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ABSTRACT
Whitelisting has become a common practice to ensure execution of
trusted application code. However, its effectiveness in protecting
client-side web application code has not yet been established. In
this paper, we seek to study the efficacy of signature-based white-
listing approach for preventing script injection attacks. This in-
cludes a recently-proposed W3C recommendation called Subre-
source Integrity (SRI), which is based on raw script-text signa-
tures. Our 3-month long measurement study shows that applying
such raw signatures is not practical. We then present SICILIAN1,
a novel multi-layered approach for whitelisting scripts that can tol-
erate changes in them without sacrificing the security. Our solu-
tion comes with a deployment model called progressive lockdown,
which lets browsers to assist the server in composing the whitelist.
Such assistance from the browser minimizes the burden of building
the signature based whitelist. Our evaluation on Alexa’s top 500
sites and 15 popular PHP applications shows that SICILIAN can be
fully applied to 84.7% of the sites and all the PHP applications with
updates to the whitelist required roughly once in a month. SICIL-
IAN incurs an average performance overhead of 7.02%.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques; D.2.8
[Software Engineering]: Metrics; D.4.6 [Operating Systems]:
Security and Protection
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Web Security, whitelisting, script injection attacks

1. INTRODUCTION
Whitelisting has become a common practice to ensure the exe-

cution of trusted applications. Mainstream OSes such as Windows
and Linux check the signature of application binaries against the
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1Sicilian is one of the strongest and most successful defense openings in chess where
the player does not play for equality but for the advantage.
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public whitelist before installing them [60]. Browsers enable code
signature verification on its extensions to make sure that its code
is signed by a trusted party (e.g., Mozilla’s AMO [38]). Although
whitelisting has been successfully implemented in several applica-
tion platforms, its effectiveness in protecting web applications has
not yet been established.

In this paper, we seek to study the efficacy of signature-based
whitelisting for defending web applications against script injection
attacks. Script injection attacks are the most prevalent threat on
the web. They occur through many attack channels, such as cross-
site scripting (XSS) attacks or tampering with the scripts’ content
included from third-party services (e.g., CDNs [45,48] and popular
JavaScript libraries [30, 40]). In a web page’s context, a whitelist
can be defined as a set of scripts that are authorized by the website
owner to execute at the client side. This makes signature-based
whitelisting a strong defense against script injection attacks.

There have been solutions that propose the idea of signature-
based whitelisting to secure web applications, such as BEEP [29],
DSI [39], and Noncespaces [20]. Some of these ideas have taken
shape in mainstream web browsers such as Chrome and Firefox
in the form of a W3C recommendation known as Subresource In-
tegrity (SRI) [54]. SRI allows specifying a cryptographic hash
(SHA256) of the text of the script’s code as a signature that sig-
nifies the integrity of a script. This signature can be designated as
the integrity attribute of a <script> tag — we call such signa-
tures as raw signatures. The viability of a signature-based white-
listing approach relies on the premise that script signatures remain
static over time. Therefore, we hypothesize that such whitelisting
is applicable to websites that remain mostly static. To evaluate how
many websites fall in this category, we conduct a longitudinal study
on the Alexa’s top 500 websites (45,066 web pages) and 15 popular
PHP applications, crawling with depth limit of 3. In the crawl, we
monitor 33,302 scripts for a 3-month period, starting 31st January
2015. The objective of this study is to understand how scripts on
these webpages change and determine the fraction of the websites
for which JavaScript whitelisting would be sufficient. Our obser-
vation suggests that majority of the scripts on these websites are
indeed mostly static and have the following characteristics:
• Observation 1: Of the 33,302 scripts that we have crawled, only

2,313 scripts changed over time. The changes in 586 out of
2,313 scripts preserve the code semantics. These changes are
merely syntactic changes like minification, variable renaming
and differences in the code comments.
• Observation 2: 1,156 of the 2,313 scripts have changes that

may impact the code semantics, but the changes introduce no
new code. In fact, they affect only the data used in small portion
of functionality in the website. For example, random tokens in
the query parameter of advertisement URLs.



– Scripts in Observation 1 and 2 together contribute 1,644 of
the 2,313 changing scripts (71.07%) – with 98 scripts be-
longing to both categories.

• Observation 3: We further categorize the changes in the remain-
ing 669 scripts (28.9%) as code-introducing updates. These are
due to addition or deletion of code from the script. Based on
how frequently these happen, we observe two sub-classes: 461
scripts that change somewhat infrequently and 208 scripts that
change very frequently (Section 5).

Our Proposal. In our study, 97.99% of the scripts remain mostly
static, that is, no new code is introduced in these scripts. Thus, we
believe whitelisting via signatures can be as effective in preventing
script injection as it has been in securing desktop application in bi-
nary form. The raw signature mechanism, proposed in SRI, can be
applied to 93% of the 33,302 scripts. However, only 69 out of 500
websites have all the scripts remaining static. Therefore, we expect
SRI to have limited practical adoption on real-world websites as-is,
and will raise high number of false positives (Section 5). There-
fore, we develop SICILIAN, a multi-layered solution for JavaScript
whitelisting, with raw signature as the first layer of defense and a
more relaxed signature as the second layer of defense. SICILIAN
interposes on all functions evaluated by the JavaScript parser mod-
ule in the browser and allows only scripts in the website’s whitelist
to be executed. Our relaxed signature mechanism is designed to
be secure, that is, without allowing the attacker any significant ad-
vantage in constructing illegitimate scripts. We call our signature
mechanism structural signatures as they are based on the abstract
syntax tree representation (structure) of the script code. Structural
signatures are efficiently computable and robust against syntactic
changes in the scripts (Observation 1). Further, our relaxed sig-
natures are designed to handle certain changes which are beyond
syntactic changes — as long as they do not introduce any new code
(Observation 2). This extends the applicability of our idea to an-
other 1,156 scripts of the 2,313 scripts which change. Finally, of
the 2,313 scripts, 461 scripts (20%) change rarely as described in
Observation 3. To handle these, we propose a mechanism based on
browser-server collaboration to efficiently update the whitelist with
the latest signatures, which we detail in Section 4.4. We consider
the remaining 208 scripts of 33,302 (only 0.62%) in Observation 3
as beyond our scope due to their high update frequency.
Progressive Lockdown Deployment. Script injection attacks have
been well-recognized in the past decade. Any solution to block
them faces a deployment challenge, that is, the difficulty in us-
ing the solution without raising false positives and without exten-
sive manual work. To smooth the transition, we propose a new
incremental approach called progressive lockdown. Our approach
consists of three phases: INIT, CRAWL, and LOCKDOWN (Sec-
tion 4.3). First, our signature protection mechanism is only meant
for mostly static websites and therefore it is an opt-in mechanism.
When a website registers to use SICILIAN, it can start with an INIT
phase. This is a pre-deployment testing phase for compiling the ini-
tial whitelist by locally scanning the website. Note that the initial
whitelist database may not be complete during this phase. Next,
there is an optional CRAWL phase, in which the website can get
feedback from the users’ browsers about the scripts that it had not
covered during the testing — hence the browsers assist the website
in composing the whitelist. These scripts are added to the whitelist
based on a trust-on-first-use (TOFU) assumption, meaning that the
first time a browser sees a script out of the whitelist in the CRAWL
phase, it locally compiles a signature for the script and sends it to
the whitelist. This phase is optional, and only required on websites
for which the INIT phase is not enough. The CRAWL phase is

assumed to have a similar trust assumption as the trust-on-first-use
in SSH [59]. Finally, after the whitelist is sufficiently populated,
the site initiates the LOCKDOWN phase. In LOCKDOWN phase,
the server can turn on a specific header to initiate a lockdown pro-
cedure. During this phase, no scripts outside this whitelist will be
executed by the client. Thus, we progressively lockdown the ver-
sions of the scripts that can execute under a web page. Similar
incremental deployment models have been successful in blocking
mixed-content vulnerabilities [27, 37] on the web and we believe
this makes a pragmatic alternative for a wider adoption of the solu-
tion.
Evaluation on Alexa’s Top 500. We evaluate our solution on
Alexa’s top 500 sites with the objective of measuring reduction
in false positives and the performance overhead of our approach.
Our evaluation covers changes in scripts with respect to time and
multiple user accounts. Our evaluation on Alexa’s top websites
shows that a SICILIAN-enabled browser introduces 4.68% perfor-
mance overhead over SRI-enabled browser and 7.02% overhead
over vanilla browser. Such overhead is acceptable for all but the
most latency-sensitive websites. Further, SICILIAN can be fully ap-
plied to 372 domains with updates required only once in a month.
Therefore, SICILIAN covers five times more domains than SRI,
which is based on raw signatures (69 domains).
Contributions. We make the following contributions in the paper.
• We conduct a 3-month study on how scripts change in the Alexa

Top 500 sites and 15 popular PHP applications to evaluate the
efficacy of JavaScript whitelisting via script signatures. We
monitor changes with respect to time and multiple users.
• We propose SICILIAN, a multi-layered whitelisting approach

based on signatures to prevent script injection attacks. SICIL-
IAN employs a novel signature scheme, structural signatures
which rely on source code structure, and are secure & robust
against syntactic changes in the scripts. On average, structural
signatures reduce the frequency of signature updates by four
times over raw signatures.
• We propose a browser-assisted deployment model called pro-

gressive lockdown, a pragmatic approach to incrementally build
the whitelist for preventing script injection attacks.

2. PROBLEM DEFINITION
We discuss various channels available to carry out script injec-

tion attacks (Section 2.1), problems with existing approaches (Sec-
tion 2.2) and define our problem statement (Section 2.3).

