
Theory of Computation 4
Non-Deterministic Finite Automata

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 4 Non-Deterministic Finite Automata – p. 1

Repetition 1 – DFA

0start 1

2

0,3,6,9
1,4,7

2,5,8

2,5,8

0,3,6,9

1,4,7

1,4,7
2,5,8

0,3,6,9

Also representations as tables or computer programs.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 2

Repetition 2

Theorem 3.9: Block Pumping Lemma
If L is a regular set then there is a constant k such that for
all strings u0,u1, . . . ,uk with u0u1 . . .uk ∈ L there are i, j
with 0 < i < j ≤ k and

(u0u1 . . .ui−1) · (uiui+1 . . .uj−1)
∗ · (ujuj+1 . . .uk) ⊆ L.

Theorem 3.11 [Ehrenfeucht, Parikh and Rozenberg 1981]
A language L is regular if and only if both L and the
complement of L satisfy the Block Pumping Lemma.

Lemma 3.21 [Jaffe 1978]
A language L ⊆ Σ∗ is regular iff there is a constant k such

that for all x ∈ Σ∗ and y ∈ Σk there are u,v,w with y = uvw

and v 6= ε such that, for all h, Lxuvhw = Lxy;

that is, ∀h ∈ N ∀z ∈ Σ∗ [L(xuvhwz) = L(xyz)].

Theory of Computation 4 Non-Deterministic Finite Automata – p. 3

Repetition 3 – Derivatives

Given a language L, let Lx = {y : x · y ∈ L} be the
derivative of L at x.

Theorem 3.17 [Myhill and Nerode].
A language L is regular iff L has only finitely many
derivatives.

If L has k derivatives, one can make a dfa recognising L.
The states are strings x1,x2, . . . ,xk representing the
derivatives Lx1

,Lx2
, . . . ,Lxk

.
The transition rule δ(xi, a) is the unique xj with Lxj

= Lxia.

The starting state is the unique state xi with Lxi
= L.

A state xi is accepting iff ε ∈ Lxi
iff xi ∈ L.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 4

Repetition 4 – Minimal DFA

Minimise dfa (Q,Σ, δ, s,F)
Construct Set R of Reacheable States: R = {s};

While there are q ∈ R and a ∈ Σ with δ(q, a) /∈ R Do Begin
R = R ∪ {δ(q, a)} End.

Identify Distinguishable States γ:
Initialise γ = {(q,p) : exactly one of p,q is accepting};
While ∃(p,q) ∈ R×R− γ, a ∈ Σ [(δ(p, a), δ(q, a)) ∈ γ] Do
Begin γ = γ ∪ {(p,q), (q,p)} End.

Q′ = {r ∈ R : ∀p < r [γ(p, r) or r /∈ R]};
δ′(q, a) is the unique p ∈ Q′ with (p, δ(q, a)) /∈ γ;
s′ is the unique s′ ∈ Q′ with (s, s′) /∈ γ;
F′ = F ∩Q′.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 5

Motivation

Example 4.1
Let n = |Σ| and L = {w : ∃a ∈ Σ [a occurs in w at least
twice]}.

By the Theorem of Myhill and Nerode, a dfa for L needs
2n + 1 states, as the language has 2n + 1 derivatives:
If x ∈ L then Lx = Σ∗;
if x /∈ L then ε /∈ Lx and Lx ∩Σ = {a : a occurs in x}.

Dfa with states A ⊆ Σ plus final state #; Starting state ∅;
If a ∈ A then δ(A, a) = # else δ(A, a) = A ∪ {a};
δ(#, a) = # for all a ∈ Σ.

Can one do better with some other mechanism?

Theory of Computation 4 Non-Deterministic Finite Automata – p. 6

Non-Deterministic Finite Automaton

If (Q,Σ, δ, s,F) is a non-deterministic finite automaton (nfa)
then δ is a relation and not a function, that is, for q ∈ Q and
a ∈ Σ there can be several p ∈ Q with (q, a,p) ∈ δ.

A run of an nfa on a word a1a2 . . . an is a sequence
q0q1q2 . . .qn ∈ Q∗ such that q0 = s and
(qm, am+1,qm+1) ∈ δ for all m < n.

