
Addition Machines,
Automatic Functions
and Open Problems
of Floyd and Knuth

Sanjay Jain, Xiaodong Jia,

Ammar Fathin Sabili, Frank Stephan

National University of Singapore

JCSS 136:135-156, 2023

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 1



History

Turing machines have quite small primitive steps and
difficult to read programs.

Alternative: Operations on numbers, registers store
arbitrary large integers and do certain primitive operations
in O(1).

Counter machines: Primitive operations PLUS 1
(increment) MINUS 1 (decrement) and comparison with 0.
Turing equivalent to Turing machines, but addition of n-digit
numbers takes Θ(2n) steps.

Hartmanis and Simon [1974] showed machines with
addition, multiplication, subtraction, comparison and bitwise
operations can solve all NP problems in polynomial time;
without multiplication, the notion is the same as P.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 2



Model of Floyd and Knuth

Primitive Operations: +, −, <,=, >, Read, Write.
Examples: x = y+ 3; z = v+w; If x < 55 then Goto line 12.

Floyd and Knuth themselves did not allow operations and
comparisons with integer constants; however, besides
allowing constants, we did not change their model. In
particular on right hand side of assignments there are only
one operation and two operands. Comparisons for goto
instructions are between two registers or register and
constant.

Floyd and Knuth showed (for model without constant
operands) that greatest common divisor can be computed
in linear time (n is the number of digits of the largest input)
with three registers, but not with two. Furthermore, most
arithmetic operations are in linear time.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 3



Open Problems of Floyd and Knuth

Problems 1 and 6 not relevant, log(input) = size(input).

2. Can an integer addition machine with only 5 registers

compute x2 in O(log x) operations? Can it compute the
quotient ⌊y/z⌋ in O(log y/z) operations?

3. Can an integer addition machine compute xy mod z in
o((log y)(log z)) operations, given 0 ≤ x,y < z?

4. Can an integer addition machine sort an arbitrary
sequence of positive integers 〈q1,q2, . . . ,qm〉 in
o((m+ log(q1 · q2 · . . . · qm)) logm) steps?

5. Can the powers of 2 in the binary representation of x be
computed and output by an integer addition machine in

o((log x)2) steps? For example, if x = 13, the program
should output the numbers 8,4,1 in some order. (This
means, it does not need to be the top-down default order.)

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 4



Answers

Theorem Linear time multiplication can be done with four
registers (five if no constants allowed).

Theorem The listings of the powers of two in a binary
representation of the input can be computed in linear time.

Remark There are various versions on how to define the big
Oh and little Oh of several variables; for the Wikipedia
version, it is shown that Open Problems (3) and (4) have a
negative answer; however, for other versions, no result is
obtained.

Methods to obtain the proof and programs follow in the next
slides.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 5



Fibonacci Method of Floyd and Knuth

Fibonacci Numbers: F1 = F2 = 1; Fn+2 = Fn + Fn+1.

1. Read x,y With 1 ≤ y < x;

2. z = y;

3. z = z+ y; y = z− y; If z < x Then Goto 3;

4. If x ≥ z Then Begin x = x− z End;

5. If y = z Then Goto 7;

6. y = z− y; z = z− y; Goto 4;

7. Write x.

The values of y, z are always the product of Fibonacci
numbers with the input value of y, the shifting up in line 3
and the shifting down in line 6 allow to compute the
remainder in linear time. With this technique and six
registers, Floyd and Knuth multiply and divide in linear time.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 6



Optimisation of Register Numbers

(a) Constant-Range Variables can be coded in program
blocks – each possible value is another program block.

(b) A variable holding a power of 2 can be used to read out
a number at the top.

(c) Coding bits at the end can be used to signal when a
number is completely read out.

Example with Input 11010;
Coding bit appended: 110101;
Power of 2 Created larger than input: 1000000;
Doubling up and comparing with power of 2 allow to read
out bit per bit:
1101010: Greater than 1000000, bit = 1, subtract 1000000;
1010100: Greater than 1000000, bit = 1, subtract 1000000;
0101000: Smaller than 1000000, bit = 0, no subtraction; . . .
1000000: Equal to 1000000, coding bit reached, the end.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 7



Example: Digit Sum Mod 2

1. Read x; x = x+ x; x = x+ 1; y = 1;
2. If y > x Goto 3; y = y + y; Goto 2;
3. If x = y Then Goto 5; If x < y Then Goto 4; x = x− y; Goto 7;
4. x = x+ x; Goto 3;
5. Write 0; End;
6. If x = y Then Goto 8; If x < y Then Goto 7; x = x− y; Goto 4;
7. x = x+ x; Goto 6;
8. Write 1; End.