2.1 Channels of Script Injection
Web applications are vulnerable to a variety of script injection

attacks. First, such attacks can happen via cross-site scripting vul-
nerabilities (XSS). XSS proliferates as a result of executing non-
legitimate scripts within an origin. Such illegitimate script origi-
nates from attacker-controlled data to the server’s code which are
reflected to the generated HTML content (i.e., reflected XSS), from
persistent storage (i.e., persistent XSS), or by utilizing unsafe usage
of several JavaScript DOM objects (i.e., DOM-based XSS [31,49]).

Second, an attacker can tamper with the scripts’ contents via in-
secure networks or due to unauthorized modifications at the third-
party servers. Such attacks come in many variants, most notably
are attacks where malware resides in third-party scripts provider,
like those of CDNs or servers of popular JavaScript libraries. An
increasing demand for using external JavaScript libraries and CDN-
based hosting makes them the primary target to malware attacks,
as has been reported recently [30, 45, 48]. Once the malware runs
on the server, it has unfettered access to tamper with the scripts’



content which is sent to the embedding websites. Additionally, in
typosquatting XSS attacks (TXSS) [40], attacker makes use of the
developer’s mistake of mistyping the URL address of the script re-
sources. As a result, such mistyping leads to a script resource being
loaded from attacker-controlled servers.

2.2 Problems with Existing Approaches
To defend against script injection attacks, a number of counter-

measures have been proposed, ranging from sanitization [44, 57],
privilege separation [4, 8, 20], confinement [3, 13], filtering [6], to
various policy enforcement mechanisms [29,53]. We make the fol-
lowing observations explaining why previous works are insufficient
to handle script injection attacks.
Handling an Injection Channel is Difficult. In script injection at-
tacks, web application is vulnerable to malicious script injection via
multiple injection channels in the browser (Section 2.1). Therefore,
enforcing a reactive approach by securing each and every script
injection channel in the browser is not a pragmatic approach due
to: 1) plethora of channels in the browser and web applications to
hook; and 2) continuous addition of new features and web specifi-
cations to the browser [52]. For example, the client-side web pro-
vides a wide array of features, such as browser extensions, cross-
origin channels, and local storage that an attacker can exploit to
execute malicious scripts.
Weak Notion of Malicious Script. Many existing solutions cat-
egorize malicious scripts based on the origin or context in which
such scripts are being executed. For example, CSP “over-generalizes”
malicious scripts as any scripts injected via inline scripts [18] or
eval(). As a result, developers who legitimately use inline scripts
and would like to retrofit CSP into their web application will suf-
fer from such approach. They must relocate their code from inline
HTML tag to make the application comply with CSP – this raises
deployability burden as discussed in [15, 16, 58]. Many other so-
lutions also have loose notion of malicious scripts. For example,
DSI [39] “under-generalizes” script injection as privilege escala-
tion where untrusted DOM nodes try to execute scripts. While this
clearly provides protection against script injection via untrusted in-
line content, it does not give any security guarantees for attacks
like DOM-based XSS, where legitimate-but-vulnerable DOM ob-
jects evaluate a potentially untrusted data into code.
Browser Variations. There are many subtleties, incoherencies,
and variations in the implementation of browsers that may lead to
script injection attacks [47]. For example, filtering bad input for
XSS is known to be hard since browsers have their own way of
interpreting or blocking certain inputs. Therefore attacker may tar-
get certain browsers for injecting payloads. The XSS filter evasion
cheat sheet as issued by OWASP is also non exhaustive [41]. Fur-
ther, attacks such as mXSS work even when a website is properly
sanitized because such attacks exploit the subtleties in the underly-
ing browser implementation, particularly the backtick implementa-
tion [23].

2.3 Problem Statement
Our goal is to propose a solution to mitigate script injection at-

tacks via signature-based whitelisting of JavaScript. To do so, we
first evaluate the efficacy of existing script signature techniques on
real-world web applications, consisting of Alexa’s top 500 sites and
15 popular PHP applications (Table 1 Section 5). Motivated by the
kind of changes observed in these scripts, we propose SICILIAN,
a robust multi-layered defense to block script injection attacks. In
this work, we answer the following research questions.
• RQ1: Are raw signatures practical in real-world websites?

• RQ2: Do scripts on the web change? If so, what kinds of
changes are reflected in them, with respect to time and users?
• RQ3: What are the characteristics of a signature scheme that is

secure and robust for practical adoption?
• RQ4: Is whitelisting via script signatures sufficient to prevent

script injection attacks?

Threat Model & Scope. We consider the attacker to be a web at-
tacker [2] that tries to actively inject malicious scripts via script in-
jection vulnerabilities in a site or by tampering the content of third-
party scripts of the site. Further, we assume that a browser can es-
tablish a secure channel with an uncompromised web server of the
main site (say via HTTPS), but we make no security assumptions
for third-party scripts which are imported by the main site. We also
note that other attacks such as tampering of the HTML contents or
code reuse attacks of JavaScript are beyond the scope of this paper.
One class of attacks that affects all signature-based whitelisting ap-
proaches is mimicry attacks [55]. In our context, mimicry attacks
may allow the attacker to invoke scripts already in the whitelist at
unintended code-evaluation points or in an unintended sequence.
Indeed, mimicry attacks are a concern, but these are outside the
scope of our defenses in this paper. Several orthogonal techniques
can be used to detect and block mimicry attacks, such as by using
sufficient calling context information [17], creation history [56], or
anomalous control-flow patterns [14, 19]. Lastly, we trust all plug-
ins and extensions, and assume an uncompromised web browser.

3. DESIGN
In this section, we introduce SICILIAN, our multi-layered ap-

proach for building a script whitelist. The multi-layered signature-
based whitelisting scheme is based on our measurement study of
changes in JavaScript, which we briefly discuss in Section 3.1. We
first start with a basic whitelisting layer and show that it is able to
protect only a limited number of websites. Then we show an ex-
tension of the basic layer to handle scripts with periodic changes.

3.1 Categories of Changes in JavaScript
To design a robust JavaScript whitelisting scheme, it is important

to know the kind of changes reflected in real-world scripts. We an-
alyze the changes in the scripts from two aspects: 1) changes over
time; and 2) changes over multiple user accounts differing in privi-
lege and access control. Based on our observation on 33,302 scripts
hosted on Alexa’s top 500 sites, 93% of the scripts remain static
over time and the rest 7% change. The changes in these scripts can
be classified into four broad categories to answer our RQ2.
• C1: Syntactic. Changes that affect only the syntactic struc-

ture of code and do not affect the behavior of script execution
(syntax-only changes). Belonging to this category are changes
in comments, renaming of variables and minification.
• C2: Data-only. Scripts contain JavaScript functions which take

in data as input. We observe periodic changes in such data
whereas the functions themselves remain unchanged. Such data
does not affect the execution other than side-effects to the net-
work or the DOM (data-only changes). For example, we ob-
serve periodic changes in script’s data eventually used as a re-
source’s URL or as HTML content to be rendered on a web
page.
• Finally, we observe code-introducing changes in the scripts where

the JavaScript functions themselves change. Such changes are
meant to add or remove functionality from a script. We label
this type of changes as C3. Based on the frequency of updates
to the scripts, we further categorize C3 into two classes.



• C3A, a class of changes that happen infrequently. Such in-
frequent updates are due to manual changes pushed by the
scripts developer.
• C3B, a class of changes that are highly frequent. These are

typically found in news sites or scripts hosted at optimizer
services to show dynamic contents in a web page. This class
does not fall within our category of mostly-static scripts,
because we see no predictable pattern in such changes. We
argue that it is difficult to design a signature scheme that
caters with such complexity and hence consider C3B type
as beyond our scope.

We give a comprehensive breakdown of the number of scripts in
each category in Section 5. The results motivate our multi-layered
whitelisting design, whose overview is given in Section 3.2.

3.2 Solution Overview
During the execution of a website under an originO, the browser

maintains its corresponding whitelist WO . WO contains the signa-
tures of all legitimate scripts S allowed to be executed under O.
Let us denote S# as a signature mechanism used to construct the
whitelist. The whitelisting logic enforces the following invariants.
1. Execution of valid scripts: A script s, included under O, is

executed if and only if S#(s) ∈WO

2. Collision-hardness: It should be hard to construct a malicious
script s′ /∈ S, such that S#(s′) ∈WO

To guarantee the observation of the aforementioned rules, our
approach must capture all the scripts that are about to be executed
and execute only those that belong to WO . To achieve this, we 1)
interpose on all channels that lead to new code generation and 2)
use signature schemes that are hard to bypass.
Interposing on Script-injection Channels. There are two types of
scripts that get executed on a web page: first-order scripts, already
included in the page, and higher-order scripts, which are generated
or loaded dynamically as the web page’s code executes. A white-
listing defense must be turned on for all scripts, including first order
and higher-order scripts.

Consider an example of a script in Listing 1 which has two points
to generate higher-order scripts, namely document.write (point
(1) at line 3), and eval() (point (2) at line 7). Given that the
properties location.href and event.data are under the at-
tacker’s control, she can do the following to inject a malicious
higher-order script:
• Influence the value of location.hrefwith a string to break-

out from <a> tag and inject the malicious script thereafter. This
happens during dynamic HTML construction at point (1).
• Send a string containing malicious scripts via postMessage

to this origin, which will be evaluated to code at point (2).
The code in Listing 1 is vulnerable to script injection attacks

as it allows the attacker to inject scripts from different points. To
block all such possible injection points, our module interposes on
all activities in the underlying browser that generates scripts in-
cluding script generation due to HTML parsing, network activi-
ties, or code execution that invokes generation of a new script (e.g.,
via eval()), thus covering both the first-order and higher-order
scripts. Our module is built separately from the browser’s Java-
Script parser and therefore it is browser-agnostic — we explain the
implementation detail in Section 4.1. Any new script code gener-
ated from such script-inducing point will be captured and flagged
as a new script and executed only if its signature is in the whitelist
(rule 1). From this point onwards, the focus will be on designing a
signature scheme that is hard for the adversary to bypass.

