The Church Synthesis Problem over Continuous Time

Alex Rabinovich

joint with Daniel Fatal

February 7, 2024

Alex Rabinovich (joint with Daniel The Church Synthesis Problem over C February 7, 2024

- The Church Synthesis Problem.
- 2 Buchi Landwerber Theorem.
- From Discrete to Continuous Time.
- **4** The Church Synthesis over Continuous Time.
- Some Proofs.
- Conclusion.

Input: A specification S(I, O)**Task:** Find a program P which implements S, i.e.,

 $\forall I(S(I,P(I)).$

Parameterized by Formal Specification and Implementation languages.

Input: A specification S(I, O)**Task:** Find a program P which implements S, i.e.,

 $\forall I(S(I, P(I)).$

Parameterized by Formal Specification and Implementation languages.

Church's Problem: Given an MSO[<] formula that defines a relation between input ω -strings and output ω -strings, determine whether there exists an automaton (operator) that implements the specification.

Consider a bit by bit transformation of bit streams

Church's Problem: For a given I-O specification on ω strings - fill the box.

Given a logical specification of the input-output relation R find a mapping (implementation) $F: b \to F(b)$ such that $(b, F(b)) \in R$ for all b.

Causal-operator - a_t depends only on $b_1b_2 \dots b_t$ - is independent from $b_{t+1}b_{t+2} \cdots$

Causal-operator - a_t depends only on $b_1b_2...b_t$ - is independent from $b_{t+1}b_{t+2}...$ - C-operators.



Causal-operator - a_t depends only on $b_1b_2...b_t$ - is independent from $b_{t+1}b_{t+2}...$ - C-operators.

Strongly Causal-operator - a_t depends only on $b_1 b_2 \dots b_i \dots (i < t)$ - SC -operators.



Causal-operator - a_t depends only on $b_1b_2...b_t$ - is independent from $b_{t+1}b_{t+2}...$ - C-operators.

Strongly Causal-operator - a_t depends only on $b_1b_2...b_i...$ (i < t) - SC -operators.

SC-operators = Player I strategy; C-operators = Player II strategy .



Causal-operator - a_t depends only on $b_1b_2...b_t$ - is independent from $b_{t+1}b_{t+2}...$ - C-operators.

Strongly Causal-operator - a_t depends only on $b_1b_2...b_i...$ (i < t) - SC -operators.

SC-operators = Player I strategy; C-operators = Player II strategy .

C-operators computable by finite automata, recursive C-operators.

$$\xrightarrow{I_{t} \dots I_{3}I_{2}I_{1}} F \xrightarrow{I \dots O_{t} \dots O_{3}O_{2}O_{1}}$$

Consider R_1 defined by If all I(t) = 0 then all O(t) = 0; otherwise all O(t) = 1.

$$\xrightarrow{I_t \dots I_3 I_2 I_1} F \xrightarrow{I \dots O_t \dots O_3 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_3 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_3 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_t \dots O_1 O_2 O_2 O_1} F \xrightarrow{I \dots O_t \dots O_t$$

Consider R_1 defined by If all I(t) = 0 then all O(t) = 0; otherwise all O(t) = 1.

 $\forall I \exists O \ R_1(I,O).$

Consider R_1 defined by If all I(t) = 0 then all O(t) = 0; otherwise all O(t) = 1.

 $\forall I \exists O \ R_1(I,O).$

Is it possible to implement R_1 by a causal operator?

$$\xrightarrow{\dots |_{t \dots |_{3}l_{2}l_{1}}} F \xrightarrow{\dots |_{t \dots |_{t \dots |_{3}l_{2}l_{1}}} F \xrightarrow{\dots |_{t \dots |_{t \dots |_{t \dots |_{3}l_{2}l_{1}}}} F \xrightarrow{\dots |_{t \dots |_{t$$

Consider R_1 defined by If all I(t) = 0 then all O(t) = 0; otherwise all O(t) = 1.

 $\forall I \exists O \ R_1(I,O).$

Is it possible to implement R_1 by a causal operator?

Consider R_2 defined by If infinitely often I(t) = 0 then infinitely often O(t) = 0

Consider R_1 defined by If all I(t) = 0 then all O(t) = 0; otherwise all O(t) = 1.

 $\forall I \exists O \ R_1(I,O).$

Is it possible to implement R_1 by a causal operator?

Consider R_2 defined by If infinitely often I(t) = 0 then infinitely often O(t) = 0

Is it possible to implement R_2 by a causal operator?