Ideas: (a) Register y used to read out top bit a of x.
(b) Program position codes a: a = 0: Lines 3-5; a = 1: Lines 6-8.

1. Read x; x = x+ x+ 1; a = 0; y = 1;
2. If y > x Goto 3; y = y + y; Goto 2;
3. If x 6= y then Goto 4; Write a; End;
4. If x < y then Goto 5; x = x− y; a = 1− a;
5. x = x+ x; Goto 3.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 8



Example of Multiplication

Multiply 1234 with 111, Running Sum

with Frontshifts

111 0 + 111 = 111

222 1110 + 222 = 1332

333 13320 + 333 = 13653

444 136530 + 444 = 136974

------

136974

Algorithm: Read digits of one number (here 1234) out at the
top and add product of digit with other number to running
sum times 10.

Use binary numbers to avoid multiplication by digits
2,3,4,...,9 and decide only on adding the second number
(bit 1) or skipping the addition of the second number (bit 0).

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 9



Example with Coding Digit

Example of Multiplication:

12340 (x) times 111 (y) Digit Running sum

1000000 (Comparator v) - w=0

1234010 1 111

2340100 2 1332

3401000 3 13653

4010000 4 136974

0100000 0 1369740

1000000 Coding digit reached, the End

Algorithm x times y:
1. Append Coding digit 1 to x;
2. Comparator v is power of 10 greater x;
3. Shift x up, while (x > v) do x=x-v;
4. Digit is number of subtractions needed;
5. Shift w up, Add digit times y to w;
6. If x = v then stop else goto 3.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 10



Algorithm for Multiplication

1. Begin Read x; Read y; Let a = 1;

2. If x < 0 Then Begin Let x = −x; Let a = −a End;

3. If y < 0 Then Begin Let y = −y; Let a = −a End;

4. If y < x Then Begin Let v = x; Let x = y; Let y = v End;

5. Let v = 1; Let w = 0; Let x = x+ x; Let x = x+ 1;

6. If v > x Then Goto 7;
Let v = v + v; Goto 6;

7. Let x = x+ x; If v = x Then Goto 8 Else Let w = w+w;
If x > v Then Begin Let w = w + y; Let x = x− v End;
Goto 7;

8. If a = −1 Then Begin Let w = −w End;
Write w; End.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 11



Example for Division

Division of 136974 by 1234

136974 - 123400 = 13574, digit 1

135740 - 123400 = 12340, digit 1

123400 - 123400 = 0, digit 1

Result 111

One shifts the second (smaller) number to the front until it
reaches the first digit of the first number and then subtracts
from the first number in each round the largest multiple of
the second number which is below the second number,
receiving the corresponding digit. The first number is
shifted to the front for getting the next digit of the division.

Again binary digits distinguish only times 1 and times 0,
thus the largest multiple which goes below the first number
is either 0 or the second number itself.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 12



Algorithm for Division

1. Begin Read y; Read z; Let x = 0;

2. If z < 0 Then Begin z = −z; y = −y End;
If z = 0 Then Goto 6;
If y < 0 Then Begin a = −1; y = −y End
Else Begin a = 1 End;
Let u = z;

3. If u ≥ y Then Goto 4; u = u+ u; Goto 3;

4. If y ≥ u Then Begin y = y − u; x = x+ 1 End;
If u = z Then Goto 5;
Let x = x+ x; Let y = y + y; Let z = z+ z; Goto 4;

5. If a = −1 Then Begin Let x = −x;
If y > 0 Then Let x = x− 1 End;

6. Write x End.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 13



Reading Out Powers of Two

The fifth problem of Floyd and Knuth asked to output, for
some input x, the shortest sequence of powers of two
which sum up to x; the order of the powers of two in this
output does not matter.

The idea is to first invert the order of bits in the number - for
this one reads the top bit out and adds a register which then
gets doubled up for the next loop.

