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Introduction

In Reverse Mathematics, Hindman’s Theorem represents an active line
of research: for instance, the strength of the theorem itself is a
long-standing open question.

The same applies to many of its variants formulated over the decades.

We isolate a new natural variant of Hindman’s Theorem, called the
Regressive Hindman’s Theorem, modelled on Kanamori-McAloon’s
Regressive Ramsey’s Theorem.

We investigate its strength in terms of provability over RCA0 and in
terms of computable reductions.
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Introduction

In terms of computable reductions, we focus on Weihrauch reductions.

They concern principles in the form (∀X )[φ(X ) → (∃Y )ψ(X ,Y )].
We call X s.t. φ(X ) an instance and Y s.t. ψ(X ,Y ) a solution for X .

1 Q is Weihrauch reducible to P (denoted Q ≤W P)
if there exist Turing functionals Φ and Ψ such that
for every instance X of Q we have that Φ(X ) is an
instance of P, and if Ŷ is a solution to P for Φ(X )
then Ψ(X ⊕ Ŷ ) is a solution to Q for X .

2 Q is strongly Weihrauch reducible to P (denoted
Q ≤sW P) if there exist Turing functionals Φ and
Ψ such that for every instance X of Q we have that
Φ(X ) is an instance of P, and if Ŷ is a solution to
P for Φ(X ) then Ψ(Ŷ ) is a solution to Q for X .
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Ramsey’s Theorem

Let us recall the Infinite Ramsey’s Theorem (RT):

Theorem (Ramsey, 1930)

For all n > 0, k > 0 and c : [N]n → k there exists an infinite set H ⊆ N
such that c is constant on [H]n.

The set H is called homogeneous or monochromatic for c .

For n > 0, k > 0, we use RTn
k to denote the restriction of RT to

colourings of n-tuples into k colours, while we use RTn to indicate
∀k RTn

k .
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Canonical Ramsey’s Theorem

The following Erdős and Rado’s Canonical Ramsey’s Theorem (canRT)
is a generalization of RT to infinitely many colours.

Theorem (Erdős-Rado, 1950)

For all n > 0 and c : [N]n → N there exists an infinite set H ⊆ N and a
subset S of {1, . . . , n} such that for any I ∈ [H]n, c(I ) is determined only
by the elements of I with indexes in S .

The set H is called canonical for c .

We use canRTn to denote the restriction of canRT to colourings of
n-tuples.
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Regressive Ramsey’s Theorem

In order to introduce a further variation of RT, we need the following
definition:

Definition (Regressive functions)

Let n > 0. A function c : [N]n → N is called regressive if and only if, for
all I ∈ [N]n, c(I ) < min(I ) if min(I ) > 0, else c(I ) = 0.

By applying canRT to regressive functions, we obtain the Regressive
Ramsey’s Theorem (regRT):

Theorem (Kanamori-McAloon, 1987)

For all n>0 and all regressive c : [N]n → N there exists an infinite H ⊆ N
such that, for any I , J ∈ [H]n, min(I ) = min(J) implies c(I ) = c(J).

The set H is called min-homogeneous for c .

We denote by regRTn the principle regRT restricted to colourings of
n-tuples.
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Versions of Ramsey’s Theorem

We can graphically summarize the relations - over RCA0 - between the
versions of RT presented above as follows (double arrows indicate strict
implications):

These results are mainly due to Clote, Hirst, Jockusch, Mileti and Simpson.
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Hindman’s Theorem

We denote by FS(X ) the set of all finite non-empty sums of distinct
elements of X ⊆ N.

Theorem (Hindman, 1972)

For all k > 0 and for all c : N → k there exists an infinite set H ⊆ N
such that c is constant on FS(H).

Similarly to RT, for n > 0, k > 0, we use HT=n
k and HT≤n

k to denote,
respectively, the restrictions of HT to sums of exactly n elements
(FS=n

k ) and to sums of at most n elements (FS≤n
k ).

Again, HT=n means ∀k HT=n
k and HT≤n means ∀k HT≤n

k .
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Versions of Hindman’s Theorem

For n = 2t1 + · · ·+ 2tp with t1 < · · · < tp, let λ(n) = t1 and µ(n) = tp.