Consider R defined by the conjunction of three conditions on the input-output stream (I, O):

2 never
$$O(t) = O(t+1) = 0$$

③ If infinitely often I(t) = 0 then infinitely often O(t) = 0

Consider R defined by the conjunction of three conditions on the input-output stream (I, O):

2 never
$$O(t) = O(t+1) = 0$$

3 If infinitely often I(t) = 0 then infinitely often O(t) = 0

- Common-Sense Solution for input 1 produce output 1
 - **2** for input 0 produce
 - output 1 if last output was 0
 - output 0 if last output was 1

Consider R defined by the conjunction of three conditions on the input-output stream (I, O):

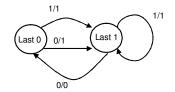
2 never
$$O(t) = O(t+1) = 0$$

3 If infinitely often I(t) = 0 then infinitely often O(t) = 0

Common-Sense Solution for input 1 produce output 1

If for input 0 produce

- output 1 if last output was 0
- output 0 if last output was 1



Can be described by a finite state automaton with output.

Consider R defined by the conjunction of three conditions on the input-output stream (I, O):

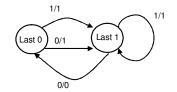
2 never
$$O(t) = O(t+1) = 0$$

3 If infinitely often I(t) = 0 then infinitely often O(t) = 0

Common-Sense Solution for input 1 produce output 1

If for input 0 produce

- output 1 if last output was 0
- output 0 if last output was 1



Can be described by a finite state automaton with output. Equivalently, can be defined by an MSO[<] formula $\Psi(X, Y)$.

February 7, 2024

7/39

Büchi-Landweber Theorem

In the examples the input-output specification R(I, O) can be formalized in the Monadic second-order logic of order (MSO[<]).

Theorem (Büchi-Landweber(69))

Let $\Psi(X,Y)$ be an MSO[<] formula.

- $\textbf{0} \quad Determinacy: \ exactly \ one \ of \ the \ following \ holds \ for \ \Psi$
 - There is a C-operator F such that $\omega \models \forall X. \ \Psi(X, F(X)).$
 - There is a SC-operator G such that $\omega \models \forall Y. \neg \Psi(G(Y), Y)$.
- 2 Decidability: it is decidable whether 1 (a) or 1 (b) holds.

Optimization Definability:

- If 1 (a) holds then there is an MSO[<] formula U that defines a C-operator which implements Ψ .
- Similarly for 1 (b).
- Computability: There is an algorithm such that for each MSO[<] formula Ψ(X,Y):
 - If 1 (a) holds, constructs an MSO[<] formula that defines F.
 - Similarly for 1 (b).

Church (Cornell 1957) does not explicitly restrict to finite state systems. He has a vague and general formulation about "logistic systems" and "circuits" and discussed infinite state systems.

"Given a requirement which a circuit is to satisfy, we may suppose the requirement expressed in some suitable logistic system which is an extension of restricted recursive arithmetic. The *synthesis problem* is then to find recursion equivalences representing a circuit that satisfies the given requirement (or alternatively, to determine that there is no such circuit)."

Church (Cornell 1957) does not explicitly restrict to finite state systems. He has a vague and general formulation about "logistic systems" and "circuits" and discussed infinite state systems.

"Given a requirement which a circuit is to satisfy, we may suppose the requirement expressed in some suitable logistic system which is an extension of restricted recursive arithmetic. The *synthesis problem* is then to find recursion equivalences representing a circuit that satisfies the given requirement (or alternatively, to determine that there is no such circuit)."

Following the Büchi-Landweber paper the community narrowed the view of Church's Problem to the finite-state case. Equivalently, to the MSO[<]-definable C-operators.

Trakhtenbrot (1995) suggested to lift the Classical Automata Theory from Discrete to Continuous Time.

Alex Rabinovich (joint with Daniel The Church Synthesis Problem over C February 7, 2024 10/39

The set of Non-Negative Reals $(\mathcal{R}^{\geq 0}, <)$ instead of $\omega = (Nat, <)$.

Alex Rabinovich (joint with Daniel The Church Synthesis Problem over C February 7, 2024 11/39

The set of Non-Negative Reals $(\mathcal{R}^{\geq 0}, <)$ instead of $\omega = (Nat, <)$.

MSO[<] has a natural interpretation over the non-negative reals $(\mathcal{R}^{\geq 0},<).$

The set of Non-Negative Reals $(\mathcal{R}^{\geq 0}, <)$ instead of $\omega = (Nat, <)$.

MSO[<] has a natural interpretation over the non-negative reals $(\mathcal{R}^{\geq 0},<).$

Unfortunately, the satisfiability problem for MSO[<] over the reals is undecidable (Shelah 1975).

The set of Non-Negative Reals $(\mathcal{R}^{\geq 0}, <)$ instead of $\omega = (Nat, <)$.

MSO[<] has a natural interpretation over the non-negative reals $(\mathcal{R}^{\geq 0},<).$

Unfortunately, the satisfiability problem for MSO[<] over the reals is undecidable (Shelah 1975).

Reasons - quantification over arbitrary predicates, e.g. P is True at the rationals and False at the irrationals.

The set of Non-Negative Reals $(\mathcal{R}^{\geq 0}, <)$ instead of $\omega = (Nat, <)$.