If qn ∈ F then the run is “accepting” else the run is
“rejecting”.

The nfa accepts a word w iff it has an accepting run on w;
this is also the case if there exist other rejecting runs.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 7

Example 4.3

Language of all words with at least four letters and at most
four ones.

sstart o p q r

0 0 0 0 0

0,1 0,1 0,1 0,1

Input 00111: Accepting runs s (0) s (0)o (1)p (1)q (1) r and
s (0)o (0)o (1)p (1)q (1) r; the rejecting run
s (0) s (0) s (1)o (1)p (1)q is not relevant.

Input 11111: No accepting run; only possible run
s (1)o (1)p (1)q (1) r (1) ... gets stuck.

Input 000: No run reaches accepting state r in time,
s (0)o (0)p (0)q is fastest run and falls short of final state.

Quiz: How many runs for 1001001 are accepting?
Theory of Computation 4 Non-Deterministic Finite Automata – p. 8

Exponential Improvement

The language from Example 4.1 has an nfa with n+ 2

states while a dfa needs 2n + 1 states; here for n = 4.

∅start

{1}{0} {2} {3}

#

0,1,2,3

0 1 2

3

1,2,3 0,2,3 0,1,3 0,1,2

0,1,2,3

0 1 2

3

Theory of Computation 4 Non-Deterministic Finite Automata – p. 9

Büchi’s Powerset Construction

Given an nfa, one let for given state q and symbol a the set
δ(q, a) denote all states q′ to which the nfa can transit from
q on symbol a.

Theorem 4.5 [Büchi; Rabin and Scott]
For each nfa (Q,Σ, δ, s,F) with n = |Q| states, there is an
equivalent dfa ({Q′ : Q′ ⊆ Q},Σ, δ′, {s},F′) with 2n states
such that F′ = {Q′ ⊆ Q : Q′ ∩ F 6= ∅} and
∀Q′ ⊆ Q ∀a ∈ Σ [δ′(Q′, a) =

⋃

q′∈Q δ(q′, a)

= {q′′ ∈ Q : ∃q′ ∈ Q′ [q′′ ∈ δ(q′, a)]}].

As the number of states is often overshooting, it is good to
minimise the resulting automaton with the algorithm of
Myhill and Nerode.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 10

Verification

It is easy to see that δ′ is indeed a deterministic transition
function.

Let w = a1a2 . . . am be a word. Now let Q0 = {s} and, for
k = 0,1, . . . ,m− 1, Qk+1 = δ′(Qk, ak+1) be the run
(sequence of states) of the dfa while processing w.

If the dfa accepts w then there is qm ∈ Qm ∩ F and one can
select, for k = m− 1,n− 2, . . . ,1,0, states qk ∈ Qk with
qk+1 ∈ δ(qk, ak). It follows that q0 q1 . . . qm is an accepting
run for the nfa.

If the nfa accepts w with an accepting run q0 q1 . . . qm then
q0 = s, q0 ∈ Q0 and, for k = 0,1, . . . ,m− 1, it follows from
qk ∈ Qk that qk+1 ∈ δ(qk, ak+1) and thus qk+1 ∈ Qk+1.
Thus qm ∈ Qm ∩ F and the run of the dfa is accepting as
well.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 11

Example 4.6

Consider nfa ({s,q}, {0,1}, δ, s, {q}) with δ(s,0) = {s,q},
δ(s,1) = {s} and δ(q, a) = ∅ for all a ∈ {0,1}.

Then the corresponding dfa has the four states
∅, {s}, {q}, {s,q} where {q}, {s,q} are the final states and
{s} is the initial state. The transition function δ′ of the dfa is
given as

δ′(∅, a) = ∅ for a ∈ {0,1},
δ′({s},0) = {s,q}, δ′({s},1) = {s},
δ′({q}, a) = ∅ for a ∈ {0,1},
δ′({s,q},0) = {s,q}, δ′({s,q},1) = {s}.

This automaton can be further optimised: The states ∅ and
{q} are never reached, hence they can be omitted from the
dfa.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 12

Exercises

Exercise 4.7
Consider the language {0,1}∗ · 0 · {0,1}n−1:
(a) Show that a dfa recognising it needs at least 2n states;
(b) Make an nfa recognising it with at most n+ 1 states;
(c) Made a dfa recognising it with exactly 2n states.