Definition (Apartness)

A set X = {x1, x2, . . . } satisfies the apartness condition if for all
x , x ′ ∈ X such that x < x ′, we have µ(x) < λ(x ′).

If P is a Hindman-type principle, we denote by P[ap] the principle P
with the apartness condition imposed on the solution set.

Proposition

Over RCA0, HT and HT[ap] are equivalent.

It is unknown whether the same applies to HT=n
k and HT≤n

k .
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Versions of Hindman’s Theorem

We denote by FIN(N) the set of non-empty finite subsets of N.

Taylor proved the analogous version of canRT for HT, i.e. the
Canonical Hindman’s Theorem (canHT):

Theorem (Taylor, 1976)

For all c : N → N there exists an infinite set H = {h0 < h1 < . . . } ⊆ N
such that one of the following holds:

1 For all I , J ∈ FIN(N), c(
∑

i∈I hi ) = c(
∑

j∈J hj).

2 For all I , J ∈ FIN(N), c(
∑

i∈I hi ) = c(
∑

j∈J hj) iff I = J.

3 For all I , J ∈ FIN(N), c(
∑

i∈I hi ) = c(
∑

j∈J hj) iff min(I ) = min(J).

4 For all I , J ∈ FIN(N), c(
∑

i∈I hi ) = c(
∑

j∈J hj) iff max(I )=max(J).

5 For all I , J ∈ FIN(N), c(
∑

i∈I hi ) = c(
∑

j∈J hj) iff min(I ) = min(J)
and max(I ) = max(J).

The set H is called canonical for c .
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Versions of Hindman’s Theorem

Based on the previous propositions and on some well-known results, we
can start drawing some implications.

These results are mainly due to Carlucci, Hindman, Ko lodziejczyk, Lepore and Zdanowski.
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Regressive Hindman’s Theorem

In order to formulate our regressive version of Hindman’s Theorem, we
need the following definition:

Definition (λ-regressive functions)

A function c : N → N is called λ-regressive if and only if, for all n ∈ N,
c(n) < λ(n) if λ(n) > 0 and c(n) = 0 if λ(n) = 0.

Then, by applying canHT to λ-regressive functions, we finally obtain
the Regressive Hindman’s Theorem (λregHT):

Theorem (Carlucci-M., 2022)

For all λ-regressive c : N → N there exists an infinite H ⊆ N such that
FS(H) is min-term-homogeneous, i.e. for all I , J ∈ FIN(N), if
min(I ) = min(J) then c(

∑
i∈I hi ) = c(

∑
j∈J hj).
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Regressive Hindman’s Theorem

Now, we want to investigate the strength of this novel theorem, in
terms of implications over RCA0 and of computable reductions.

First, we can observe that canHT implies λregHT[ap], since canHT
is equivalent to canHT[ap] and, by apartness and λ-regressivity, only
case 1 and case 3 of canHT can occur.

Recall the five conditions of canHT are:

1 For all I , J ∈ FIN(N), c(
∑

i∈I hi ) = c(
∑

j∈J hj ).

2 For all I , J ∈ FIN(N), c(
∑

i∈I hi ) = c(
∑

j∈J hj ) iff I = J.
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∑

i∈I hi ) = c(
∑

j∈J hj ) iff min(I ) = min(J).
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∑

i∈I hi ) = c(
∑

j∈J hj ) iff max(I )=max(J).

5 For all I , J ∈ FIN(N), c(
∑

i∈I hi ) = c(
∑

j∈J hj ) iff min(I ) = min(J) and max(I ) = max(J).
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Regressive Hindman’s Theorem

Also, similarly to HT and to canHT, we have that λregHT and
λregHT[ap] are equivalent over RCA0, since λregHT implies RT1 and
RT1 can be used to get apartness.