MSO[<] has a natural interpretation over the non-negative reals $(\mathcal{R}^{\geq 0},<).$

Unfortunately, the satisfiability problem for MSO[<] over the reals is undecidable (Shelah 1975).

Reasons - quantification over arbitrary predicates, e.g. P is True at the rationals and False at the irrationals.

In Computer Science, it is natural to restrict to finitely variable (non-Zeno) predicates,

The set of Non-Negative Reals $(\mathcal{R}^{\geq 0}, <)$ instead of $\omega = (Nat, <)$.

MSO[<] has a natural interpretation over the non-negative reals $(\mathcal{R}^{\geq 0},<).$

Unfortunately, the satisfiability problem for MSO[<] over the reals is undecidable (Shelah 1975).

Reasons - quantification over arbitrary predicates, e.g. P is True at the rationals and False at the irrationals.

In Computer Science, it is natural to restrict to finitely variable (non-Zeno) predicates,

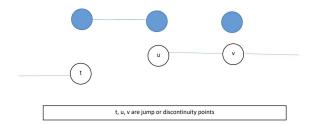
 $P \subseteq \mathcal{R}^{\geq 0}$ is a finitely variable (non-Zeno) predicate, if there is an unbounded sequence $0 = a_0 < a_1 < \cdots < a_i < \cdots$ such that P is constant on every interval (a_i, a_{i+1}) .

Finite Variability

A signal S a function from $\mathcal{R}^{\geq 0}$ to a finite alphabet Σ . A signal S is finitely variable if there is an unbounded sequence $0 = a_0 < a_1 < \cdots < a_i < \cdots$ such that P is constant on every interval (a_i, a_{i+1}) .

Finite Variability

A signal S a function from $\mathcal{R}^{\geq 0}$ to a finite alphabet Σ . A signal S is finitely variable if there is an unbounded sequence $0 = a_0 < a_1 < \cdots < a_i < \cdots$ such that P is constant on every interval (a_i, a_{i+1}) .



FVsig is the structure for MSO[<] over $(\mathcal{R}^{\geq 0}, <)$ with the finite variability predicates for the monadic variables.

FVsig is the structure for MSO[<] over $(\mathcal{R}^{\geq 0}, <)$ with the finite variability predicates for the monadic variables.

Theorem MSO[<] over FVsig is decidable.

 $F : FVsig \to FVsig$ is causal if for every t and S, the value of F(S) at t depends only on $S \upharpoonright [0, t]$. i.e., is independent from $S \upharpoonright (t, \infty)$.

 $F : FVsig \to FVsig$ is causal if for every t and S, the value of F(S) at t depends only on $S \upharpoonright [0, t]$. i.e., is independent from $S \upharpoonright (t, \infty)$.

 $F : FVsig \to FVsig$ is strongly causal if for every t and S, the value of F(S) at t depends only on $S \downarrow [0, t)$.

Church Synthesis Problems Continuous vs Discrete

Church Synthesis problem for Continuous time Input: an MSO[<] formula $\Psi(X, Y)$. Question: Is there is a C-operator F such that $\forall X. \Psi(X, F(X))$ holds in FVsig? Church Synthesis problem for Continuous time Input: an MSO[<] formula $\Psi(X, Y)$. Question: Is there is a C-operator F such that $\forall X. \ \Psi(X, F(X))$ holds in FVsig?

vs

Church Synthesis problem for Discrete time Input: an MSO[<] formula $\Psi(X, Y)$. Question: Is there is a C-operator F such that $\forall X. \Psi(X, F(X))$ holds in ω ?

Results for Continuous Time

The synthesis problem for continuous time is indeterminate. There exists an MSO[<] formula $\Psi(X, Y)$ such that

1 There is no C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

2 There is no SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

vs Discrete case

Theorem (Determinacy)

Let $\Psi(X,Y)$ be an MSO[<] formula. Exactly one of the following holds for Ψ

- There is a C-operator F such that $\omega \models \forall X. \Psi(X, F(X)).$
- There is a SC-operator G such that $\omega \models \forall Y. \neg \Psi(G(Y), Y)$.

Theorem (Dichotomy Fails)

There exists an MSO[<] formula $\Psi(X,Y)$ such that both

• There is a C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

2 There is a SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

There exists $\Psi(X, Y)$ such that

- **9** There is a C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$
- **2** There is no MSO[<]-definable C-operator F such that $FVsig \models \forall X. \ \Psi(X, F(X)).$

vs Discrete case

Theorem (Definability)

If there is a C-operator F such that $\omega \models \forall X. \Psi(X, F(X))$ holds, then there is an MSO[<]-definable C-operator which implements Ψ .