Signature Mechanisms. Inspired from the type of changes de-
scribed in the Section 3.1, we need to design a relaxed signature
scheme S# that is robust against them. The idea is to relax the
raw signatures by ignoring parts of the script that change. In spite
of such relaxation, the attacker’s capability of injecting malicious
scripts can still be greatly restricted. To understand why, let us con-
sider a mechanism called naive extension of raw signatures where
part of the code which keeps changing is ignored, i.e., the value of
a variable obj in Listing 1. The remaining text is then signed using
raw signature mechanism (SHA256). Such signature computation
for Listing 1 is shown in Listing 2 — notice that the changing value
is now removed from the computation.

Such signature scheme is guaranteed to be secure but it cannot
tolerate the syntax-only changes (C1 type). We found cases such
as minification and variable renaming on scripts which significantly
modify the script’s code. For example, Listing 3 describes 2 ver-
sions of the code fetched from img.ifeng.com. They differ in
whitespaces and will result in different signatures under the naive
extension. However, they are functionally equivalent. Thus, a more
relaxed signature scheme is needed that goes beyond the text based
signatures in order to overcome such false positives.

One could consider code similarity techniques for designing re-
laxed signature schemes. Such techniques map two pieces of code
that are similar and find application in plagiarism detection. Attribute-
based identification (ABI) is one of such techniques used in detect-
ing document similarity [12]. ABI considers the metric — four
tuple (n1, n2, n3, n4) consisting of the following code attributes:
1) number of unique operators, 2) number of unique operands, 3)
total number of operators, and 4) total number of operands. If one
were to use this metric as a signature, then the two pieces of code
in Listing 4 would have the same signatures namely (2, 4, 2, 5), but
one is malicious and other is not.

As can be inferred from the naive extension and the code sim-
ilarity technique, there is a trade-off between the depth of relax-
ation in signature schemes versus the security they offer. Thus, a
"minimally-relaxed" scheme which provides high security is needed.
This poses the following question: how relaxed a signature scheme
can be and yet be secure?

AST-based Signatures. The relaxed signature mechanism must be
designed in such a way that it does not give up on security, while
at the same time avoids false positives due to syntactic changes in
the source code. As we discuss above, computing signature on the
text representation of a code is not practical since it is not robust
to various source modifications. Therefore, we resort to an abstract
syntax tree (AST), which represents the syntactic structure of code.

Our signature mechanisms are based on cryptographically secure
hash functions and collision resistant Merkle Hash Trees. The ad-
versary can drive the client to execute a malicious script only if
its signature belongs to the whitelist. The whitelist WO is pub-
lic knowledge i.e. the adversary knows the scripts in the WO as
well as their signatures. Even then it will be hard for the adversary
to construct a malicious script s′ /∈ S s.t. S#(s′) ∈ WO . This
is due to the second pre-image resistance [42] property of Merkle
Hash Trees. We discuss the security of our relaxed signature mech-
anism in Section 3.4. In conclusion, the adversary has a negligible
advantage in driving the client to execute a malicious script due to
our combined strategy of interposition and security of our signature
mechanism, thereby guaranteeing the observation of rule 1 and 2,
thereby answering our RQ3.
Scope. Finally, we remind that our relaxed signature will ignore
changing data and therefore the only way to bypass this is by mak-
ing non code-injecting modifications in the data, e.g., replacing



1 var x = location.href;
2 var obj = ’<div>ADS-CONTENT<div>’;
3 document.write(’<a href=’+x+’>LINK</a>’); (1)
4 document.write(obj);
5 window.addEventListener(’message’, receiveMessage,

false);
6 function receiveMessage(event){
7 eval(event.data); (2)
8 }

Listing 1: An example of a script in whitelist where value of variable
obj keeps changing

1 SHA256("var x = location.href;
2 var obj = ’’;
3 document.write(’<a href=’+x+’>LINK</a>’);
4 document.write(obj);
5 window.addEventListener(’message’, receiveMessage,

false);
6 function receiveMessage(event){
7 eval(event.data);
8 }");

Listing 2: Signature computation of code in Listing 1 using naive
extension scheme

1 // Version 1
2 function Collection(){
3 this.items=[];
4 }
5
6 // Version 2
7 function Collection(){this.items=[];}

Listing 3: Different versions of scripts due to minification. The
scripts were fetched from http://img.ifeng.com/tres/pub_
res/JCore/TabControl.1.2.U.js

1 // Code 1 (Benign)
2 var obj = "<div>CONTENT</div>";
3 var b = obj + "<div></div>";
4 document.write(b);
5
6 // Code 2 (Malicious)
7 var obj2 = "function evil(){}";
8 var b = obj + "evil();";
9 eval(b);

Listing 4: Benign and Malicious scripts having the same signatures under
atttribute-based identification

HTML content of variable obj (Listing 1) with non-script con-
tents. Due to rule 1, we guarantee that such attempts will not lead
to any new code execution. However, few attacks like defacement,
mimicry attacks and data exfiltration may still happen. These are
beyond our scope and auxiliary defenses like CSP [53], control-
flow analysis [19], and data-confinement [3] thwart such attempts.

In the next subsections, we discuss how we design a multi-layered
solution to whitelist changing scripts. Our approach is robust against
scripts with types C1, C2, and C3A defined in Section 3.1.

3.3 Layer 1: The Basic Scheme
We observe 30,989 scripts that remain static during our three

months of crawling. For these kinds of scripts, a suitable sig-
nature scheme would be a raw signature. Raw signature scheme
can be implemented using various cryptographic hash algorithms,
such as SHA256 or SHA512. This basic scheme provides provable
collision-resistant signature of the scripts, which we use to guaran-
tee that the attacker cannot inject malicious scripts that can bypass
the whitelist, unless she injects the exact same scripts as the ones
in the whitelist which are already authorized to run.

3.4 Layer 2: Relaxed Signature
Key Insights. We have seen 2,105 scripts that change, included in
300+ of Alexa’s top sites, which we would like to whitelist using
our signature scheme. Such scripts belong to the categories C1, C2,
and C3A. We propose the abstract syntax tree (AST) as a represen-
tation basis for constructing the signature. Abstract Syntax Tree
(AST) is a data structure that captures the structure of the source
code via an abstraction of the constructs offered by the language
and leaves out redundant details like comments, whitespaces, brace
brackets and semicolons.
AST grammar. The AST is built by recursive descent parsing of
the JavaScript code. Figure 1 represents a part of the grammar
used to form the AST. This tree-grammar conceptually illustrates
the grammar for a JavaScript parser such as Esprima [24]. The
terminals of the grammar are shown in boldfaced letters (e.g. Pro-
gram) and the non-terminals are placed between angle brackets
(e.g. <Identifier>). Each AST’s Program corresponds to one unit
of compilation, e.g., a JS file or independent code blocks in inline
script and eval() function. An AST node is generated when a
rule produces a terminal. The non-terminals do not represent the
nodes and are mere placeholders.

As a running example, we give an AST representation of a Java-
Script snippet var x = 10, y; y = x+1; in Figure 2. In
general, nodes in the AST belong to one of the three node-types
that we detail below.
1. L := A set of nodes that contains literals. Literals are any values

of type String, Boolean and Integer and elements of the
unified types like Arrays.

2. I := A set of nodes that contains identifiers. Identifiers are the
unique identities or names of the variables, functions and ob-
jects in the source code.

3. LC := The a priori known set of language constructs which is
a finite set of nodes representing the semantic representation of
the underlying nodes. For example, VariableDeclarator is a
node that corresponds to the declaration of a var.

Labeling of AST nodes. ASTs are labelled trees where the labels
of the nodes come from their node-types. Traditionally, ASTs are
supposed to abstract out the details of the source code and hence
avoid including the identifiers and literals as nodes. However, it is
easy to see that for a security critical venture like ours, one cannot
exclude them from the AST. We retain the identifier nodes as well
as the literal nodes in our AST. The label of an identifier node is
its name and the label of a literal node is its value. Referring to the
example in Figure 2.e, the label of the identifier x is x and the label
of the literal 10 is 10. For the nodes in LC, the labels are defined
by mapping the nodes to pre-fixed constants. For example, the label
of the node corresponding to VariableDeclarator in Figure 2.e can
be fixed to VariableDeclaratorType. A label is an attribute
of the node and is shown by circle-shaped nodes in Figure 2.
AST construction. The AST is constructed with the help of the
tree-grammar shown in Figure 1. We describe the construction of
the AST for the script snippet var x = 10,y; y = x+1; in
Figure 2. First, the node Program is generated using the produc-
tion rule (1) shown in Figure 2.a. Then, the left-hand subtree of the
AST is generated by application of the production rule (2), that is
<SourceElement> to <Statement> and then rule (7) (Figure 2.b) to
generate the non-terminal <VariableStatement>. Note that no new
nodes have been added to the AST after the Program node because
no new terminals have been produced. On application of rule (12),
a child node of Program is created called VariableDeclaration
which in turn produces the VariableDeclarator node (rule (13))
with children <Identifier> and the node Structure. The child of



(1) 〈Program〉 |= Program [〈SourceElement〉∗]
(2) 〈SourceElement〉 |= 〈FunctionDeclaration〉 | 〈Statement〉

(3) 〈FunctionDeclaration〉 |= FunctionDeclaration [〈Identifier〉 Structure [〈ParameterList〉 〈FunctionBody〉]]
(4) 〈Identifier〉 |= Identifier [IdentifierName]

(5) 〈FunctionBody〉 |= Body [〈SourceElement〉∗]
(6) 〈ParameterList〉 |= ParameterList [〈Identifier〉∗]

(7) 〈Statement〉 |= 〈Block〉 | 〈VariableStatement〉 | 〈ReturnStatement〉 | 〈EmptyStatement〉 | . . . | 〈IfStatement〉 | 〈ExpressionStatement〉
(8) 〈EmptyStatement〉 |=

(9) 〈ExpresionStatement〉 |= 〈Expression〉
(10) 〈ReturnStatement〉 |= Return [〈Expression〉]?

