Theory of Computation 5 Combining Languages

Frank Stephan

Department of Computer Science
Department of Mathematics
National University of Singapore
fstephan@comp.nus.edu.sg

Repetition 1

If $(\mathbf{Q}, \boldsymbol{\Sigma}, \delta, \mathbf{s}, \mathbf{F})$ is a non-deterministic finite automaton (nfa) then δ has a set of values (not always single value), that is, for $p \in Q$ and $a \in \Sigma$ there can be several $q \in Q$ such that the nfa can go from p to q on symbol a.
A run of an nfa on a word $a_{1} a_{2} \ldots a_{n}$ is a sequence $\mathrm{q}_{0} \mathrm{q}_{1} \mathrm{q}_{2} \ldots \mathrm{q}_{\mathrm{n}} \in \mathrm{Q}^{*}$ such that $\mathrm{q}_{0}=\mathrm{s}$ and $\mathrm{q}_{\mathrm{m}+1} \in \delta\left(\mathrm{q}_{\mathrm{m}}, \mathrm{a}_{\mathrm{m}+1}\right)$ for all $\mathrm{m}<\mathrm{n}$.
If $\mathrm{q}_{\mathrm{n}} \in \mathrm{F}$ then the run is "accepting" else the run is "rejecting".
The nfa accepts a word w iff it has an accepting run on w ; this is also the case if there exist other rejecting runs.
δ as relation: $(\mathbf{p}, \mathbf{a}, \mathbf{q}) \in \delta$ iff nfa can go on a from \mathbf{p} to \mathbf{q}. δ as set-valued function: $\delta(\mathbf{p}, \mathbf{a})=\{\mathbf{q}:$ nfa can go on a from p to q$\}$.

Repetition 2

The language $\{\mathrm{w}$: some letter appears twice $\}$ has an nfa with $\mathrm{n}+2$ states while a dfa needs $2^{\mathrm{n}}+1$ states; here for $\mathrm{n}=4$, where $\mathrm{n}=\underset{\mathbf{0 , 1 , 2 , 3}}{|\Sigma|}$

Repetition 3

Given an nfa, one let for given state q and symbol a the set $\delta(\mathbf{q}, \mathbf{a})$ denote all states \mathbf{q}^{\prime} to which the nfa can transit from q on symbol a.
Theorem 4.5 [Büchi; Rabin and Scott]
For each nfa $(\mathbf{Q}, \boldsymbol{\Sigma}, \delta, \mathbf{s}, \mathbf{F})$ with $\mathrm{n}=|\mathbf{Q}|$ states, there is an equivalent dfa ($\left.\left\{\mathbf{Q}^{\prime}: \mathbf{Q}^{\prime} \subseteq \mathbf{Q}\right\}, \boldsymbol{\Sigma}, \delta^{\prime},\{\mathbf{s}\}, \mathbf{F}^{\prime}\right)$ with $\mathbf{2}^{\mathrm{n}}$ states such that $\mathbf{F}^{\prime}=\left\{\mathbf{Q}^{\prime} \subseteq \mathbf{Q}: \mathbf{Q}^{\prime} \cap \mathbf{F} \neq \emptyset\right\}$ and
$\forall \mathbf{Q}^{\prime} \subseteq \mathbf{Q} \forall \mathbf{a} \in \boldsymbol{\Sigma}\left[\delta^{\prime}\left(\mathbf{Q}^{\prime}, \mathbf{a}\right)=\bigcup_{\mathbf{q}^{\prime} \in \mathbf{Q}} \delta\left(\mathbf{q}^{\prime}, \mathbf{a}\right)\right.$

$$
\left.=\left\{\mathbf{q}^{\prime \prime} \in \mathbf{Q}: \exists \mathbf{q}^{\prime} \in \mathbf{Q}^{\prime}\left[\mathbf{q}^{\prime \prime} \in \delta\left(\mathbf{q}^{\prime}, \mathbf{a}\right)\right]\right\}\right] .
$$

As the number of states is often overshooting, it is good to minimise the resulting automaton with the algorithm of Myhill and Nerode.

Repetition 4

The following statements are all equivalent to "L is regular":
(a) L is generated by a regular expression;
(b) L is generated by a regular grammar;
(c) L is recognised by a determinisitic finite automaton;
(d) L is recognised by a non-determinisitic finite automaton;
(e) L and $\Sigma^{*}-\mathrm{L}$ both satisfy the Block Pumping Lemma;
(f) L satsifies Jaffe's Matching Pumping Lemma;
(g) L has only finitely many derivatives.