Two versions of the Church Synthesis Problem for Continuous Time

Input: an MSO[<] formula $\Psi(X, Y)$. Implementation Question: Is there is a C-operator F such that $\forall X. \ \Psi(X, F(X))$ holds in FVsig? Definable Implementation Question: Is there is an MSOdefinable C-operator F such that $\forall X. \ \Psi(X, F(X))$ holds in FVsig?

Theorem (Computability of Definable Synthesis)

Given an MSO[<] formula $\Psi(X, Y)$, it is decidable whether exists an MSO[<]-definable C-operator F such that $FVsig \models \forall X. \Psi(X, F(X))$ and if so, there is an algorithm that constructs an MSO[<] formula that defines F.

Theorem (Computability of Definable Synthesis)

Given an MSO[<] formula $\Psi(X, Y)$, it is decidable whether exists an MSO[<]-definable C-operator F such that $FVsig \models \forall X. \Psi(X, F(X))$ and if so, there is an algorithm that constructs an MSO[<] formula that defines F.

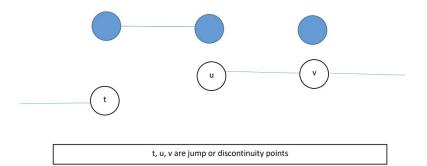
Theorem (Decidability of Synthesis)

Given an MSO[<] formula $\Psi(X, Y)$, it is decidable whether exists a *C*-operator F such that $FVsig \models \forall X. \ \Psi(X, F(X)).$

Proofs

ъ

ъ



The signal is constant on the intervals [t, u] and (u, v).

Alex Rabinovich (joint with Daniel The Church Synthesis Problem over 🤇

February 7, 2024 23 / 39

There exists an MSO[<] formula $\Psi(X,Y)$ such that

- There is no C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$
- **2** There is no SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

There exists an MSO[<] formula $\Psi(X, Y)$ such that

• There is no C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

2 There is no SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

 $\Psi(X,Y) := \exists t > 0.Y$ is not continuous at t and X is constant at (0,t].

There exists an MSO[<] formula $\Psi(X, Y)$ such that

• There is no C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

2 There is no SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

 $\Psi(X,Y) := \exists t > 0.Y$ is not continuous at t and X is constant at (0,t].

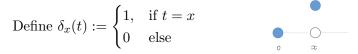
Define
$$\delta_x(t) := \begin{cases} 1, & \text{if } t = x \\ 0 & \text{else} \end{cases}$$

There exists an MSO[<] formula $\Psi(X, Y)$ such that

1 There is no C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

2 There is no SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

 $\Psi(X,Y) := \exists t > 0.Y$ is not continuous at t and X is constant at (0,t].



If an C-operator F implements Ψ , then $Y_{\delta_2} := F(\delta_2)$ is not continuous at some $b \in (0, 2)$.

There exists an MSO[<] formula $\Psi(X, Y)$ such that

1 There is no C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

2 There is no SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

 $\Psi(X,Y) := \exists t > 0.Y$ is not continuous at t and X is constant at (0,t].

Define
$$\delta_x(t) := \begin{cases} 1, & \text{if } t = x \\ 0 & \text{else} \end{cases}$$

If an C-operator F implements Ψ , then $Y_{\delta_2} := F(\delta_2)$ is not continuous at some $b \in (0, 2)$. Let b > 0 be the minimal discontinuity of Y_{δ_2} .

There exists an MSO[<] formula $\Psi(X,Y)$ such that

- **1** There is no C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$
- **2** There is no SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

 $\Psi(X,Y) := \exists t > 0.Y$ is not continuous at t and X is constant at (0,t].

Define
$$\delta_x(t) := \begin{cases} 1, & \text{if } t = x \\ 0 & \text{else} \end{cases}$$

If an C-operator F implements Ψ , then $Y_{\delta_2} := F(\delta_2)$ is not continuous at some $b \in (0, 2)$. Let b > 0 be the minimal discontinuity of Y_{δ_2} . $F(\delta_b)$ is not continuous at c < b. But δ_b and δ_2 are 0 on [0, c], hence $F(\delta_b) = F(\delta_2)$ on [0, c] - contradiction $1 = F(\delta_b)(c) \neq 0 = F(\delta_2)(c)$.

Figure: δ_x

Alex Rabinovich (joint with Daniel The Church Synthesis Problem over C February 7, 2024 25/39

Figure: δ_x

$\Psi(X,Y) := \exists t > 0.Y$ jumps at t and X is constant at (0,t]

Alex Rabinovich (joint with Daniel The Church Synthesis Problem over C February 7, 2024 25/39

Figure: δ_x

 $\Psi(X,Y):=\exists t>0.Y$ jumps at t and X is constant at (0,t] For no SC-operator G

 $\forall Y \neg \Psi(G(Y), Y).$

Figure: δ_x

 $\Psi(X,Y) := \exists t > 0.Y \text{ jumps at } t \text{ and } X \text{ is constant at } (0,t]$ For no SC-operator G

 $\forall Y \neg \Psi(G(Y),Y).$

 $G(\delta_2)$ cannot be constant on (0, b) for no b > 2.