(11) 〈Block〉 |= Block [〈Statement〉∗]

(12) 〈VariableStatement〉 |= VariableDeclaration [〈VariableDeclaration〉+]

(13) 〈VariableDeclaration〉 |= VariableDeclarator [〈Identifier〉 Structure [〈Initializer〉]]
(14) 〈Initializer〉 |= Init [〈Expression〉 | Undefined]

(15) 〈Expression〉 |= 〈Literal〉 | 〈Identifier〉 | 〈ObjectExpression〉 | 〈ArrayExpression〉 | 〈BinaryExpression〉 | . . . | 〈AssignmentExpression〉
(16) 〈IfStatement〉 |= IfStatement [Test [〈Expression〉] Consequent [〈Statement〉] (Alternate [〈Statement〉])?]

(17) 〈Literal〉 |= Literal [value]
(18) 〈BinaryExpression〉 |= BinaryExpression [〈BinaryOperator〉 〈LHSExpression〉 〈RHSExpression〉]
(19) 〈LHSExpression〉 |= left [〈Expression〉]

(20) 〈AssignmentExpression〉 |= AssignmentExpression [〈AssignmentOperator〉 〈LHSExpression〉 〈RHSExpression〉]

Figure 1: A part of the Tree Grammar for AST construction. This grammar has been derived from BNF JavaScript grammar. The nodes of the AST are shown
as boldfaced letters (terminals) and the non-terminals are shown between angle brackets <>.

Structure, which is a nonterminal <Initializer>, is also generated
(Figure 2.c). Applying (4), (14), (15) and (17) will generate the
syntax subtree corresponding to var x = 10 part of the snippet
(Figure 2.d). Similarly, the tree-grammar will generate the entire
AST as shown in Figure 2.e by application of rules shown in Fig-
ure 1.

A simple signature scheme here is to treat the structure (AST)
obtained by parsing as the signature for the given source code. We
describe the mechanism to represent this structure with a unique
hash value in Section 3.5.1. However, we would also like to re-
lax the signature mechanism a bit more such that it allows two
structurally-similar pieces of code to have the same hash value (sig-
nature) — thereby allowing syntactic changes in the code while
preserving the semantics. We achieve this by allowing two forms
of isomorphism on the ASTs and explain the isomorphisms in Sec-
tions 3.5.2 and 3.5.3. Note that these isomorphisms are designed in
a way to be secure in the sense that whenever we treat two pieces
of code to have the same signature they only differ in syntax and
will not differ in the semantics. We will revisit these security points
when we describe our isomorphisms.

3.5 Structural Signature
Structural signature is a signature mechanism for representing

the structure (AST) of the code with a unique hash value. Our
mechanism for computing structural signatures, denoted as S#, is
based on the techniques used in set fingerprinting [33] and Merkle
Hash Trees [35]. We detail the algorithm for computing structural
signatures in Algorithm 1 and describe the isomorphisms in Sec-
tion 3.5.2 and Section 3.5.3.

3.5.1 Bottom-Up Computation
After obtaining the AST of the script code, we traverse the tree

depth-first from left to right and perform a bottom-up signature
computation as shown in the Algorithm 1. We compute the struc-
tural signatures as follows. Consider a node β labeled lβ and chil-
dren b1, b2 . . . bk with structural signatures S#(b1), S#(b2), . . . ,

S#(bk). The structural signature for node β is defined as

S#(β) = H(H(lβ)||S#(b1)||S#(b2)|| . . . ||S#(bk)) (1)

whereH is a cryptographically secure hash function like SHA256.
This is represented in the lines 16-21 in the algorithm. For the base
case where the node is a non-identifier leaf node, we just compute
its hash as its structural signature represented in the lines 5-6. For
when the node is an identifier leaf node, we handle it Section 3.5.3.

Our mechanism computes the structural signature for the entire
tree in a bottom-up fashion. The structural signature of the root
node is the signature for the entire AST and hence of the corre-
sponding code.

3.5.2 Isomorphism 1: Node Permutations
This is the first isomorphism that we define on the AST which

allows ASTs of two programs differing in the order of the nodes to
have the same signature. The mechanism described in Section 3.5.1
can be relaxed to achieve this isomorphism. While computing the
structural signature of a node, we sort the structural signatures of
its children and then concatenate them in the sorted order. For the
example node β mentioned in Section 3.5.1, the structural signature
will be redefined as follows:

S#(β) = H(H(lβ)||S#(bπ(1))|| . . . ||S#(bπ(k))) (2)

where π(i) is the index of ith node in the sorted order.
However, enforcing such isomorphism for every node-type might

lead to semantic differences. For example, the ordering of children
nodes corresponding to arguments of a CallExpression or param-
eters of a FunctionDeclaration is important as allowing permuta-
tion here may lead to semantically different code. Thus, we impose
the sorting mechanism for the unordered node-types like properties
of an object. We do not perform such sorting for function argu-
ments and parameters. The lines 15-21 in Algorithm 1 perform this
computation. This isomorphism enables the snippets in Listing 8 to
have the same signature. This isomorphism can be easily extended
to take into account permutation of independent code statements at
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Algorithm 1 Structural Signature Algorithm

1: StructId← {} //contains structural identities
2: IdentityPos← {} //contains positions of an identifier
3: procedure STRUCT_SIGN(n, pos)
4: if is_leaf(n) then
5: if is_non_identifier(n) then
6: s← H(n.type||ln)
7: else if n ∈ StructId then
8: s← StructId[n]
9: IdentityPos[n].append(pos||“Identifier”)

10: else
11: n_struct← STRUCTURE_NODE(n)
12: s← H(H(n.type)|| STRUCT_SIGN(n_struct, pos))
13: StructId[n] = s

14: else
15: sign← {}
16: for each ∈ n.children do
17: sign.append(STRUCT_SIGN(each, pos || n.type))
18: if n is of UnorderedType then
19: s←H(H(ln) || join(sorted(sign)))
20: else
21: s←H(H(ln) || join(sign))
22: if n is an child of Program then
23: UPDATE_STRUCTIDS(s)
24: FLUSH_IDENTITYPOS()
25: return s

the same level in the AST, the order of variable declarators and the
order of function declarations in the global scope.
Safety. The isomorphism under node permutations restricted to un-
ordered node types is secure because ASTs that only differ in the
order of these unordered node types will have the same structural
signature. Such ASTs correspond to code that are syntactically dif-
ferent but have the same code semantics.

3.5.3 Isomorphism 2: Label Renaming
The name of the identifier, which is its label, is unique and can

be used for computing its structural signature, i.e., S#(x) = H(x)
for an identifier x. However, in our experiments, we find that iden-
tifiers get consistently renamed with no change in the logic of the
source code, as shown by code hosted at sstatic.net in List-
ing 5. So, we would like two pieces of code differing only in vari-
able names to have the same structural signature. To achieve this,
we define the isomorphism under renaming of the labels. The iso-
morphism proceeds by trying to define a unique identity for every

1 // Script during first visit
2 var f = parseInt(o.css("margin-top")),
3 h = f + d;
4 t.is("textarea") || (h =

parseInt(o.prevAll(":visible").eq(0)
.css("margin-bottom")) + f), o.css("margin-top",
h)

5
6 // Script during second visit
7 var h = parseInt(o.css("margin-top")),
8 f = h + d;
9 t.is("textarea") || (f =

parseInt(o.prevAll(":visible").eq(0)
.css("margin-bottom")) + h), o.css("margin-top",
f)

Listing 5: An example of variable renaming in a script monitored over
two subsequent visits. Underlined variables are renamed during the
second visit.

identifier which can further be used to replace the identifier’s name
in the signature computation. If it is not possible to represent an
identifier with a unique identity, then we do not apply this kind of
relaxation — we fallback to using the name of the identifier and re-
sort to the signature computation as explained in Section 3.5.1 and
Section 3.5.2 in order to avoid semantically different code to have
the same signature.
Structural Identity of an Identifier. In order to define an identity
for an identifier, we first take into account the identifier during its
declaration. Consider the following variable declaration var x
= 10. From this statement, we can infer that x can be identified
as a variable which has a number 10 assigned to it. In general, the
type and the initialization value can be used to identify an identifier.
We refer to this as the initial identity of the identifier. The type of
an identifier can either be VariableType or ObjectType and
the initialization value is either the value it is assigned to during
declaration or undefined, if nothing is assigned to it.

Note that type and initialization alone do not always uniquely
identify the identifier as there may be more than one identifiers ini-
tialized to the same value. These identifiers then may be used in
different statements and at different positions in a statement. Sim-
ply using type and initialization value as the identity might lead
to semantically different code having the same structural signature.
Therefore, we propose to use the position set of the identifier in the
statement to further refine its identity. The position set of an iden-
tifier describes the structure of the statements it is used in and the
position(s) of the identifier in these statements. For example, the
variables x and y in the statement "y = x + 1;" are in differ-
ent positions — y is positioned as the left hand side of the assign-
ment expression while x positioned as the left hand side of a binary
expression which is also the right hand side of the assignment ex-
pression (Figure 2.e). Therefore, the set of positions at which an



identifier is used in the statement along with the structure of the
statement captures the usage pattern of the identifier and thereby
uniquely identifies it.

We refer to the identity of the identifier as "structural identity"
as it is based on its structure that consists of the type, initialization
value and the position set in the AST. An identifier initially has a
structural identity based on its initial structure (type, initialization
value) which gets refined during the tree traversal according to the
statements it is used in and its positions in the statements. This re-
finement takes place at the end of each statement or, in terms of the
tree grammar, at the end of the signature computation of the source
elements2. Henceforth, we will use statement and source elements
interchangeably whereas both terms refer to source elements.