Exercise 4.8
Find a characterisation when a regular language L is
recognised by an nfa only having accepting states.
Examples of such languages are {0,1}∗, 0∗1∗2∗ and
{1,01,001}∗ · 0∗. The language {00,11}∗ is not a language
of this type.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 13

Set of Initial States

Assume that (Q,Σ, δ, I,F) has a set I of possible initial
states and an accepting run is any run starting in one
member of I and finishing in one member of F. Here an
example for 0∗1∗ ∪ 2∗3∗.

0∗start 0∗1+
1

0
1

2∗start 2∗3+
3

2
3

Theory of Computation 4 Non-Deterministic Finite Automata – p. 14

Traditional NFA

One needs only to add one state to get a traditional nfa.

εstart 0+ 0∗1+ 2+ 2∗3+
0

1
2

3

1 3

0
1

2
3

One new starting state is added and the transitions from old
starting states to successor states are now done from the
new starting state directly.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 15

Matching Exponential Bounds

Exercise 4.10. Consider L = {w ∈ Σ∗ : some a ∈ Σ does
not occur in w}.

Show that there is an nfa with an initial set of states which
recognises L using |Σ| states.

Show that every complete dfa recognising L needs 2|Σ|

states; here complete means that the dfa never gets stuck.

Exercise 4.11. Let ({q0,q1, . . . ,qn−1}, {0,1}, δ,q0, {q0}) be
an nfa with δ allowing on 1 to go from qm to q(m+1)modn

and on 0 to go from qm with m > 0 to either q0 or qm. One
cannot go to any state from q0 on 0. Determine the number
of states of an equivalent complete and minimal dfa.
Explain how this number of states is found.

Exercise 4.12. Show that a dfa equivalent to an nfa with two
states over alphabet {0} needs at most three states.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 16

Regular Grammar to NFA

Theorem 4.13
Every language generated by a regular grammar is also
recognised by an nfa.

Let (N,Σ,P,S) be a grammar generating L.
Normalisations:

• Replace in N each rule A → w with w ∈ Σ+

by A → wB, B → ε for new non-terminal B;

• Replace in N each rule A → a1a2 . . . anB
by new rules A → a1C1, C1 → a2C2, . . ., Cn−1 → anB

for new non-terminals C1,C2, . . . ,Cn−1.

Now make nfa (N,Σ, δ,S,F) with δ(A, a) = {B : A ⇒∗ aB}
and F = {C ∈ N : C ⇒∗ ε}.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 17

Example for Grammar to NFA

Example 4.14
L = 0123∗.

Grammar ({S,T}, {0,1,2},P,S) with rules
P = {S → 012|012T,T → 3T|3}.

Updated to grammar with non-terminals
N = {S,S′,S′′,S′′′,T,T′} and rules S → 0S′, S′ → 1S′′,
S′′ → 2S′′′|2T, S′′′ → ε, T → 3T|3T′, T′ → ε.

NFA (N, {0,1,2,3}, δ,S, {S′′′,T′}) with δ(S,0) = {S′},
δ(S′,1) = {S′′}, δ(S′′,2) = {S′′′,T}, δ(T,3) = {T,T′} and
δ(A, a) = ∅ in all other cases.

Accepting run for 012 is S (0)S′ (1)S′′ (2)S′′′ and for
012333 is S (0)S′ (1)S′′ (2)T (3)T (3)T (3)T′.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 18

Exercises for Grammar to NFA

Exercise 4.15
Let the regular grammar ({S,T}, {0,1,2},P,S) with the
rules P being S → 01T|20S, T → 01|20S|12T. Construct a
non-deterministic finite automaton recognising the
language generated by this grammar.