Figure: δ_x

 $\Psi(X,Y) := \exists t > 0.Y \text{ jumps at } t \text{ and } X \text{ is constant at } (0,t]$ For no SC-operator G

 $\forall Y \neg \Psi(G(Y), Y).$

 $G(\delta_2)$ cannot be constant on (0, b) for no b > 2. Hence, it jumps at some (minimal) $c \in (0, 2]$.

Figure: δ_x

 $\Psi(X,Y) := \exists t > 0.Y \text{ jumps at } t \text{ and } X \text{ is constant at } (0,t]$ For no SC-operator G

 $\forall Y \neg \Psi(G(Y), Y).$

 $G(\delta_2)$ cannot be constant on (0, b) for no b > 2. Hence, it jumps at some (minimal) $c \in (0, 2]$.

 $G(\delta_{\frac{c}{2}})$ jumps at some $d \leq \frac{c}{2}$.

Figure: δ_x

 $\Psi(X,Y) := \exists t > 0.Y \text{ jumps at } t \text{ and } X \text{ is constant at } (0,t]$ For no SC-operator G

 $\forall Y \neg \Psi(G(Y), Y).$

 $G(\delta_2)$ cannot be constant on (0, b) for no b > 2. Hence, it jumps at some (minimal) $c \in (0, 2]$.

 $G(\delta_{\frac{c}{2}})$ jumps at some $d \leq \frac{c}{2}$.

 δ_2 and $\delta_{\frac{c}{2}}$ coincide on $[0, \frac{c}{2})$,

Figure: δ_x

 $\Psi(X,Y) := \exists t > 0.Y \text{ jumps at } t \text{ and } X \text{ is constant at } (0,t]$ For no SC-operator G

 $\forall Y \neg \Psi(G(Y), Y).$

 $G(\delta_2)$ cannot be constant on (0, b) for no b > 2. Hence, it jumps at some (minimal) $c \in (0, 2]$.

 $G(\delta_{\frac{c}{2}})$ jumps at some $d \leq \frac{c}{2}$.

 δ_2 and $\delta_{\frac{c}{2}}$ coincide on $[0, \frac{c}{2})$, however, $G(\delta_{\frac{c}{2}})$ differs from $G(\delta_2)$ at $d \leq \frac{c}{2}$. Contradicts that G is SC.

Theorem (Dichotomy Fails)

There exists an MSO[<] formula $\Psi(X,Y)$ such that both

() There is a C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

2 There is a SC-operator G such that $FVsig \models \forall Y. \neg \Psi(G(Y), Y)$.

Proof is elementary $\Psi \cdots$

There exists $\Psi(X, Y)$ such that

- There is no MSO[<]-definable C-operator F such that $FVsig \models \forall X. \ \Psi(X, F(X)).$
- **2** There is a C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

There exists $\Psi(X, Y)$ such that

• There is no MSO[<]-definable C-operator F such that $FVsig \models \forall X. \ \Psi(X, F(X)).$

2 There is a C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

A bijection $\rho : \mathcal{R}^{\geq 0} \to \mathcal{R}^{\geq 0}$ is an automorphism if it is order preserving.

There exists $\Psi(X, Y)$ such that

• There is no MSO[<]-definable C-operator F such that $FVsig \models \forall X. \ \Psi(X, F(X)).$

2 There is a C-operator F such that $FVsig \models \forall X. \Psi(X, F(X)).$

A bijection $\rho : \mathcal{R}^{\geq 0} \to \mathcal{R}^{\geq 0}$ is an automorphism if it is order preserving.

Claim. If ρ is an automorphism, and $\Psi(P,Q)$ then $\Psi(\rho P, \rho Q)$.

• There is t > 0 such that Y is zero on [0, t) and Y is one on $[t, \infty)$.

• There is t > 0 such that Y is zero on [0, t) and Y is one on $[t, \infty)$. This specification is easily formalized in MSO[<].

• There is t > 0 such that Y is zero on [0, t) and Y is one on $[t, \infty)$. This specification is easily formalized in MSO[<].

Claim. There is a C-operator that implements Ψ .

• There is t > 0 such that Y is zero on [0, t) and Y is one on $[t, \infty)$. This specification is easily formalized in MSO[<].

Claim. There is a C-operator that implements Ψ .

Lemma. If $\Phi(X, Y)$ defines an operator and $\Phi(P, Q)$ then Q jumps at t > 0 only if P jumps at t.

• There is t > 0 such that Y is zero on [0, t) and Y is one on $[t, \infty)$. This specification is easily formalized in MSO[<].

Claim. There is a C-operator that implements Ψ .

Lemma. If $\Phi(X, Y)$ defines an operator and $\Phi(P, Q)$ then Q jumps at t > 0 only if P jumps at t.