Product Automata

Let $\left(\mathbf{Q}_{1}, \boldsymbol{\Sigma}, \delta_{1}, \mathrm{~s}_{1}, \mathbf{F}_{1}\right)$ and $\left(\mathbf{Q}_{2}, \boldsymbol{\Sigma}, \delta_{\mathbf{2}}, \mathbf{s}_{2}, \mathbf{F}_{2}\right)$ be dfas which recognise L_{1} and L_{2}, respectively.
Consider $\left(\mathbf{Q}_{1} \times \mathbf{Q}_{\mathbf{2}}, \boldsymbol{\Sigma}, \delta_{1} \times \delta_{\mathbf{2}},\left(\mathbf{s}_{1}, \mathbf{s}_{\mathbf{2}}\right), \mathbf{F}\right)$ with $\left(\delta_{1} \times \delta_{2}\right)\left(\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right), \mathbf{a}\right)=\left(\delta_{1}\left(\mathbf{q}_{1}, \mathbf{a}\right), \delta_{\mathbf{2}}\left(\mathbf{q}_{2}, \mathbf{a}\right)\right)$. This automaton is called a product automaton and one can choose F such that it recognises the union or intersection or difference of the respective languages.
Union: $\mathbf{F}=\left(\mathbf{F}_{1} \times \mathbf{Q}_{2}\right) \cup\left(\mathbf{Q}_{\mathbf{1}} \times \mathbf{F}_{\mathbf{2}}\right)$; Intersection: $\mathbf{F}=\mathbf{F}_{1} \times \mathbf{F}_{\mathbf{2}}=\left(\mathbf{F}_{\mathbf{1}} \times \mathbf{Q}_{\mathbf{2}}\right) \cap\left(\mathbf{Q}_{1} \times \mathrm{F}_{\mathbf{2}}\right)$;
Difference: $\mathrm{F}=\mathrm{F}_{1} \times\left(\mathrm{Q}_{2}-\mathrm{F}_{2}\right)$;
Symmetric Difference:
$\mathbf{F}=\left(\mathbf{F}_{\mathbf{1}} \times\left(\mathbf{Q}_{\mathbf{2}}-\mathbf{F}_{\mathbf{2}}\right)\right) \cup\left(\left(\mathbf{Q}_{\mathbf{1}}-\mathbf{F}_{\mathbf{1}}\right) \times \mathbf{F}_{\mathbf{2}}\right)$.

Example

For $\mathrm{a}=1,2$, let automaton $\left(\{\mathrm{s}, \mathrm{t}\},\{0,1,2\}, \delta_{\mathrm{a}}, \mathrm{s},\{\mathrm{s}\}\right)$ recognise when there is an even number of a; if input b equals a then state is changed else state remains unchanged.
Quiz: Which Boolean combination does this product automaton recognise?

Kleene Star

Assume $(\mathbf{Q}, \boldsymbol{\Sigma}, \delta, \mathbf{s}, \mathbf{F})$ is an nfa recognising \mathbf{L}. Now \mathbf{L}^{*} is recognised by $\left(\mathbf{Q} \cup\left\{\mathbf{s}^{\prime}\right\}, \boldsymbol{\Sigma}, \delta^{\prime}, \mathbf{s}^{\prime},\left\{\mathrm{s}^{\prime}\right\} \cup \mathbf{F}\right)$ where $\delta^{\prime}\left(\mathbf{s}^{\prime}, \mathbf{a}\right)=\delta(\mathbf{s}, \mathbf{a})$ and $\delta^{\prime}(\mathbf{p}, \mathbf{a})=\delta(\mathbf{p}, \mathbf{a})$ for $\mathbf{p} \in \mathbf{Q}-\mathbf{F}$ and $\delta^{\prime}(\mathbf{p}, \mathbf{a})=\delta(\mathbf{p}, \mathbf{a}) \cup \delta(\mathbf{s}, \mathbf{a})$ for $\mathbf{p} \in \mathbf{F}$.