The above idea of structural identity readily extends for function
identifiers whose initial structural identity is based on the structure
of the function body and the parameter list and further gets refined
as per its usage in the whole Program’s scope. We explain how to
compute structural identity next.
Structural Identity Initialization. As previously mentioned, any
identifier when declared has an initial structure and hence a struc-
tural identity. To capture this initial structure, we add a new node to
the language constructs called Structure as shown in Figures 2[c-
e]. The generation of the Structure node is described in rules (3)
and (13) of the grammar in Figure 1. This structure node, along
with the type defines the structural identity of the identifier, referred
to as StructId. For example, the StructId of the identifier
node x in Figure 2 is computed as follows

StructId(x) = H(H(”V ariableType”)||S#(Structure))
(3)

Here, S#(Structure) node is computed in the bottom up fashion
as described in Algorithm 1. The lines 9-11 of the algorithm return
a signature for the identifier node that is independent of its name
but completely dependent on its initial structure. StructId of the
identifier is stored in the datastructure StructId and updated ac-
cording to the line 13 of Algorithm 1. The structural signature of x
is the same as its structural identity. After computing the structural
identity of x, the signature computation proceeds in the bottom-up
fashion to compute signatures of the parent nodes.
Refining Structural Identity. The initial structural identity needs
to be refined as per the usage of the identifier in the code. We
propose to use the position set of the identifier in the AST to refine
its identity. The position set of an identifier consists of two things:
i) structure of the statement it is used in and ii) the positions of the
identifier in the statement.

The structural signature of a node defines the structure of the en-
tire subtree rooted at itself. This is because of the bottom up com-
putation nature of structural signatures. Referring to the AST of
our example statement in Figure 2, the signature of Assignment-
Expression compactly describes the structure of the statement y
= x + 1. Additionally, to define the position(s) of an identifier
in the statement we use a notion similar to XPath in HTML [36].
For example, sequence of nodes from AssignmentExpression to
the identifier node corresponding to y in Figure 2 uniquely de-
scribes the position of y in the statement y = x + 1. Thus, both
S#(AssignmentExpression) and the position of y represented by
(AssignmentExpression→ left→ Identifier) collectively describe
the usage of y. These are used to refine the structural identity of y
as shown in the Equation 4. Similarly the structural identity of x is
refined as shown in Equation 5.

2A program is a collection of source elements which are either statements or function
declarations according to the rules (1) and (2) of Figure 1
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StructId(y) = H(StructId(y)||s||H(posy)) (4)

StructId(x) = H(StructIdentity(x)||s||H(posx)) (5)

where s = S#(AssignmentExpression), posx and posy are
the positions of x and y respectively in the statement.

The positions of an identifier are described as a sequence of
nodes starting at the source element or the child of the Program
node which is the node AssignmentExpression for the statement y
= x + 1;. This position can be recursively computed by passing
the position to the children while computing their structural signa-
tures as shown in lines (12) and (17) of Algorithm 1. The positions
of the identifiers are stored in the data structure IdentityPos.
A single identifier can have more than one position in a source ele-
ment. For example, x = x + 5, there are two positions of x and
both are to be recorded as they both describe the usage of x. This is
done by making a list of positions and hence IdentityPos[x]
is a list of positions of x in the current statement. IdentityPos[x]
is updated according to line 9 in Algorithm 1.

Algorithm 2 Identity Refinement Algorithm

1: procedure REFINE_STRUCTIDS(s)
2: for each ∈ IdentityPos.keys do
3: PathHash← “”
4: for p ∈ IdentityPos[each] do
5: PosHash = PosHash||H(p)
6: t← s||PosHash
7: StructId[each] = H(StructId[each]||t)

The StructId of the identifiers are updated at the end of the
signature computation of the source element node (a child of the
Program node). This is described in the lines 22-24 of Algorithm 1.
The algorithm for refining the structural identities is shown in Al-
gorithm 2. At the end of the signature computation of a source el-
ement, the data structure IdentityPos is flushed as the current
positions have already refined the structural identity of the identi-
fiers.

Similarly, if the source element were an IfStatement with an
identifier involved in both the "if-block" and the "else-block" as
shown in Listing 6, the signature computation proceeds as before.
The IdentityPos[n] will contain two positions of n namely
p1 and p2 as shown in the Figure 3. We therefore merge both the
positions at the join point, i.e., after the end of the ifStatement.
The structural identity of n is updated by concatenating the hash of
the positions to the structural identity as shown in Equation 6.



1 var b = generate_random_number(0,1), n;
2
3 if(b==0)
4 n = "even"
5 else
6 n = "odd"

Listing 6: An example of a script consisting of IfStatement

StructId(n) = H(StructId(n)||s||H(p1)||H(p2)) (6)

where s = S#(IfStatement) and p1 and p2 are the positions of n
in the IfStatement.
Safety. Using the type, initialization value and the position set in
the AST, we refine the structural identities of the identifiers in order
to generate unique identity for each of them. But if two identifiers
have the same structural identity then they conflict with each other.
Replacing such identifiers by their structural identities could open
avenues for the attacker to replace one by the other and achieve
script injections. Therefore, if such a case happens, we retain the
names of the identifiers and do not replace them with their struc-
tural identities. With this restriction, we compute the structural
signature for the script again using Algorithm 1. Such cases of
conflicting identities did not come up in our large scale evaluation
as structural identities of every identifier in the script were unique.
Such restriction is, however, required to be enforced in order to
guarantee that two scripts with different semantics are not treated
as one signature.

3.5.4 Collision-Resistance
The structural signatures generation that follows the mechanism

explained in the previous steps will lead to the same structural sig-
natures for two scripts that are equivalent. However, no two struc-
turally non-equivalent scripts must lead to the same structural sig-
natures. This means our mechanism must not lead to false nega-
tives. Since the underlying idea of structural signatures is inspired
from Merkle Hash Trees, we borrow the collision resistance prop-
erty of our signatures from the collision resistance of the top level
root signature of Merkle Hash Trees.

Thus, structural signatures establish the definition of structural
equivalence formulated in terms of AST isomorphism. This implies
that it is very difficult for the attacker to introduce a new script that
is structurally different from a script in the whitelist, while at the
same time has the same structural signature with the script in the
whitelist — this answers our RQ4.

4. ARCHITECTURE
In this section, we discuss SICILIAN, a solution to implement

JavaScript whitelisting based on multi-layered signature schemes.
We detail how our whitelisting mechanism works, specify the white-
listing policies, as well as techniques for constructing such white-
list. Finally, we outline the deployment scenario of our approach.

4.1 Browser Modification
We explain the implementation detail of SICILIAN with respect

to a browser flow model discussed in [57] (illustrated in Figure 4)
and Chromium design, although our approach is also applicable to
other mainstream browsers. Our whitelisting logic must guaran-
tee that only the authorized scripts (scripts with legitimate signa-
ture) are allowed to enter the browser’s JavaScript parser module,
as mentioned in rule 1 in Section 3.2. Therefore, our whitelisting
module must be placed in a location where it is exposed to all the
interfaces JavaScript parser has with client-side web components
like HTML parser and CSS parser. In Chromium, the right point to
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Figure 4: Deployment point of our whitelist logic. Our whitelisting module
(illustrated as a greyed box S) is a standalone program which validates any
scripts entering browser’s JavaScript Parser.

place our whitelisting logic is in a function executeScript() of
class ScriptLoader.

Next, our solution employs multi-layered approach when val-
idating the scripts against the whitelist. First, all the scripts are
checked against the whitelist (Figure 4 point À) using raw signa-
tures. Scripts that pass the first layer of validation will then be
allowed by the browser to execute. Otherwise, the browser carries
out the second layer of validation, which computes the signature of
the remaining scripts with structural signatures. Scripts that do not
pass this validation are blocked by the browser.

Finally, our whitelisting module is not built by modifying the im-
plementation of the browser’s JS parser. Rather, we build our so-
lution as a standalone module hooked into the browser’s JavaScript
parser, shown as greyed box in Figure 4. To compute the struc-
tural signature of a script, SICILIAN needs to parse it and perform
a tree traversal. Therefore, we equip the whitelisting module with
our own parser written in JavaScript, modified from Esprima [24].
Since our parser is written in JavaScript, the script to be validated
and our parser logic are processed by Chromium’s JavaScript En-
gine via a function call Script:Compile(). The reason for not
using browser’s JavaScript parser is that the parsing logic varies
across browsers [1, 9]. This may lead to inconsistent signatures
across browsers. So, we champion a browser-agnostic approach3.

Although our approach requires modification to the browser —
as with many other defenses like HTTP Strict Transport Security [37],
CSP [53], or W3C’s Subresource Integrity [7] — it requires no
proactive action at the end-user since minor patches for SICILIAN
can be delivered transparently via browser auto-updates.

4.2 Whitelist Policy Specification
Our structural signature comes with a fail-safe policy that is com-

posed of directives that manage how SICILIAN is imposed on a
script. After applying such directives, the browser will block a
script from running if its signature is not in the whitelist. All poli-
cies are defined at a web page granularity such that they remain
applicable throughout the execution of the webpage. Here, we de-
fine a web page with respect to a URL of a page including the origin
and its subpath (i.e., anything before the ’?’ character in the URL).
We discuss the construction of such whitelist in Section 4.3.
Signature Directive. In our policy definition, the script’s signature
is specified by a directive signature. This directive is specified
by a JSON object containing four properties, namely type which
specifies the signature type to be imposed on the script, id which
is the identifier of a script (e.g., script’s URL), value which em-
phasizes the expected hash value of the script, and policy which
specifies certain JavaScript literals which will be ignored during

3Browser-agnostic here means that the module is agnostic to a particular browser’s
parsing logic and JavaScript engine
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structural signature computation — this is specified in the data di-
rective below. The browser validates the script by computing either
raw signature if the type is raw-sign or structural signature if
the type is struct-sign.
Data Directive. This directive specifies the data that keeps chang-
ing in the script. Such data will be ignored by our structural sig-
nature computation. The changing data is specified by a directive
dynamic-data which is a JSON object containing two proper-
ties, namely name which denotes the identifier of the data (e.g.,
variable name) and data_loc which uniquely identifies the rela-
tive scope chain of the identifier. This directive can either be served
as annotations by the website admin or inferred automatically by
the browser (during the crawl phase in Section 4.3)
Example Policies. We provide examples of policies according to
the real scripts we encountered in Alexa’s top sites.