Hence, No MSO[<]-definable operator implements Ψ .

Indeed, take the input constant everywhere.

Lemma. If $\Phi(X, Y)$ defines an operator and $\Phi(P, Q)$ then Q jumps at t > 0 only if P jumps at t.

Assume F is definable by $\Phi(X, Y)$. Assume that $\Phi(P, Q)$ and Q jumps at t > 0.

If P does not jump at t there are $t_1 < t < t_2$ such that P is constant in $[t_1, t_2]$, and t is the only jump of Q in $[t_1, t_2]$.

Lemma. If $\Phi(X, Y)$ defines an operator and $\Phi(P, Q)$ then Q jumps at t > 0 only if P jumps at t.

Assume F is definable by $\Phi(X, Y)$. Assume that $\Phi(P, Q)$ and Q jumps at t > 0.

If P does not jump at t there are $t_1 < t < t_2$ such that P is constant in $[t_1, t_2]$, and t is the only jump of Q in $[t_1, t_2]$.

Take an automorphism ρ that is identity outside $[t_1.t_2]$ and moves t to $t' \neq t$, for $t' \in (t_1, t_2)$.

Lemma. If $\Phi(X, Y)$ defines an operator and $\Phi(P, Q)$ then Q jumps at t > 0 only if P jumps at t.

Assume F is definable by $\Phi(X, Y)$. Assume that $\Phi(P, Q)$ and Q jumps at t > 0. If P does not imposed to the end of th

If P does not jump at t there are $t_1 < t < t_2$ such that P is constant in $[t_1, t_2]$, and t is the only jump of Q in $[t_1, t_2]$.

Take an automorphism ρ that is identity outside $[t_1.t_2]$ and moves t to $t' \neq t$, for $t' \in (t_1, t_2)$.

 $\rho(P)=P,\,Q_1:=\rho(Q)\neq Q,\,\text{and}\,\,\Phi(P,Q)\text{ holds}.$

Lemma. If $\Phi(X, Y)$ defines an operator and $\Phi(P, Q)$ then Q jumps at t > 0 only if P jumps at t.

Assume F is definable by $\Phi(X, Y)$. Assume that $\Phi(P, Q)$ and Q jumps at t > 0. If P does not imposed to there are t < t < t and that P is constant in

If P does not jump at t there are $t_1 < t < t_2$ such that P is constant in $[t_1, t_2]$, and t is the only jump of Q in $[t_1, t_2]$.

Take an automorphism ρ that is identity outside $[t_1.t_2]$ and moves t to $t' \neq t$, for $t' \in (t_1, t_2)$.

 $\rho(P) = P, Q_1 := \rho(Q) \neq Q$, and $\Phi(P,Q)$ holds. Hence $\Phi(P,Q_1)$ holds - contradicts that Φ defines an operator.

FV Signals and Timed ω -sequences

Let $\hat{t} := 0 = t_0 < t_1 < \cdots t_i < \cdots$ be an unbounded ω -sequence of reals and $\hat{s} = (a_0, b_0)(a_1, b_1) \cdots$ be an ω string over $\Sigma \times \Sigma$. The signal X represented by (\hat{t}, \hat{s}) is defined as follows: $X(t_i) := a_i$ and $X(t) := b_i$ for $t \in (t_i, t_{i+1})$.

Let $\hat{t} := 0 = t_0 < t_1 < \cdots t_i < \cdots$ be an unbounded ω -sequence of reals and $\hat{s} = (a_0, b_0)(a_1, b_1) \cdots$ be an ω string over $\Sigma \times \Sigma$. The signal X represented by (\hat{t}, \hat{s}) is defined as follows: $X(t_i) := a_i$ and $X(t) := b_i$ for $t \in (t_i, t_{i+1})$.

It is clear a signal is represented iff it is finitely variable signal.

Let $\hat{t} := 0 = t_0 < t_1 < \cdots t_i < \cdots$ be an unbounded ω -sequence of reals and $\hat{s} = (a_0, b_0)(a_1, b_1) \cdots$ be an ω string over $\Sigma \times \Sigma$. The signal X represented by (\hat{t}, \hat{s}) is defined as follows: $X(t_i) := a_i$ and $X(t) := b_i$ for $t \in (t_i, t_{i+1})$.

It is clear a signal is represented iff it is finitely variable signal.

 $(\widehat{t},\widehat{s})$ is called a timed ω sequence; \widehat{t} is its scale and \widehat{s} its ω string.

Let $\hat{t} := 0 = t_0 < t_1 < \cdots t_i < \cdots$ be an unbounded ω -sequence of reals and $\hat{s} = (a_0, b_0)(a_1, b_1) \cdots$ be an ω string over $\Sigma \times \Sigma$. The signal X represented by (\hat{t}, \hat{s}) is defined as follows: $X(t_i) := a_i$ and $X(t) := b_i$ for $t \in (t_i, t_{i+1})$.