Exercise 4.16
Let L be generated by the regular grammar
({S}, {0,1,2,3,4,5,6,7,8,9},P,S) where the rules in P are
all the rules of the form S → aaaaaS for some digit a and the
rule S → ε. What is the minimum number of states of a
non-deterministic finite automaton recognising L? What is
the trade-off of the nfa compared to the minimal dfa for L?
Prove your answers.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 19

Corollary 4.17: Regular

The following statements are all equivalent to “L is regular”:

(a) L is generated by a regular expression;

(b) L is generated by a regular grammar;

(c) L is recognised by a deterministic finite automaton;

(d) L is recognised by a non-deterministic finite
automaton;

(e) L and Σ∗ − L both satisfy the Block Pumping Lemma;

(f) L satisfies Jaffe’s Matching Pumping Lemma;

(g) L has only finitely many derivatives.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 20

Size of Expressions

Example 4.18
The language

L =
⋃

m<n

({0,1}m · {1} · {0,1}∗ · {10m})

can be written down in O(n2) symbols as a regular
expression but the corresponding dfa has at least 2n states:
if x has n digits then 10m ∈ Lx iff the m-th digit of x is 1.

Note that {0,1}2 is written as {0,1} · {0,1} and {0,1}3 is
written as {0,1} · {0,1} · {0,1} in the regular expression and
so on; this permits to keep the quadratic bound. The
expression uses finite sets of strings, union, concatenation
and star only.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 21

Unary Alphabet

Theorem 4.19
Let p1,p2,p3, . . . be the prime numbers in ascending order.

The language Ln = {0p1}+ ∩ {0p2}+ ∩ . . . ∩ {0pn}+ has a
regular expression which can be written down with

approximately O(n2 log(n)) symbols if one can use
intersection. However, every nfa recognising Ln has at least
2n states and every regular expression for Ln only using
union, concatenation and Kleene star needs at least 2n

symbols.

The expression - when written 000 in place of 03 and so on

– has length O(n2 log(n)) and shortest word has length
p1 · p2 · . . . · pn ≥ 2n. Shortest word recognised by nfa
cannot be longer as the number of states, as in the
accepting run, no state is repeated. Thus nfa has at least
2n states.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 22

Length of Shortest Word

Proposition
If a regular expression σ uses only lists of members, union,
concatenation and Kleene star, then the shortest word
sw(σ) satisfies |sw(σ)| ≤ |σ|.

Proof by structural induction.
If σ is a list of a finite set then every word in the list is
shorter than |σ|.
If σ, τ satisfy |sw(σ)| ≤ |σ| and |sw(τ)| ≤ |τ | then also
|sw(σ ∪ τ)| ≤ |σ ∪ τ | and |sw(σ · τ)| ≤ |σ · τ | and |sw(σ∗)| = 0

(as the empty word ε is always in the Kleene star of an
expression).

Thus if one writes the Expression from Theorem 4.19
without intersections then its length is at least 2n.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 23

Example of Inductive Definition
Recall the length-lexicographic ordering, for Σ = {0,1}; it is
ε <ll 0 <ll 1 <ll 00 <ll 01 <ll 10 <ll 11 <ll 000 <ll . . .; one
uses <ll to define sw(reg exp):

sw(∅) = ∞;

sw({w1, . . . ,wn}) = minll{w1, . . . ,wn};

sw(σ ∪ τ) =

{

sw(σ) if sw(τ) = ∞;
sw(τ) if sw(σ) = ∞;
minll{sw(σ), sw(τ)} otherwise;

sw(σ · τ) =

{

∞ if sw(σ) = ∞
or sw(τ) = ∞;

sw(σ) · sw(τ) otherwise;

sw(σ∗) = ε.

One can see by structural induction: |sw(σ)| ≤ |σ| where ∞
denotes that there is no word in the expression and
∞, {, }, (,),∪, ·, ∗, ∅ are symbols of length 1 and |ε| = 0.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 24

Length of Short Words

Exercise 4.21
Assume that a regular expression uses lists of finite sets,
Kleene star, union and concatenation and assume that this
expression generates at least two words. Prove that the
second-shortest word of the language generated by σ is at
most as long as σ. Either prove it by structural induction or
by an assumption of contradiction as in the proof before;
both methods are nearly equivalent.

Exercise 4.22
Is Exercise 4.21 also true if one permits Kleene plus in
addition to Kleene star in the regular expressions? Either
provide a counter example or adjust the proof. In the case
that it is not true for the bound |σ|, is it true for the bound
2|σ|? Again prove that bound or provide a further counter
example.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 25

Exponential Gap

Theorem 4.23 [Ehrenfeucht and Zeiger 1976]
Let Σ = {(a,b) : a,b ∈ {1,2, . . . ,n}} and
L = {(1, a1) (a1, a2) . . . (am−1, am) : a1, . . . , am ∈
{1, . . . ,n},m ≥ 1}. Now L can be recognised by a dfa with
n+ 1 states but there is no regular expression for L using
lists of finite sets, union, concatenation and Kleene star
which is shorter than 2n−1.