Moreover, we can easily prove that λregHT implies HT[ap], by simply
applying λregHT[ap] to the colouring:

g(n) =

{
f (n) if f (n) < λ(n),

0 otherwise.

where f : N → k is the original colouring. Then, apartness guarantees
that all but at most the first k elements of the solution of λregHT[ap]
for g fall into the second case; so, we just need an application of RT1

to obtain a solution of HT[ap] for f (that is why the argument does
not witness a Weihrauch reduction).
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Regressive Hindman’s Theorem

Then, we can draw some additional implications (in blue) in our schema.

Then, by now we know that ACA0 ≤ HT ≤ λregHT ≤ canHT over RCA0.
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Bounded Regressive Hindman’s Theorem

Since ACA0 is already implied by some restrictions of HT, we wonder
whether this is the case for λregHT as well.

In general, we want to investigate the strength of various natural
restrictions of λregHT.

Then, by defining FS≤n(X ) (resp. FS=n(X )) the set of all non-empty
sums of at most (resp. exactly) n > 0 distinct elements of X ⊆ N, we
can formulate the Bounded Regressive Hindman’s Theorems:

Definition

Let n ≥ 1. We denote by λregHT≤n (resp. λregHT=n) the following
principle: for all λ-regressive c : N → N there exists an infinite H ⊆ N
such that FS≤n(H) (resp. FS=n) is min-term-homogeneous for c .
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Bounded Regressive Hindman’s Theorem

Similarly to full λregHT, we have:

RCA0 ⊢ λregHT≤n[ap] → HT≤n[ap]

RCA0 ⊢ λregHT=n[ap] → HT=n[ap]

However, for these bounded versions, we also have the following
reductions:

λregHT≤n[ap] ≥c HT≤n[ap]

λregHT=n[ap] ≥c HT=n[ap]

By the previous implications and the fact that HT=3
2 [ap] is equivalent

to ACA0, we can easily infer that λregHT=3[ap] implies ACA0.

However, by a more careful approach, we can improve this result, thus
giving a lower bound for λregHT=n[ap] for any n ≥ 2.
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Lower bound for Bounded Regressive Hindman’s Theorem

Theorem (Carlucci-M., 2022)

Let n ≥ 2. Over RCA0, λregHT
=n[ap] implies ACA0.

Proof. We prove the principle RAN (equivalent to ACA0) stating that for
each injective function f : N → N, the range of f (denoted ρ(f )) exists.

Since x ∈ ρ(f ) ⇐⇒ ∃z (f (z) = x), RCA0 can not decide ρ(f ).

Then, our idea is to use λregHT=n[ap] to bound the search for z .

We define c(m) = the unique x < λ(m) such that:

there exists j ∈ [λ(m), µ(m)) such that f (j) = x , and

for all j < j ′ < µ(m), f (j ′) ≥ λ(m).

If no such x exists or m is a power of 2, we set c(m) = 0.

Intuitively c checks whether there are values <λ(m) in ρ(f ↾ [λ(m), µ(m)).
If any, it returns the latest one, i.e., the one obtained as image of the
maximal j ∈ [λ(m), µ(m)) that is mapped by f below λ(m).
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Lower bound for Bounded Regressive Hindman’s Theorem

Example:

In this case, c(m) = x since:

x < λ(m), and

there exists j ∈ [λ(m), µ(m)) such that f (j) = x , and

for all j < j ′ < µ(m), f (j ′) ≥ λ(m).
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Lower bound for Bounded Regressive Hindman’s Theorem

Let H = {h0 < h1 < . . . } ⊆ N+ be an apart solution to λregHT=2 for c .

Claim: if x < λ(hi ) and x ∈ ρ(f ), then x ∈ ρ(f ↾ [0, µ(hi+1)).

Suppose otherwise and let x < λ(hi ) s.t. x ∈ ρ(f ) but x /∈ f ([0, µ(hi+1)).
Let b be the true bound for the elements < λ(hi ) in ρ(f ), whose
existence is given by strong Σ0

1-bounding (in RCA0):

∀n∃b∀i < n(∃j(f (j) = i) → ∃j < b(f (j) = i)).

