="#National_University_Singapore"/> ...</talk>

4.4 Z Schema Transformation

A Z state schema can be transformed into a DAML class. Its attributes are transformed
into DAML properties with the schema name as domain DAML class and the Z type
declaration as range DAML class. In order to resolve the name conflict between the
same attribute names used in different schemas we use the schema name appended with
attribute name as the ID for the DAML property.

S
X : T1; Y : PT2

...

T1,T2 ∈ daml class

S∈ daml class, X ∈ daml objectproperty[S→ T1],Y ∈ daml objectproperty[S↔ T2]

For example theTalk schema defined in previous section can be transformed to
DAML as

<daml:classrdf:ID="talk"> <rdfs:label>Talk</rdfs:label></daml:Class>
<daml:ObjectProperty rdf:ID="talk_place">
<rdf:type rdf:resource=" http://www.daml.org/2001/03/daml+oil#UniqueProperty"/>
<rdf:domain rdf:resource="#talk"/> <rdf:range rdf:resource="#place"/>
</daml:ObjectProperty> ...
<daml:ObjectProperty rdf:ID="talk_subject">
<rdf:domain rdf:resource="#talk"/><rdf:range rdf:resource="#subject"/>
</daml:ObjectProperty>

Other transformation rules are omitted as the aim of this paper is to demonstrate the
approach rather than providing the complete XSL program design.

5 Improve the Ontology Quality through Z Tools

In the previous section, we discussed a tool which can extract the DAML ontology
automatically from the Z model. However if the Z model itself contains some flaws, the
inconsistences will be brought into the ontology also. Fortunately Z has various semi-
automatic reasoning and checking tools. A number of tools, including a type checker,

164 Jin Song Dong, Jing Sun, and Hai Wang

Fig. 1.Domain checking example

model checker, animator and theorem prover for Z, have been successful developed.
With assistance from these tools, some inconsistences in the Z model can be detected
and removed, so that the quality of the transformed ontology will be improved.

In this paper Z/EVES [8] was used to demonstrate how different kinds of incon-
sistences can be removed. Z/EVES is an interactive system for composing, checking,
and analyzing Z specifications. It supports the analysis of Z specifications in several
ways: syntax and type checking, schema expansion, precondition calculation, domain
checking, and general theorem proving.

Firstly, we discuss how domain checking can be used to improve the ontology quality.
Suppose for each person we also keep the number of talks he gave during last the year.
This function can be modelled by a Z relation. Such as

talks no : Person → N1 pioneers: PPerson

∀p : pioneers• talks no(p) > 1

We also want to identify a group of frequent speakers who are the pioneers in their areas.
We assume that each pioneer gave at least two talks each year.

When the definition ofpioneersis checked in Z/EVES, the status of the tool shows
that it is syntactically and type correct, however it has an unproved goal (see Figure 1):

This means that Z/EVES might be unable to prove the predicates; in this case, this
predicate is not true. In fact, the domain checking conditions show that we have forgotten
some constraints in the axiom. The condition concerns the well-definedness of the final
condition in the axiom, i.e.:

∀p : pioneers• talks no(p) > 1

Z Approach to Semantic Web 165

In this context,p is known only to be a pioneer. However, not every person gives talks.
So, this quantification should, in fact, range over only those persons who give at least
one talk. (A closer inspection of the definition shows thattalks on is a partial function,
with an unspecified domain.) In the light of this analysis, we can revise the definition to
eliminate these flaws:

pioneers: PPerson

pioneers⊆ domtalks no∧ ∀p : pioneers• speaker(p) > 1

The ontology extracted from the former error model will be:

<daml:class rdf:ID="pioneers">
<rdfs:subClassOf rdf:resource="#person"/> <rdfs:subClassOf>

</daml:class>

After the correction, the DAML ontology we get is:

<daml:class rdf:ID="pioneers">
<rdfs:subClassOf rdf:resource="#person"/>
<rdfs:subClassOf>
<daml:Restriction daml:minCardinality="1">

<daml:onProperty rdf:resource="#talks_no"/>
</daml:Restriction>

</rdfs:subClassOf> </daml:class>

Note that this kind of error cannot be detected by the current DAML reasoner (i.e.
OILEd, http://oiled.man.ac.uk/), therefore the DAML ontology which has been trans-
formed from a
(Z/EVES checked) Z model will be unlikely to have this kind of error.

Another kind of inconsistency which the DAML reasoner cannot check but Z/EVES
can is illustrated in the following case.

Suppose we divided the talks into two categoriesFreeTkandTicketTk. The public
can attend theFreeTks freely, while they have to buy a ticket to attend theTicketTk.
FreeTkandTicketTkare disjoint.ftk is aFreeTKandttk is aTicketTk.

FreeTk,TicketTk:: PTalk

FreeTk∩ TicketTk= ∅

ftk : FreeTk
ttk : TicketTk

A thrifty person will only attendFreeTk. Tom and Jerry are two thrifty persons. Tom
had attendedftk and Jerry had attendedttk.