Example 1. Site want to employ raw signature on a script hosted
at somewhere.com/site.js

1 --signature:{type:’raw-sign’,
id:’something.com/site.js’,
value:’aLp+5608ed+rwmLOHboV==’}

Example 2. Site has a script hosted at third-party site somewhere.
com/site.js which has a variable which value keeps changing.
The variable’s name is ’bar’ inside a function name ’foo’. The
website owner wants to sign this script with structural signature.

1 --signature:{type:’struct-sign’,
id:’something.com/site.js’,
value:’aLp+5608ed+rwmLOHboV==’,
policy:{dynamic-data:{name:’bar’,
data_loc:root-foo}}}

Our approach requires the web page to whitelist all scripts that
are going to be loaded and executed. However, this raises deploy-
ability issues since web application can generate a massive amount
of web pages. Crawling such pages during pre-deployment analysis
may not always lead to complete code coverage.

4.3 Deployment: Progressive Lockdown
We propose a browser-assisted whitelist construction method that

helps the website owner to specify a correct whitelist for web pages
which do not yet have it. Our entire whitelist construction is based
on progressive lockdown, which slowly introduces whitelists as
new web pages are being discovered by the browser. We intro-
duce three important whitelist construction phases, namely 1) INIT
where the developer carries out a pre-deployment phase to compile
initial whitelists for a limited set of web pages, say all web pages at
depth of two from the landing page, 2) CRAWL where the browser
assists the website in building a whitelist for web pages that have
not been visited during the pre-deployment, and 3) LOCK to switch

the website into a full-fledged whitelisting-based mode. Note that
this is an opt-in approach where the website owner can build such
whitelist without any significant changes to the server-side code.
We illustrate our whitelist construction technique in Figure 5.
INIT Phase. During the pre-deployment phase, the developer car-
ries out INIT to sign its web pages. The goal is to create an initial
whitelist and manually add policies in the whitelist. Such manual
policy configuration includes adding dynamic-data directives
to specify which data keeps changing in a script. This step is nec-
essary to whitelist scripts in web pages that are likely to be visited
by the user. As a result, such pages are “guarded” from potential
malicious script injection.
CRAWL Phase. After the INIT phase, the website can opt for a
second step, that is the CRAWL phase. CRAWL is carried out
at the deployment phase with the help of client’s web browser to
compile a whitelist for web pages that have not been visited dur-
ing INIT. Our crawling mechanism is based on trust-on-first-use
(TOFU), meaning that the first time a browser sees a script out of a
whitelist, it locally compiles a whitelist for the script and sends it to
the whitelist database. Although TOFU is applicable for the entire
CRAWL phase, the browser is not going to trust any new scripts on
the second visit to the script. Additionally, the server can himself
continue the INIT phase to populate the whitelists.

We apply our multi-layered solution described in Section 3 to
construct such whitelist. First, if the browser does not encounter
any changes during multiple visits on the same scripts, the browser
will set such scripts as static and use the raw signature (Layer 1 in
Section 3). Otherwise, the browser will resort to structural signa-
tures (Layer 2). While compiling the whitelist, the browser records
the data that changes in the scripts to suggest additional policies re-
garding the data-only changes to the website admin. Note that this
can be done as a background job without delaying page load.

A typical CRAWL phase may vary, but may last up a month in
order to get a precise and fine-grained policy. This is based on our
observation that the majority of non-static scripts that we study had
already been changed within 1 month interval. Once a complete
whitelist is constructed for all scripts on a web page, the browser
then sends a tuple of page’s URL and its whitelist to a database
owned by the website via an out-of-band channel.
LOCK Phase. Once the whitelist database is sufficiently popu-
lated, the website owner can initiate the LOCK phase. The whitelists
returned by the browsers in the CRAWL phase may conflict with
each other. The server can resolve such conflicts and decide the
final whitelist database through manual intervention. However,
we expect the majority of the scripts to be whitelisted automati-
cally without conflict since they are mostly static scripts (see Sec-
tion 5). This final whitelist is thus stored on the server who is
trusted for its integrity. Once the final whitelist is ready, brow-



sers must strictly follow the whitelist provided by the server — all
the partial whitelists compiled on the browsers during the CRAWL
phase must be flushed. For each browser’s request to a web page,
the web server will query its database and attach the correspond-
ing whitelist for the web page during the HTTP response. In the
LOCK phase, the whitelist is communicated to the browsers using
a custom HTTP header X-Whitelist:[directives]. If there
are any changes to the server code post-lockdown, the server can
update the whitelist database itself and serve the updated whitelists
for future visits.

4.4 Signature Updates
We recall that 461 scripts in our crawl belong to C3A, where

website developers add or remove functionality from the scripts and
this happens in an infrequent manner. Scripts within this category
undergo a non-syntactic change and no longer preserve the code
semantics. Once this happens, signature mismatch errors will be
raised on all browsers loading these scripts. Since the changes are
legitimate and infrequent, the website admin can do the following
to handle such updates:
1. If the script is hosted within a website, website admin can re-

compute the signature of the script and update the value in the
whitelist. This way, browser that accesses a web page will get
the updated whitelist. Signature mismatch can only occur when
the browser still retains the old signature of the script. In such
cases, the browser can simply communicate back to the server
to get an updated signature.

2. If the script is imported from some third-party services, the
browser will report such incidents back to the main website’s
server. The admin of such site can either analyze the script and
decide whether such changes are legitimate, or it can block the
inject attempt and contact the third-party script provider about
the script changes. If the changes are indeed legitimate, the
admin can update their value in the whitelist database.

5. EVALUATION
In this section, we give an empirical analysis of our 3-month long

measurement study (from 31st January 2015 to 30th April 2015) on
Alexa’s top 500 sites and 15 popular PHP applications (see Table 1)
with the following goals. First, we would like to determine whether
raw signatures are practical for scripts in Alexa’s Top 500 websites
and popular PHP apps. Second, we show that our signature scheme
and policies defined in Section 3 are easy to implement and expres-
sive enough to whitelist benign scripts on Alexa’s top websites.
Further, structural signatures are able to reduce false positives as
compared to the raw signatures. Lastly, we show that our approach
incurs only a small performance overhead on the browser.

efront X2CRM SquirrelMail AstroSpaces
elgg Magento PhpScheduleIt Cubecart
ownCloud osCommerce OpenCart Dokeos
PrestaShop ZenCart Gallery

Table 1: Popular applications that we investigate for user-related changes.

Implementation. We implement SICILIAN by modifying Chro-
mium version 43.0.2315, an open source version of Google Chrome.
We implemented a module which can be patched to the Chromium’s
JavaScript engine by adding approximately 200 lines of C code and
500 lines of JavaScript code spreading over 2 files in the Chro-
mium’s codebase. We have released our patch to the Chromium’s
JavaScript engine on a public repository [46].
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Figure 6: The figure represents the variation of average and maximum of
update frequencies of all scripts of a domain across Alexa’s top 500 sites,
sorted in descending order of their update frequencies. The graph is based
on a UFraw metric, which indicates how often raw signatures are updated
for a number of visits.

Platform. All experiments were conducted in Chromium v43 set
up on a Dell Latitude 6430u host, configured with Intel(R) Core(TM)
i7-3687U 2.10GHz CPU and 8GB RAM running 64-bit Ubuntu
Linux 14. We use Ninja v.1.5.1 for compiling our modified Chro-
mium browser.

5.1 Insufficiency of Raw Signatures
Our study on the Alexa’s top 500 shows that none of these pop-

ular websites employs signature checking on their script resources,
which we suspect is due to the deployability burden in retrofitting
such mechanisms. Such burden is caused by the highly dynamic
scripts which require developers to frequently update the signa-
tures. To justify this claim, we crawl for 45066 webpages logging
33,302 scripts from Alexa’s top 500 and record their changes pe-
riodically over 3-months starting 31st January, 2015. Each script
was visited 52 times on average in our experiments, giving an aver-
age of 17 visits per month. Therefore, every website has an average
of 17 visits per script per month. We introduce a metric called up-
date frequency (UF), which measures how often a script’s signature
changes per visit. Note that change in script’s signature implies that
the content of the script itself has changed. Update frequency for
raw signature is calculated as follows:

UFRaw =
# times the raw signature changes

# visits to the script
(7)

Our result of Update Frequency (UF) in Alexa’s top 500 website
is summarized in Figure 6, which shows the sorted version of max-
imum and average UF of scripts in Alexa’s 500 domains. In the
figure, 59 error domains were assumed to have both maximum and
average UF = 0. As seen from the figure, 300+ domains have an
average UF > 0 which suggests that such domains have at least one
script that changes. We further observe from the maxUF graph that
there are almost 200 domains which have at least one script with
UF = 1, i.e., this script keeps changing for every visit. If raw signa-
tures via SRI are to be imposed on websites with such scripts, the
developer needs to undertake the burden of updating the signature
of the script for each request — which is not practical in real world
settings.
Deployability of Raw Signatures. We investigate the number of
scripts on which raw signature based solutions (e.g., SRI, BEEP [29])
can be fully applied. As mentioned earlier, we find 30,989 static
scripts which accounts for approximately 93% of all the scripts
that we have crawled. However, only 69 websites of the Alexa’s
top 500 (13.8%) and 7 out of 15 PHP apps can be fully retrofitted
to raw signature-based solution because only these sites do all the
scripts remain static. Thus, raw signatures have limited practical
adoption thereby answers our RQ1.