Let hj in H be such that hj > hi+1 and µ(hj) ≥ b.

x /∈ f ([0, µ(hi+1)) but x ∈ f ([0, µ(hj)), so c(hi + hi+1) ̸= c(hi + hj),
hence contradicting min-term-homogeneity.

Then we can decide ρ(f ) as follows using H: given x , pick any hi ∈ H
such that x < λ(hi ) and check whether x appears in f ([0, µ(hi+1)).

The previous argument also proves that λregHT=n[ap] ≥W RAN.
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Upper bound for Bounded Regressive Hindman’s Theorem

As for the upper bound, we can easily prove the reversal of the
previous result:

Theorem (Carlucci-M., 2022)

Let n ≥ 2. ACA0 proves λregHT=n[ap].

The proof is quite simple: given a λ-regressive colouring f : N → N,
we define a colouring g of n-tuples using the f -colour of the sum of
the elements of the tuples, i.e. g(x1, . . . , xn) = f (x1 + · · ·+ xn).

Since ACA0 implies regRTn, we can apply it to get a min-homogeneous
set for g , which is also a solution to λregHT=n[ap] for f .

The previous argument also proves that λregHT=n[ap] ≤sW regRTn.
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Bounds for Bounded Regressive Hindman’s Theorem

Since the lower bound and the upper bound for λregHT=n[ap]
coincide, we have that:

Theorem (Carlucci-M., 2022)

Over RCA0, λregHT
=n[ap] is equivalent to ACA0, for any n ≥ 2.

To sum up, we have that the following are equivalent over RCA0:

1 ACA0.

2 regRTn, for any fixed n ≥ 2.

3 RTn
k , for any fixed n ≥ 3, k ≥ 1.

4 HT=n
k [ap], for any fixed n ≥ 3, k ≥ 1.

5 λregHT=n[ap], for any fixed n ≥ 2.
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Strength of Bounded Regressive Hindman’s Theorem

Then, the complete diagram of the implications over RCA0 is the
following:
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Strength of Bounded Regressive Hindman’s Theorem

The following diagram, instead, visualizes the known reductions:
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Bounded Regressive Hindman’s Theorem and WOP

Definition

The well-ordering preservation principle for base-ω exponentiation (in
symbols, WOP(X 7→ ωX )) is the following Π1

2-principle:

∀X (WO(X ) → WO(ωX )),

where WO(Y ) is the usual Π1
1-formula stating that Y is a well-ordering.

It is known that WOP(X 7→ ωX ) is equivalent to ACA0 [Girard, Hirst].

To answer questions about reducibility, we can consider the
contrapositive form of WOP(X 7→ ωX ): an instance is an infinite
descending sequence in ωX and a solution is an infinite descending
sequence in X .
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Bounded Regressive Hindman’s Theorem and WOP

Theorem (Carlucci-M., 2022)

Let n ≥ 2. Over RCA0, λregHT
=n[ap] implies WOP(X 7→ ωX ).

Moreover, λregHT=n[ap] ≥W WOP(X 7→ ωX ).

Proof. The idea is to give a procedure that, at each step, extracts from
the descending sequence in ωX the exponent of the ”next” leftmost
component that eventually decreases.

Example:

α1 = ω
9 + ω8 + ω8 + ω6 + ω4 + ω3

α2 = ω8 + ω8 + ω
8 + ω6 + ω4

α3 = ω8 + ω8 + ω8 + ω6

α4 = ω8 + ω8 + ω8 + ω5 + ω5 + ω5 + ω5

α5 = ω8 + ω8 + ω7 + ω7 + ω7 + ω7

...
αi = ω8 + ω8 + ...
...
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Bounded Regressive Hindman’s Theorem and WOP

By strong Σ0
1-bounding, RCA0 knows that if a component will decrease,

it will do so within ℓ steps, but RCA0 is not able to compute such ℓ.

Thus, we adopt an approach similar to the one used to prove RAN, i.e.
we use λregHT=n[ap] to bound the research of ℓ.