Thrifty
attendedtk : PFreeTk

Tom, Jerry : Thrifty

Jerry.attendedtk = {ftk}
Tom.attendedtk = {ttk}

There is an inconsistency in this model. Tom is declared as a thrifty person. At same
time Tom also attended a talk –ttk which requires buy a ticket.FreeTkandTicketTk
sets are disjoint. This inconsistency cannot be detected by the DAML reasoner. Using
Z/EVES the inconsistency can be detected easily at the Z level before transformation
to DAML. Suppose we ask Z/EVES to prove the correctness of Jerry and Tom. Jerry is
fine, however we getfalsefor Tom (see Figure 2).

166 Jin Song Dong, Jing Sun, and Hai Wang

Fig. 2.Thrifty example

After we study the proving steps the error can be removed.
The inverse transformation (transforming a DAML ontology into a Z model) can

be readily achieved through another XSL sheet file. So then the Z tools can be used
to improve the quality of the existing ontology. For example, all the flaws in ontology
presented in this section could exist in any existing ontology. After transformation of the
DAML ontology to Z model and with the assistance from diverse Z tools, these flaws
can be detected and removed. The Z can then be transformed back to DAML with an
improved quality.

6 Conclusion

In this paper, we demonstrate that Z can capture various requirements of SW services
including ontology and service functionalities. The main contribution of this paper is
that it develops systematic transformation rules and tools which can project Z models to
DAML ontology automatically. Another contribution of this paper is that we demonstrate
some ontology related flaws in Z model can be detected and removed with the assistance
of Z/EVES so that the transformed DAML ontology from checked Z model will have
better quality. One obvious further work is to fully develop the reverse transformation
tools from DAML ontology to the Z model then to use Z/EVES tools to detect domain
and logical errors that the current DAML reasoner is not able to detect. Transformation
from Z operation schemas to DAML-S [1] actions will be another interesting future
work.

From a complete different direction, we also recently investigated how RDF and
DAML can be used to build a Semantic Web environment for supporting, extending
and integrating various formal specification languages [6]. One additional benefit is that
RDF query techniques can facilitate formal specification comprehension.

Z Approach to Semantic Web 167

In summary, there is a clear synergy between SW languages and formal specifica-
tions. The investigation between those two paradigms will lead great benefits for both
areas.

Acknowledgements

We would like to thank Hugh Anderson and anonymous referees for many helpful
comments. This work is supported by the Academic Research grantIntegrated For-
mal Methodsfrom National University of Singapore and Defence Innovative Research
grantFormal Design Methods and DAMLfrom Defence Science & Technology Agency
(DSTA) Singapore.

References

1. Daml service. http://www.daml.org/services/daml-s/2001/05/.
2. Ittaks homepage. http://www.ittalks.org/jsp/Controller.jsp.
3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May

2001.
4. D. Brickley and R.V. Guha (editors). Resource description framework (rdf) schema specifi-

cation 1.0. http://www.w3.org/TR/2000/CR-rdf-schema-20000327/, March, 2000.
5. J. Broekstra, M. Klein, S. Decker, D. Fensel, and I. Horrocks. Adding formal semantics to

the web: building on top of rdf schema. InECDL Workshop on the Semantic Web: Models,
Architectures and Management, 2000.

6. J. S. Dong, J. Sun, and H. Wang. Semantic web for extending and linking formalisms. In
L.-H. Eriksson and P. A. Lindsay, editors,Proceedings of Formal Methods Europe: FME’02,
Copenhagen, Denmark, July 2002. Springer-Verlag.

7. O. Lassila and R. R. Swick (editors). Resource description framework (rdf) model and syntax
specification. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/, Feb, 1999.

8. Mark Saaltink. The Z/EVES system. In J. P. Bowen, M. G. Hinchey, and D. Till, edi-
tors,ZUM’97: Z Formal Specification Notation, volume 1212 ofLecture Notes in Computer
Science, pages 72–85. Springer-Verlag, 1997.

9. J. Sun, J. S. Dong, J. Liu, and H. Wang. Object-Z Web Environment and Projections to UML.
In WWW-10: 10th International World Wide Web Conference, pages 725–734. ACM Press,
May 2001.

10. F. van Harmelen, P. F. Patel-Schneider, and I. Horrocks (editors). Reference description of the
daml+oil ontology markup language. Contributors: T. Berners-Lee, D. Brickley, D. Connolly,
M. Dean, S. Decker, P. Hayes, J. Heflin, J. Hendler, O. Lassila, D. McGuinness, L. A. Stein,
..., March, 2001.

11. World Wide Web Consortium (W3C). Extensible stylesheet language (xsl).
http://www.w3.org/Style/XSL.

12. J. Woodcock and J. Davies.Using Z: Specification, Refinement, and Proof. Prentice-Hall
International, 1996.

	1 Introduction
	2 Semantic Web Overview
	3 The Talks Discovery System
	3.1 System Scenario
	3.2 Formal Models of the Talk Discovery System

	4 Extracting DAML Ontology from the Z Model
	4.1 Given Type Transformation
	4.2 Z Axiomatic (Function and Relation) Definition Transformation
	4.3 Z Axiomatic (Subset and Constant) Definition Transformation
	4.4 Z Schema Transformation

	5 Improve the Ontology Quality through Z Tools
	6 Conclusion
	Acknowledgements
	References