It is clear a signal is represented iff it is finitely variable signal.

 $(\widehat{t},\widehat{s})$ is called a timed ω sequence; \widehat{t} is its scale and \widehat{s} its ω string.

Let *L* be an ω language over $\Sigma \times \Sigma$. To *L* corresponds a set *S* of FV signals over Σ defined as $X \in S$ there is \hat{t} and there is $\hat{s} \in L$ such that (\hat{s}, \hat{t}) represents *X*.

Let $\hat{t} := 0 = t_0 < t_1 < \cdots t_i < \cdots$ be an unbounded ω -sequence of reals and $\hat{s} = (a_0, b_0)(a_1, b_1) \cdots$ be an ω string over $\Sigma \times \Sigma$. The signal X represented by (\hat{t}, \hat{s}) is defined as follows: $X(t_i) := a_i$ and $X(t) := b_i$ for $t \in (t_i, t_{i+1})$.

It is clear a signal is represented iff it is finitely variable signal.

 $(\widehat{t},\widehat{s})$ is called a timed ω sequence; \widehat{t} is its scale and \widehat{s} its ω string.

Let *L* be an ω language over $\Sigma \times \Sigma$. To *L* corresponds a set *S* of FV signals over Σ defined as $X \in S$ there is \hat{t} and there is $\hat{s} \in L$ such that (\hat{s}, \hat{t}) represents *X*.

We say that S is represented by L.

Theorem

A FV signal language is MSO[<] definable (over $(\mathcal{R}^{\geq 0}, <)$) iff it is represented by an MSO[<] -definable ω languages.

Corollary

A FV signal language is MSO[<] definable iff it is represented by an ω language accepted by a deterministic parity automaton.

Theorem (Computability of Definable Synthesis)

Given an MSO[<] formula $\Psi(X, Y)$, it is decidable whether exists an MSO[<]-definable C-operator F such that $FVsig \models \forall X. \Psi(X, F(X))$ and if so, there is an algorithm that constructs an MSO[<] formula that defines F.

Theorem (Computability of Definable Synthesis)

Given an MSO[<] formula $\Psi(X, Y)$, it is decidable whether exists an MSO[<]-definable C-operator F such that $FVsig \models \forall X. \Psi(X, F(X))$ and if so, there is an algorithm that constructs an MSO[<] formula that defines F.

A proof is similar to the Buchi - Landwerber proof for Discrete time. It relies on ω -Games over finite boards.

Theorem (Computability of Definable Synthesis)

Given an MSO[<] formula $\Psi(X, Y)$, it is decidable whether exists an MSO[<]-definable C-operator F such that $FVsig \models \forall X. \Psi(X, F(X))$ and if so, there is an algorithm that constructs an MSO[<] formula that defines F.

A proof is similar to the Buchi - Landwerber proof for Discrete time. It relies on ω -Games over finite boards.

There are some subtleties.

E.g. If Input player makes a move that does not make a jump in the corresponding signal, then the Output player is not allowed to make a move that creates a jump.

Theorem (Decidability of Synthesis)

Given an MSO[<] formula $\Psi(X, Y)$, it is decidable whether exists a *C*-operator F such that $FVsig \models \forall X. \ \Psi(X, F(X)).$

Theorem (Decidability of Synthesis)

Given an MSO[<] formula $\Psi(X, Y)$, it is decidable whether exists a *C*-operator F such that $FVsig \models \forall X. \ \Psi(X, F(X)).$

Proof is based to a reduction to ω -games. However, even the alphabet of this games is uncountable.

Round 0:

 \mathcal{I} set $t_0 := 0$. Then \mathcal{I} chooses a_0 . \mathcal{O} chooses b_0 . This defines X and Y on the interval $[0, t_0] = [0, 0]$.

Round n+1:

(A) \mathcal{I} chooses a_{n+1}^d such that X will have this value for a while after t_n . (B) \mathcal{O} replies by suggesting an output signal Sig_{n+1} on the interval (t_n, ∞) under the condition that the input has the value a_{n+1}^d on all points of this interval.

(C) \mathcal{I} either agrees and then games ends with the signals defined on $[0, \infty)$, or set $t_{n+1} > t_n$, agrees that on the points of (t_n, t_{n+1}) the input has value a_{n+1}^d and the output is the same as Sig_{n+1} on (t_n, t_{n+1}) , and \mathcal{I} will define a jump point at t_{n+1} . (D) \mathcal{I} chooses a value a_{n+1} for the input signal at t_{n+1} , and \mathcal{O} replies by choosing b_{n+1} for the output at t_{n+1} . Now, input and output are defined on $[0, t_{n+1}]$ and a new round starts.