5.2 Quantitative Analysis of SICILIAN

Deployability of SICILIAN. We find that 33,094 scripts can be
whitelisted using SICILIAN, which are approximately 99.4% of all
the scripts that we have crawled. Among the Alexa’s top 500 sites
and 15 PHP applications we analyze, SICILIAN can be fully ap-
plied to 372 websites and 15 PHP apps. This means that all the
scripts imported by those websites and apps fall either in the C1,
C2, or C3A category of script changes. By Equation 8 for these 372
domains, we get an average UFStruct of 0.057. This is equivalent
to 1 whitelist update4 per month. Given that 59 of them were not
visited due to errors on the websites, this accounts for 84.7%5 of
all websites we crawled. SICILIAN covers five times more domains
than SRI (69 websites), which is a raw signature-based whitelisting
solution. Our approach also works on popular and highly-dynamic
websites such as Google, Ebay, and Amazon.

UFStruct =
# times the structural signature changes

# visits to the script
(8)

Rate of Signature Updates. We compare the rate of signature up-
dates for scripts with raw and structural signatures by comparing
their update frequencies (Equation 7&8). Figure 7 shows the vari-
ation of update frequency of raw and structural signatures among
Alexa’s 500 domains, sorted according to UF values. Of the 500
domains, 59 domains are excluded from the figure as these sites ei-
ther returned no HTML or had at least one DNS error (unreachable)
in our crawl. Of the 441 websites, there are 153 and 334 domains
with an UF ≤ 0.1 for raw signatures and structural signatures, re-
spectively. This implies that our signature mechanism works for
334 web sites, assuming that they are update frequency is lesser
than 0.1 (5 times in our 3 month measurement6). In contrast, SRI is
only applicable to 153 of the sites with such a rate of updates. We
point out that each signature update in SRI requires changing all
integrity attributes on all parent web-pages, whereas our approach
is one update in the server-side database. Further, the number of
domains increases to 433 (98% of all non-error domains) for UF≤
0.5 as compared to 314 domains of raw signatures. Thus, structural
signatures significantly reduce the update frequency of Alexa’s top
500 sites. On average, the UF for structural signatures (µS = 0.075)
is four times smaller than the average UF for raw signatures (µR =
0.28)(Figure 7).
Time-related Changes. We classify our crawled scripts into cate-
gories defined in Section 3.2 and summarize the result in Figure 8.
As seen from the figure, 71.07% of the changes in the scripts be-
long to C1 union C2 and 4% of them fall in both C1 and C2. Scripts
belonging to C2 are the majority of the changes (46%+4% = 50%)
and thus C2 is a common practice in Alexa’s websites (271 do-
mains). If site admin wishes to impose raw signatures on scripts in
C1 and C2, she needs to extensively rewrite server code to retro-
fit to raw signatures. Therefore, such script changes are not easily
fixable. As opposed to raw signatures, structural signatures can
robustly handle them without enforcing any burden on the admin.

Further, C3A contributes significantly (20%) to the changes and
affects 247 domains, which suggests that developers regularly main-
tain their site’s codebase. Scripts in C3A, however, have very small
UFs (0.066 on average). This is equivalent to approximately three

40.057*17, given an average of 17 script visits per month per domain.
5This is obtained from (372/(500-59))*100%
6Out of the 372 websites on which Sicilian can be fully applied, 334 require an at most
5 whitelist updates in 3 months while the remaining 38 require an at most 5 whitelist
updates in 2 months. Of the 334 sites, majority of the sites (243) require an at most
of 1 whitelist update per month. Together all 372 sites give an average of 1 whitelist
update per month due to an average UF = 0.057.
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Figure 7: Variation of update frequency of Alexa’s 500 domains for raw
and structural signatures . The figure represents domains sorted in ascend-
ing order of their update frequencies. We remove 59 error domains from
the graph. µR and µS represent the average UF of 441 domains for raw
signatures and structural signatures, respectively.
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Figure 8: Pie chart on the left represents the distribution of scripts that have
changed into four categories and Bar graph on right represents the number
of Alexa sites affected by these four categories of changes.

script updates during our 3-month crawling period, given an aver-
age of 52 script visits. Therefore, although such scripts are signif-
icant and affect many domains, the effort of updating their signa-
tures is relatively low (once a month).

Finally, we find that scripts in C3B are highly dynamic, and can-
not be whitelisted with any kind of signature schemes due to their
high UFs (0.652 on average). Such highly dynamic scripts include
advertisements with customized scripts [28] or scripts from news
websites. However, such "non-static" scripts are scarce (0.62%)
with respect to all the crawled scripts and used only in 69 domains.
These domains can be retrofitted to SICILIAN by placing the C3B
scripts into separate iframe container, as done in [4]. Such mod-
ification requires additional development effort, but it may be fea-
sible given the small number of C3B scripts.

App. # P # C # D Value of name in SICILIAN Policy
efront 100 1 1 var chat_listmenu
Elgg 100 100 1 var lastcache
ownCloud 100 100 1 var oc_current_user
PrestaShop 100 100 1 var static_token
x2CRM 100 1 3 var yii
Magento 100 1 3 var region_id
osCommerce 100 1 2 var theme_token
ZenCart 100 1 1 var s

Rest of seven applications (Table 1) exhibit no user-related changes.

Table 2: Changes in scripts due to multiple users. SRI handles none of
these changes and SICILIAN can handle all of them with the corresponding
policy mentioned in the last column. # P represents the pages crawled, # C
represents the pages where inline scripts change, # D represents the number
of data that change.

Per-user Changes. Beside time-related changes, we analyse 15
PHP applications (listed in Table 1) to determine changes related
to multiple users. Such standalone web applications enable us to



create multiple user accounts with different privilege levels which
is difficult in popular live websites. Note that we do not apply any
patches on the installed PHP applications thus excluding C3 cat-
egory from our observation set. We crawl for 100 webpages on
each application and summarize our observations in Table 2. Seven
out of the 15 applications exhibited no change in external, inter-
nal and inline scripts and hence can be retrofitted to raw signatures
as stated in Section 5.1. In the rest eight applications, only inline
scripts were observed to change. These applications maintain user
specific information like var oc_current_user mentioned in
Table 2. All the crawled webpages changed in three of the applica-
tions (eg. Elgg, owncloud and PrestaShop) but only in small num-
ber of data (see column "#D"). The changes observed across users
fall in the C1 and C2 category. These can be handled by structural
signatures by specifying the dynamic-data policy for variables
mentioned in column SICILIAN’s policy. Thus, we infer that such
standalone applications remain mostly static across different users
and structural signatures can be used to whitelist them.
Performance. To measure performance, we sample one page for
every domain in the Alexa’s top 500 websites and compare the
page load time between vanilla browser, SRI-enabled browser (im-
plements raw signature), and SICILIAN-enabled browser — aver-
aged over five attempts. We outline the performance overhead of
five websites and the overall 500 websites in Table 3. As listed
in the table, our structural signature mechanism gives an average
performance overhead of 7.02% for pages in 500 domains. Such
overhead is acceptable for all but the most latency-sensitive web-
sites. Our multi-layered approach guarantees structural signatures
are only applied on changing scripts. The remaining (7.02% -
2.34%) = 4.68% overhead is due to procedures required to com-
pute structural signatures like building the AST and computing
hashes while walking the tree. However, the overhead for comput-
ing structural signatures is overshadowed by the time for loading
non-script resources such as videos. Therefore, structural signature
tends to give high overhead on sites that contain only texts, such as
wikipedia.org (20.94%) and wordpress.com (9.5%). De-
spite such overhead, the total page load time for these sites is small
(below 3s) and hence not impacting user experience significantly.

Domain Vanilla Raw-Sign Struct-Sign
LD LD OVD(%) LD OVD(%)

blogspot.sg 8.25 8.7 5.35 8.708 5.44
wikipedia.org 2.158 2.168 0.46 2.61 20.94
mashable.com 23.74 24.75 4.26 25.14 5.89
google.cn 4.55 4.65 2.19 4.86 6.94
twitter.com 2.79 2.86 2.57 3.03 8.51
Average Overhead of Alexa’s 500 Sites 2.34% 7.02%

Table 3: Performance evaluation of structural signature on Alexa’s Top 500
sites. LD represents load time of the page, measured in seconds whereas
OVD represents overhead percentage (%), as compared to the load time in
vanilla browser.

Policy Development Effort. A fine-grained policy for a script can
be derived with modest development effort. For our dataset, it took
us less than 5 minutes of manual effort per script to compile a fine
grained policy. The average policy size is 83 bytes for static scripts
and 263 bytes for changing scripts. Since there are 30,989 static
scripts and 2,105 changing scripts, we expect the entire whitelist
database size to be around 2.9 MB for the 33,302 scripts we have
crawled. The most time consuming steps were code-beautification
and the use of a text differencing tool to find out the dynamic parts
of the code. The developer may need to compare several versions
of the script to derive a fine grained policy, however in our experi-
ence three script versions proved to be sufficient. This manual task

of determining the policy and which variables change can be auto-
mated by comparing the AST of the different script versions. In our
semi automatic analysis of the crawled data set, we determined the
types of changes in all the scripts along with the variables whose
values change therefore building the policy for all 33,302 scripts.

5.3 Examples of Script Changes
In this section, we give examples and comprehensive breakdown

of scripts in C1 and C2 category of changes. These changes were
observed in our 3-month crawling period.