Remark
One can make a short expression using intersection as
well:

({(a,b) · (b, c) : a,b, c ∈ {1,2, . . . ,n}}∗ ·
({ε} ∪ {(a,b) : a,b ∈ {1,2, . . . ,n}})) ∩
({(a,b) : a,b ∈ {1,2, . . . ,n}} · {(a,b) · (b, c) : a,b, c ∈
{1,2, . . . ,n}}∗ · ({ε} ∪ {(a,b) : a,b ∈ {1,2, . . . ,n}}))

Theory of Computation 4 Non-Deterministic Finite Automata – p. 26

Pumping Constants and NFA

Exercise 4.24
Assume that an nfa of k states recognises a language L.
Show that the language does then satisfy the Block
Pumping Lemma with constant k+ 1, that is, given any
words u0,u1, . . . ,uk,uk+1 such that their concatenation
u0u1 . . .ukuk+1 is in L then there are i, j with
0 < i < j ≤ k+ 1 and

u0u1 . . .ui−1(uiui+1 . . .uj−1)
∗ujuj+1 . . .uk+1 ⊆ L.

Exercise 4.25
Given numbers n,m with n > m > 2, provide an example of
a regular language where the Block pumping constant is
exactly m and where every nfa needs at least n states.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 27

Exercises 4.26 - 4.30

Let n be the size of the alphabet Σ and assume n ≥ 2.
Determine the size of the smallest nfa and dfa for the
following languages in dependence of n. Explain the results
and construct the automata for Σ = {0,1} (4.30: {0,1,2}).

Exercise 4.26
H = {vawa : v,w ∈ Σ∗, a ∈ Σ}.

Exercise 4.27
I = {ua : u ∈ (Σ− {a})∗, a ∈ Σ}.

Exercise 4.28
J = {abuc : a,b ∈ Σ,u ∈ Σ∗, c ∈ {a,b}}.

Exercise 4.29
K = {avbwc : a,b ∈ Σ,v,w ∈ Σ∗, c ∈ Σ− {a,b}}.

Exercise 4.30
L = {w : ∃ a,b ∈ Σ [w ∈ {a,b}∗]}.

Theory of Computation 4 Non-Deterministic Finite Automata – p. 28

Exercises 4.31, 4.32 and 4.33

Exercise 4.31
Show that an nfa for the language
{0000000}∗ ∪ {00000000}∗ needs only 16 states while the
constant for Jaffe’s pumping lemma is 56.

Exercise 4.32
Generalise the idea of Exercise 4.31 to show that there is a
family Ln of languages such that an nfa for Ln can be

constructed with O(n3) states while Jaffe’s pumping lemma
needs a constant of at least 2n. Provide the family of the Ln

and explain why it satisfies the corresponding bounds.

Exercise 4.33
Determine the constant of Jaffe’s pumping lemma and the
sizes of minimal nfa and dfa for
({00} · {00000}) ∪ ({00}∗ ∩ {000}∗).

Theory of Computation 4 Non-Deterministic Finite Automata – p. 29

	Repetition 1 -- DFA
	Repetition 2
	Repetition 3 -- Derivatives
	Repetition 4 -- Minimal DFA
	Motivation
	Non-Deterministic Finite Automaton
	Example 4.3
	Exponential Improvement
	B"uchi's Powerset Construction
	Verification
	Example 4.6
	Exercises
	Set of Initial States
	Traditional NFA
	Matching Exponential Bounds
	Regular Grammar to NFA
	Example for Grammar to NFA
	Exercises for Grammar to NFA
	Corollary 4.17: Regular
	Size of Expressions
	Unary Alphabet
	Length of Shortest Word
	Example of Inductive Definition
	Length of Short Words
	Exponential Gap
	Pumping Constants and NFA
	Exercises 4.26 - 4.30
	Exercises 4.31, 4.32 and 4.33