Concatenation

Assume ($\left.\mathbf{Q}_{\mathbf{1}}, \boldsymbol{\Sigma}, \delta_{1}, \mathrm{~s}_{1}, \mathbf{F}_{\mathbf{1}}\right)$ and ($\mathbf{Q}_{\mathbf{2}}, \boldsymbol{\Sigma}, \delta_{\mathbf{2}}, \mathbf{s}_{\mathbf{2}}, \mathbf{F}_{\mathbf{2}}$) are nfas recognising L_{1} and L_{2} with $\mathrm{Q}_{1} \cap \mathrm{Q}_{2}=\emptyset$ and assume $\varepsilon \notin \mathbf{L}_{2}$. Now $\left(\mathbf{Q}_{1} \cup \mathbf{Q}_{2}, \boldsymbol{\Sigma}, \delta, \mathbf{s}_{1}, \mathbf{F}_{2}\right)$ recognises $\mathrm{L}_{1} \cdot \mathrm{~L}_{2}$ where $(\mathbf{p}, \mathbf{a}, \mathbf{q}) \in \delta$ whenever $(\mathbf{p}, \mathbf{a}, \mathbf{q}) \in \delta_{1} \cup \delta_{2}$ or $\left(\mathbf{p} \in \mathbf{F}_{1}\right.$ and $\left.\left(\mathbf{s}_{2}, \mathbf{a}, \mathbf{q}\right) \in \delta_{2}\right)$.
If L_{2} contains ε then one can consider the union of L_{1} and $\mathbf{L}_{\mathbf{1}} \cdot\left(\mathbf{L}_{\mathbf{2}}-\{\varepsilon\}\right)$.

Example

$\mathrm{L}_{1} \cdot \mathrm{~L}_{2}$ with $\mathrm{L}_{1}=\{00,11\}^{*}$ and $\mathrm{L}_{2}=2^{*} \mathbf{1}^{+} \mathbf{0}^{+}$.

Exercise 5.3

The previous slides give upper bounds on the size of the dfa for a union, intersection, difference and symmetric difference as n^{2} states, provided that the original two dfas have at most n states.

Give the corresponding bounds for nfas: If L and H are recognised by nfas having at most n states each, how many states does one need at most for an nfa recognising (a) the union $\mathrm{L} \cup \mathrm{H}$, (b) the intersection $\mathrm{L} \cap \mathbf{H}$, (c) the difference $\mathbf{L}-\mathbf{H}$ and (d) the symmetric difference $(\mathbf{L}-\mathbf{H}) \cup(\mathbf{H}-\mathbf{L})$?
Give the bounds in terms of "linear", "quadratic" and "exponential". Explain your bounds.

Sample Automata

Exercise 5.4
Let $\Sigma=\{0,1,2,3,4,5,6,7,8,9\}$. Construct a (not necessarily complete) dfa recognising the language $\Sigma \cdot\{\text { aa }: \mathbf{a} \in \Sigma\}^{*} \cap\{\text { aaaaa }: \mathbf{a} \in \Sigma\}^{*}$. It is not needed to give a full table for the dfa, but a general schema and an explanation how it works.

Exercise 5.5

Make an nfa for the intersection of the following languages:
$\{0,1,2\}^{*} \cdot\{001\} \cdot\{0,1,2\}^{*} \cdot\{001\} \cdot\{0,1,2\}^{*}$;
$\{001,0001,2\}^{*} ;\{0,1,2\}^{*} \cdot\{00120001\} \cdot\{0,1,2\}^{*}$.
Exercise 5.6
Make an nfa for the union $\mathrm{L}_{0} \cup \mathrm{~L}_{1} \cup \mathrm{~L}_{2}$ with
$\mathrm{L}_{\mathrm{a}}=\{0,1,2\}^{*} \cdot\{\mathbf{a a}\} \cdot\{0,1,2\}^{*} \cdot\{\mathbf{a a}\} \cdot\{0,1,2\}^{*}$ for
$a \in\{0,1,2\}$.

Exercise 5.7

Consider two context-free grammars with terminals Σ, disjoint non-terminals N_{1} and N_{2}, start symbols $\mathrm{S}_{1} \in \mathrm{~N}_{1}$ and $S_{2} \in N_{2}$ and rule sets P_{1} and P_{2} which generate L and H , respectively. Explain how to form from these a new context-free grammar for
(a) $\mathrm{L} \cup \mathrm{H}$,
(b) $\mathrm{L} \cdot \mathrm{H}$ and
(c) L^{*}.

Write down the context-free grammars for $\left\{0^{\mathrm{n}} 1^{2 \mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\}$ and $\left\{0^{\mathrm{n}} 1^{3 \mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\}$ and form the grammars for union, concatenation and star explicitly.