35 / 39

The winning condition for \mathcal{O} :

If $\lim_n t_n < \infty$ then \mathcal{O} wins. If $\lim_n t_n = \infty$ then the play has defined the input X and output Y on all points of $[0, \infty)$, and \mathcal{O} wins iff $\Psi(X, Y)$ holds.

The winning condition for \mathcal{O} :

If $\lim_n t_n < \infty$ then \mathcal{O} wins.

If $\lim_n t_n = \infty$ then the play has defined the input X and output Y on all points of $[0, \infty)$, and \mathcal{O} wins iff $\Psi(X, Y)$ holds.

Theorem

Let Ψ be an MSO[<] formula. Player \mathcal{O} wins iff there is a C operators that implements Ψ .

The winning condition for \mathcal{O} :

If $\lim_n t_n < \infty$ then \mathcal{O} wins.

If $\lim_n t_n = \infty$ then the play has defined the input X and output Y on all points of $[0, \infty)$, and \mathcal{O} wins iff $\Psi(X, Y)$ holds.

Theorem

Let Ψ be an MSO[<] formula. Player \mathcal{O} wins iff there is a C operators that implements Ψ .

In the game each player has uncountable many possible move at each round i > 0. Our main technical results reduce this game to a game with finitely many moves at each round, and further reduce it to a parity game on a finite arena.

Simple Strategies

Let $\rho := (\hat{t}, \hat{s})$ be a timed sequence.

A timed sequence is simple if its untimed version \hat{s} is ultimately periodic and its time scale is uniform $(t_i := \Delta \times i \text{ for some } \Delta \text{ and all } i)$. A simple move - move that uses a simple sequence.

Simple Strategies

Let $\rho := (\widehat{t}, \widehat{s})$ be a timed sequence.

A timed sequence is simple if its untimed version \hat{s} is ultimately periodic and its time scale is uniform $(t_i := \Delta \times i \text{ for some } \Delta \text{ and all } i)$. A simple move - move that uses a simple sequence.

Lemma

 \mathcal{O} has a winning strategy iff there is a finite set U of ultimately periodic strings such that \mathcal{O} has a winning strategy which uses only simple moves with strings from U.

Simple Strategies

Let $\rho := (\hat{t}, \hat{s})$ be a timed sequence.

A timed sequence is simple if its untimed version \hat{s} is ultimately periodic and its time scale is uniform $(t_i := \Delta \times i \text{ for some } \Delta \text{ and all } i)$. A simple move - move that uses a simple sequence.

Lemma

 \mathcal{O} has a winning strategy iff there is a finite set U of ultimately periodic strings such that \mathcal{O} has a winning strategy which uses only simple moves with strings from U.

Moreover, at *i*-th move \mathcal{O} uses the timescale $\frac{1}{2i}$.

Let $\rho := (\widehat{t}, \widehat{s})$ be a timed sequence.

A timed sequence is simple if its untimed version \hat{s} is ultimately periodic and its time scale is uniform $(t_i := \Delta \times i \text{ for some } \Delta \text{ and all } i)$. A simple move - move that uses a simple sequence.

Lemma

 \mathcal{O} has a winning strategy iff there is a finite set U of ultimately periodic strings such that \mathcal{O} has a winning strategy which uses only simple moves with strings from U. Moreover, at *i*-th move \mathcal{O} uses the timescale $\frac{1}{2^i}$.

This restricted games can be converted to memoryless restricted games over finite arenas.

37/39

Let $\rho := (\widehat{t}, \widehat{s})$ be a timed sequence.

A timed sequence is simple if its untimed version \hat{s} is ultimately periodic and its time scale is uniform $(t_i := \Delta \times i \text{ for some } \Delta \text{ and all } i)$. A simple move - move that uses a simple sequence.

Lemma

 \mathcal{O} has a winning strategy iff there is a finite set U of ultimately periodic strings such that \mathcal{O} has a winning strategy which uses only simple moves with strings from U. Moreover, at *i*-th move \mathcal{O} uses the timescale $\frac{1}{2^i}$.

This restricted games can be converted to memoryless restricted games over finite arenas.

Hence, decidability.

Alex Rabinovich (joint with Daniel The Church Synthesis Problem over C February 7, 2024 38/39

メロト メタト メヨト メヨト

Metrical Extensions - add +1 function. Unfortunately, even FO[<, +1] is undecidable.

Alex Rabinovich (joint with Daniel The Church Synthesis Problem over C February 7, 2024 39/39

Unfortunately, even FO[<, +1] is undecidable.

Restricted metric properties.

"P will happen at distance at most 1 from t." MITL logic.

Unfortunately, even FO[<, +1] is undecidable.

Restricted metric properties.

"P will happen at distance at most 1 from t." MITL logic.

Is the Church synthesis decidable for MITL specifications?

Unfortunately, even FO[<, +1] is undecidable.

Restricted metric properties.

"P will happen at distance at most 1 from t." MITL logic.

Is the Church synthesis decidable for MITL specifications?

THANK YOU