Once the number is replaced by its binary mirror image,
one can read it out again and use an extra variable to track
the powers of two from 1,2,4, . . . onwards. As the bits read
out had in the original number these binary place values,
one outputs each time this extra variable whenever the
corresponding bit is 1.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 14



Formal Algorithm

1. Begin Read x; If x < 0 Then Begin Let x = −x End;
Let y = 1; Let z = 1; Let x = x+ x; Let x = x+ 1; Let
u = 0;

2. If y > x Then Goto 3; Let y = y + y; Goto 2;

3. If y = x Then Goto 4;
If x > y Then Begin Let u = u+ z; Let x = x− y End;
Let x = x+ x; Let z = z+ z; Goto 3;

4. Let z = 1; Let x = u+ u;

5. If x ≥ y Then Begin Write z; Let x = x− y End;
Let z = z+ z; Let x = x+ x; If x > 0 Then Goto 5;
End.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 15



Regular Sets

Regular sets are sets of words which are recognised by a
finite automaton. For numbers, membership in such a set
depends on the representation of the number; similarly the
number of registers depends on the representation. Binary,
Octal and Hexadecimal numbers need 2 registers, decimal
and ternary numbers need 3 registers. In general 2
registers are sufficient iff the basis of the representation is a
power of 2.

The algorithm for witnessing this is a direct simulation of the
automaton which w.l.o.g. reads the digits of the number
from high order digits to low order digits.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 16



Automatic Functions

A function f is automatic iff one of the following equivalent
conditions holds:

1. The graph of f is recognised by a finite automaton, that
is, the automaton reads x and y in parallel with special
symbols supplied after the end of x and y, respectively,
is reached and accepts iff f(x) is defined and equal to y.

2. There is a deterministic one-tape linear time Turing
machine which replaced input x by f(x) on the tape with
input and output starting at the same position.

3. There is a nondeterministic one-tape linear time Turing
machine which replaced input x by f(x) on the tape with
input and output starting at the same position.

Regular sets are sets where the characteristic function is
automatic.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 17



Results for Automatic functions

Theorem.
(a) Every addition machine with one register can only
compute automatic functions and not even all of them.
(b) Every automatic function can be computed by a register
machine with three registers (for binary representation of
integers) and with four registers in general. If there are
several inputs, one register more is needed.

Theorem.
A function computing the membership in a regular set has a
register machine with two registers in the case of the binary
representation or equivalent representations (like octal or
hexadecimal where the base is a power of two). For other
bases, three registers are used.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 18



Membership in Regular Set

This algorithm tests whether a number – viewed in k-ary
representation – is member of a fixed regular set – with δ
being the dfa-transition-function. The commands for
multiplication with constant k depend on k.

1. Begin Read x; Let y = 1; Let a = start; Let x = k · x+ 1

(using register z when k is not a power of 2);

2. If y > x Then Goto 3

Else Begin Let y = k · y Using z; Goto 2 End;

3. Let x = k · x (using register z if needed);
If x 6= y Then Begin Let
(b,x) = (Floor(x/y),Remainder(x/y));
Let a = δ(a,b); Goto 3 End;

4. If a ∈ accept Then Write 1 Else Write 0 End.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 19



Big Oh of Several Variables

(a) The definition on Wikipedia, based on the algorithms
textbook of Cormen, Leiserson, Rivest and Stein from
2009, a function f(m,n) is in O(g(m,n)) iff there exist a
constant c > 0 and numbers m0,n0 such that whenever
m ≥ m0 or n ≥ n0 then f(m,n) ≤ c · g(m,n).

(b) The alternative (also popular) definition is to use an
“and” instead of an “or”: A function f(m,n) is in
O(g(m,n) iff there is a constant c > 0 and numbers
m0,n0 such that, for all m,n, if m ≥ m0 and n ≥ n0 then
f(m,n) ≤ c · g(m,n).

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 20



Little Oh of Several Variables

Correspondingly, version (a) says f(m,n) ∈ o(g(m,n)) if
there is for every q > 0 a k such that whenever
max{m,n} ≥ k then f(m,n) ≤ q · o(g(m,n)).