First, fixed an infinite decreasing sequence α in ωX , we define:

(βn)n∈N the sequence of all the exponents in α (in the example above,
we have β = ⟨9, 8, 8, 6, 4, 3, 8, 8, 8, 6, . . .⟩)
m(n) the index of the element of α from which βn has been extracted
(e.g., m(7) = 2 in the example above)

pos(n) the position of βn in αm(n) (e.g., pos(7) = 1 in the example
above)

Then, we say that j decreases i (and write dec(j , i)) if i < j ,
pos(i) = pos(j), βi > βj and j is minimal.

Leonardo Mainardi Regressive versions of Hindman’s Theorem



28/32

Bounded Regressive Hindman’s Theorem and WOP

Now we set c(x) as the unique i < λ(x) such that:

there exists j ∈ [λ(x), µ(x)) such that j decreases i , and

for all j < j ′ < µ(x), if j ′ decreases i ′ then i ′ ≥ λ(x).

If no such i exists, we set c(x) = 0.

Intuitively c checks whether there are indexes below λ(x) decreased by
indexes in [λ(x), µ(x)) and, if any, it returns the latest one.

Let H = {h1 < h2 < h3 < . . . } be an apart solution to λregHT=n for c .

Claim: For each hi ∈ H and each j < λ(hi ), if there exists k s.t. k
decreases j then there exists such a k smaller than µ(hi+n−1).

We can prove the claim by adopting the same approach used for proving
that λregHT=n implies ACA0 over RCA0.
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Bounded Regressive Hindman’s Theorem and WOP

Now, we compute an infinite decreasing sequence σ in X as follows:

1 we look for the leftmost term of α1 that eventually decreases, i.e. we
look for the least i s.t. m(i) = 1 ∧ ∃j < µ(hk+n−1) (j decreases i),
where hk is the least element of H s.t. i < λ(hk)

2 we fix σ1 = βi , p = pos(i) and d = m(j)

3 we repeat the procedure, this time starting from αd .

Note that we are assuming that we can always find a term that eventually
decreases, i.e. ∀i ∃i ′ (∃j < lh(αi ))

(
i ′ > i ∧ e((αi )j) >X e((αi ′)j)

)
,

where e((αm)n) is the exponent of the n-th term of αm.

This is true, otherwise for some i we could prove by ∆0
1-induction that:

∀m (m ≥ i → αm+1 is an initial segment of both αm and αi )

which implies ∀m (m ≥ i → lh(αm) > lh(αm+1)), contradicting WO(ω).
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Strength of Bounded Regressive Hindman’s Theorem

Then, we can add this last result to our diagram of computable
reductions:
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Conclusions

We formulated a novel Regressive Hindman’s Theorem as a corollary of
Taylor’s Canonical Hindman’s Theorem restricted to a suitable class of
regressive functions.

We studied the strength of this principle and of its restrictions in terms
of provability over RCA0 and computable reductions.

In particular, we showed that the weakest non-trivial restriction of our
Regressive Hindman’s Theorem, λregHT=2[ap], is equivalent to ACA0.

This contrasts with the standard restrictions of Hindman’s Theorem,
which require at least sums of exactly 3 elements to reach ACA0.

This situation is analogous to that of regRT2 when compared to RT3
2.

Also, we proved that, for n ≥ 2, λregHT=n[ap] computably reduces the
corresponding restrictions of Hindman’s Theorem HT=n[ap].

Finally, we proved that λregHT=2[ap] ≥W WOP(X → ωX ), the
well-ordering preservation principle that characterizes ACA0.
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Conclusions

Open questions remain about the strength of the Regressive Hindman’s
Theorem, of its restrictions, and of related principles, for instance:

1 What are the optimal upper bounds for canHT, for λregHT and for
λregHT≤n?

2 Does HT imply/reduces λregHT (and similarly for bounded
versions)?

3 What is the strength of λregHT=2 without apartness? More
generally, how do the bounded Regressive Hindman’s Theorems
behave with respect to apartness?

4 Can the reductions presented above be improved to stronger
reductions?

Finally, it would be interesting to investigate relations between λregHT
and other principles dealing with colourings with unboundedly many
colours, like Hindman-type variants of the Thin Set Theorem recently
investigated by Hirschfeldt and Reitzes.
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