5.3.1 Scripts in C1

We first categorize changing scripts that preserve the code se-
mantics as C1 which can be handled by using structural signatures.
Table 4 gives details about the number of scripts falling in C1.
Scripts in C1 can be further classified into four sub-categories (see
Table 4), with changes in code comments section as the majority.
We point out that few scripts in C1 exhibit more than one type of
change and hence belong to more than one sub-categories.

Changes # ES # IS Total UF # AD
Comments 274 192 466 0.401 94
Permutations of Object 51 10 61 0.749 92
Variable Renaming 8 1 9 0.22 5
Others 7 85 92 0.269 30

Table 4: Changes in scripts belonging to C1. #ES and #IS represent the
number of external and internal scripts respectively, Total denotes the total
number of scripts (sum of external and internal), UF represents the update
frequency and #AD the number of affected domains.

Code Comments. In our experiments, out of the 586 scripts falling
in C1, 466 scripts had changes in the comments section of the code.
These form the majority of the script changes observed in C1. As
shown in Table 4, these 466 scripts are included in 94 domains and
have an UF value of 0.401 on the average, which indicates that
scripts with changes in comments tend to be updated frequently.
We present an example where the comments section of a script
changes periodically in Listing 7.

1 /* requested Sat, 14 Feb 2015 8:10:57 GMT */
2 /* generated February 14, 2015 12:10:58 AM PST*/
3
4 (function(){ geolocation = {};
5 ...}();

Listing 7: An example of script where the comments contain time related
information which changes on every visit.

1 // First version of the script, requested at 2 April
2 "wgAvailableSkins":{"cologneblue":"CologneBlue",
3 "myskin":"MySkin","simple":"Simple","modern":"Modern",
4 "nostalgia":"Nostalgia","monobook":"MonoBook",
5 "standard":"Standard","chick":"Chick"}
6
7 // Second version of the script, requested at 3 April
8 "wgAvailableSkins":{"cologneblue":"CologneBlue",
9 "monobook":"MonoBook","myskin":"MySkin",

10 "simple":"Simple","chick":"Chick","modern":"Modern",
11 "nostalgia":"Nostalgia","standard":"Standard"}

Listing 8: An example of permutation of properties during object
initialization. The underlined strings are properties which get permuted.

Permutation of properties in JavaScript Objects. A JavaScript
Object is a collection of properties of the form key:value. In
our experiments, a total of 53 scripts were found to differ in the
ordering of object properties during initialization. This was espe-
cially observed in scripts like www.google.com/jsapi where



# ES # IS UF # AD
Unused Data 64 12 0.632 43
Side-effects of Changing JS Literals
1) Data-JS 36 36 0.533 47
2) Data-URL 423 242 0.722 203
3) Data-HTML 113 229 0.76 65
4) Data-Cookie 50 8 0.563 21
Multi-Version Scripts 51 17 0.303 62

Table 5: Changes in dynamically-generated scripts which affect execution
of the scripts (type C2).(#ES,#IS) represents the number of external and
internal scripts, UF represents the update frequency and # AD the number
of affected domains.

a loader function takes in an object as an argument that is a collec-
tion of modules to be loaded. An example of a script with different
ordering of properties is shown in Listing 8 hosted at weibo.com.
We encounter different ordering of several properties owned by an
object wgAvailableSkins.
Other Syntactical Changes. In addition to previously mentioned
categories, we find a few other interesting changes. In our study,
we have versions of a script hosted at bol.com.br where all the
double-quote characters (") around a string were replaced by sin-
gle quotes (’). JavaScript offers the flexibility of optional semi-
colons (;) at the end of each statement and optional brace brackets
around single line conditional statements. We find 1 script where
two different versions differ in semi-colons and braces for single if
statements and 2 scripts where equality operators (==,!=) were re-
placed by their strict versions (===,!==) for comparing strings and
boolean. All such changes bring no semantic change to the code.
The number of scripts falling prey to such syntactical changes are
handful, however, we aim to show that such cases are prevalent.

5.3.2 Scripts in C2

Next, we discuss types of changes in scripts belonging to C2,
which is summarized in Table 5.
Side-effects of Changing JavaScript Literals. Since changes in
C2 are data-only, we observe the side-effects of such data in the
script’s execution, i.e., in what form do such data eventually get
used in the scripts (sink). We classify the sinks into: HTML
(Data-HTML), part of resource URL (Data-URL), stored in a
DOM cookie object (Data-Cookie), or used as part of the script’s
logic (Data-JS). Table 5 shows the summary of these side-effects.
In our study, we observe 342 scripts where dynamic data finds
sink in functions like document.write as shown in Listing 9. The
periodically-changing JavaScript data also flows into sensitive Java-
Script objects like URL and Cookies. As seen in Table 5, 203
websites include scripts with changing data going into the URL
whereas 21 websites include scripts where changing data affect
cookies. The scripts in Data-URL are a majority (665 scripts)
while scripts in Data-HTML have the highest UF of 0.76 followed
by Data-URL at 0.722. All the categories under side-effects have
high UF (≥ 0.5) which characterizes their highly dynamic behavior.

1 document.write(’<link rel=\"stylesheet\"
href=\"http:\/\/staticd.cdn.industrybrains.

2 com\/css\/zonesuu\/zone796.css\"uu
type=\"text\/css\" \/>\n’)

Listing 9: Sample usage of periodically-changing JavaScript data used
to construct HTML content.

Unused Variables. We observe a number of unused variables of
the scripts which have periodically-changing values. To decide
whether such changing variables are unused, we apply a semi-automatic
analysis by removing them from the code and check whether such

removal affects the script execution. Such changes in data happen
in 76 scripts, which were embedded in a total of 43 sites.
Multi-Version Scripts. We find cases where the server returns
completely different versions of the script across visits. At first,
we thought that it might have been a complete API Update since
the changes were so drastic. However, after subsequent visits, we
observe that the changes converge into a finite set of script versions.
As an example, such case happens in a script hosted at the following
URL http://v6.top.rbk.ru/rbc_static/version-1.2.1/

scripts/build/~_layout-main-live-tv.js. In total, we ob-
serve 68 scripts that indicate similar characteristics.

6. RELATED WORK
Structural Integrity on the Web. Several solutions have pro-
posed different notion of structural integrity on the web. In Doc-
ument Structure Integrity (DSI) [39] and Blueprint’s [34] notion
of structural integrity, there is a distinction between nodes in the
DOM’s abstract syntax tree which are trusted and those which are
not trusted. As a result, both the solutions try to impose certain
policy to confine the untrusted nodes in order to prevent code injec-
tion, either by rendering such nodes using special DOM construc-
tion techniques (implemented in Blueprint) or using taint-tracking
(in DSI). In contrast to that notion, we guarantee that every node in
the script’s AST is trusted and therefore technique to confine such
untrusted nodes in the AST is no longer needed.
JavaScript Whitelisting. Whitelisting is a promising direction for
preventing malicious script injection into a website. Jim et.al. in-
troduce the idea of whitelisting script by embedding a policy in its
pages that specifies which scripts are allowed to run in their sys-
tem called BEEP [29]. Braun et.al., proposes a validation scheme
to extend several HTML elements with an integrity attribute that
contains a cryptographic hash of the representation of the resource
the author expects to load. This scheme is named Subresource
Integrity (SRI) in their latest W3C recommendation [54]. These
works mainly use raw signature scheme, which validates the in-
tegrity of a resource based on the cryptographic hash computation
on the resource’s source code. In SICILIAN, we introduce a new
signature scheme that is robust against scripts’ changes, which are
pervasive in real world websites. On the other hand, web primi-
tive such as Content Security Proposal [53] performs domain white-
listing, which specifies the origin of resources but does not give any
particular restriction on the integrity of the resources. The policy
effort for CSP seems to be higher than SICILIAN [16].
Script Injection Prevention. A different approach for prevent-
ing script injection has been proposed by a variety of XSS de-
fenses. The main line of research has focused on sanitizing un-
trusted input [5, 25, 44, 57]. However, performing only sanitization
does not fully protect web applications from script injection attacks
due to other client-side attack variants such as DOM-based XSS
or second-order vulnerabilities [11]. Other XSS defenses include
privilege separation [4,8,10,15,39], DOM isolation [3,13,21], and
taint tracking [22, 31, 43, 50, 51]. Most of the above solutions as-
sume the content integrity of site’s scripts. However, this may not
always the case in the presence of attacks on third-party library or
CDNs [32]. SICILIAN is not designed solely for preventing XSS
attacks. Rather we build our solution as a channel-agnostic mech-
anism which checks any injected scripts wherever it came from.
JavaScript Measurement Study. To the best of our knowledge,
there has been no study on how scripts change in popular websites
that is of comparable breadth and depth to our work. We are aware
of the archive.org project [26] which records content changes in



the internet over period of years, including JavaScript. However,
it does not completely record all the web contents in Alexa’s top
websites nor are we aware of any study in JavaScript changes that
makes use of such data. Nikiforakis et.al. study the evolution of
JavaScript inclusions over time and identify the trust relationships
of these sites with their library providers [40]. This study shows
types of vulnerabilities that are related to unsafe third-party inclu-
sion practices although there is no particular study on the changes
reflected as well as any defenses proposed in the paper to prevent
those.

7. CONCLUSION
In this paper, we conduct a longitudinal study on changes in

scripts to evaluate the efficacy of signature-based JavaScript white-
listing for preventing script injection attacks. We then propose a
system called SICILIAN, which 1) employs a multi-layered white-
listing approach using a novel signature scheme, structural signa-
ture, that is robust against mostly static scripts; and 2) comes with
an incremental deployment model called progressive lockdown to
ensure its practicality in real-world settings. Our large-scale eval-
uation shows that SICILIAN can whitelist scripts with reasonable
performance.
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