Version (b) says f(m,n) ∈ o(g(m,n)) if there is for every
q > 0 a k such that whenever min{m,n} ≥ k then
f(m,n) ≤ q · o(g(m,n)).

Note for version (a), m+ n /∈ o(m · n). Fix m = 2. Now
2+ n /∈ o(2 · n) as one can consider q = 1/3 and sees that
the relation 2+ n < 2n/3 is not satisfied for almost all n.
However, for version (b), m+ n ∈ o(m · n). Given q, one
chooses k > 2/q and has for all m,n with k ≤ min{m,n}
that m · n ≥ q · (m+ n); here assume n ≥ m and then
m+ n ≤ 2n while m · n > 2/q · n and thus q ·m · n > 2n.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 21



Problem (3) of Floyd and Knuth

Floyd and Knuth asked whether one can compute xy

modulo z in time o(n ·m) where n is the number of digits of
y and m is the number of digits of z.

In the following Question (3) is answered for variant (a)
(Wikipedia version) of the Little Oh calculus and this answer
does not work for variant (b).

Theorem. Let y = 3 (or some bigger constant) and n be the
number of digits of y. Then, for sufficiently large z, one
cannot compute the function x 7→ xy modulo z in time
o(m · n).

Proof on next slide. Idea for (4) is similar.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 22



Proof of Solution to Question (3)

One represents the numbers modulo z as
−z/2,−z/2+ 1, . . . , z/2− 1, z/2 and let the size of a number
u be the number of bits needed to represent the absolute
value of this number as a number modulo z. Assume that
the constant of the little Oh is below 0.1/(y · n). Now let

x = 2m/(y+1) and, modulo z, and one needs to output

xy = 2m·y/(y+1) which is smaller than z/2. Thus one would
need that, modulo z, the first nonzero digit of the largest
registers goes from m/(y + 1) to m · y/(y + 1) which
requires at least m · (y − 1)/(y + 1) additions. This amount
of additions is larger than c ·m · n, as c ≤ 0.1/(n · y) and
(y− 1)/(y+ 1) ≥ 0.5, so the algorithm cannot make enough
additions and subtractions for producing a result which,
modulo z, equals xy.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 23



Decidability Properties (Overview)

For one-tape linear time Turing machines, one can decide
whether two programs are equal by using that the first-order
theory of automatic structures is decidable.

For addition machines with one register, the same holds.

For linear time addition machine functions, equality of
programs is undecidable, as one can code Hilbert’s Tenth
Problem. The output is 0 if the inputs for the Matiyasevich
polynomial are mapped to 0 and it is 1 otherwise; this
function is compared with the constant 1 function.

For multitape linear time Turing machines, equality is also
undecidable, as one can code Post’s Correspondence
Problem. The input is a possible solution coded in a natural
number and the output is 1 if the translation of the input to
the upper word and lower word gives equal words,
otherwise the output is 0.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 24



Conclusion

Addition machines have, as primitive operations, addition,
subtraction, comparison (greater, smaller, equal) and read /
write; these primitive operations are in O(1) time. Thus their
model differs from that of Turing machines, which have
much more restricted primitive operations.

Floyd and Knuth showed that multiplication and division can
be done in linear time with six registers and that the listing
of the powers of two (in any order) in an input number can
be done in quadratic time. They asked whether these
results can be improved.

The answer is affirmative. Multiplication and division can be
done with four registers and the listing of powers of two in
an input can be done in linear time.

Further results relate addition machines with automatic
functions and ask when the equality is decidable.

Addition Machines, Automatic Functions and Open Problemsof Floyd and Knuth – p. 25


	History
	Model of Floyd and Knuth
	Open Problems of Floyd and Knuth
	Answers
	Fibonacci Method of Floyd and Knuth
	Optimisation of Register Numbers
	Example: Digit Sum Mod 2
	Example of Multiplication
	Example with Coding Digit
	Algorithm for Multiplication
	Example for Division
	Algorithm for Division
	Reading Out Powers of Two
	Formal Algorithm
	Regular Sets
	Automatic Functions
	Results for Automatic functions
	Membership in Regular Set
	Big Oh of Several Variables
	Little Oh of Several Variables
	Problem (3)
of Floyd and Knuth
	Proof of Solution to Question (3)
	Decidability Properties (Overview)
	Conclusion