Example 5.8

The language $\{0\}^{*} \cdot\left\{1^{\mathrm{n}} 2^{\mathrm{n}}: \mathbf{n} \in \mathbb{N}\right\}$ is context-free.
Grammar $(\{\mathbf{S}, \mathbf{T}\},\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}, \mathbf{P}, \mathbf{S})$ with P be given by $\mathrm{S} \rightarrow \mathbf{0 S}|\mathrm{T}| \varepsilon$ and $\mathrm{T} \rightarrow \mathbf{1 T 2} \mid \varepsilon$.
The language $\left\{0^{\mathrm{n}} 1^{\mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\} \cdot\{2\}^{*}$ is context-free.
$\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\}$ is not context-free but the intersection of the two above.
The complement of L is the union of $\left\{0^{\mathrm{n}} 1^{\mathrm{m}} 2^{\mathrm{k}}: \mathrm{n}<\mathrm{k}\right\}$, $\left\{0^{\mathrm{n}} 1^{\mathrm{m}} 2^{\mathrm{k}}: \mathrm{n}>\mathrm{k}\right\},\left\{0^{\mathrm{n}} 1^{\mathrm{m}} 2^{\mathrm{k}}: \mathrm{m}<\mathrm{k}\right\},\left\{0^{\mathrm{n}} 1^{\mathrm{m}} 2^{\mathrm{k}}: \mathrm{m}>\mathrm{k}\right\}$, $\left\{0^{\mathrm{n}} 1^{\mathrm{m}} 2^{\mathrm{k}}: \mathrm{n}<\mathrm{m}\right\},\left\{0^{\mathrm{n}} 1^{\mathrm{m}} 2^{\mathrm{k}}: \mathrm{n}>\mathrm{m}\right\}$ and $\{0,1,2\}^{*} \cdot\{10,20,21\} \cdot\{0,1,2\}^{*}$.
Each of these languages is context-free. Grammar for the first of them: $\mathrm{S} \rightarrow \mathbf{0 S 2}|\mathrm{S} 2| \mathrm{T} 2, \mathrm{~T} \rightarrow \mathbf{1 T} \mid \varepsilon$. The union is also context-free. Hence L has a context-free complement.
So context-free languages are neither closed under intersection nor under complement.

Context-Free Intersects Regular

Theorem 5.9
If L is context-free and H is regular then $L \cap H$ is context-free.
Construction.
Let ($\mathbf{N}, \boldsymbol{\Sigma}, \mathbf{P}, \mathbf{S}$) be a context-free grammar generating L with every rule being either $\mathrm{A} \rightarrow \mathrm{w}$ or $\mathrm{A} \rightarrow \mathrm{BC}$ with $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{N}$ and $\mathrm{w} \in \Sigma^{*}$.
Let $(\mathbf{Q}, \boldsymbol{\Sigma}, \delta, \mathbf{s}, \mathbf{F})$ be a dfa recognising \mathbf{H}.
Let $\mathbf{S}^{\prime} \notin \mathbf{Q} \times \mathbf{N} \times \mathbf{Q}$ and make the following new grammar $\left(\mathbf{Q} \times \mathbf{N} \times \mathbf{Q} \cup\left\{\mathbf{S}^{\prime}\right\}, \mathbf{\Sigma}, \mathbf{R}, \mathbf{S}^{\prime}\right)$ with rules \mathbf{R} :
$\mathbf{S}^{\prime} \rightarrow(\mathbf{s}, \mathbf{S}, \mathbf{q})$ for all $\mathbf{q} \in \mathbf{F}$;
$(\mathbf{p}, \mathbf{A}, \mathbf{q}) \rightarrow(\mathbf{p}, \mathbf{B}, \mathbf{r})(\mathbf{r}, \mathbf{C}, \mathbf{q})$ for all rules $\mathrm{A} \rightarrow \mathrm{BC}$ in P and all $\mathbf{p}, \mathbf{q}, \mathbf{r} \in \mathrm{Q}$;
$(\mathbf{p}, \mathbf{A}, \mathbf{q}) \rightarrow \mathbf{w}$ for all rules $\mathbf{A} \rightarrow \mathbf{w}$ in \mathbf{P} with $\delta(\mathbf{p}, \mathbf{w})=\mathbf{q}$.

Exercises 5.10 and 5.11

Recall that the language L of all words which contain as many $0 s$ as 1 s is context-free; a grammar for it is ($\{\mathbf{S}\},\{\mathbf{0}, \mathbf{1}\},\{\mathbf{S} \rightarrow \mathbf{S S}|\varepsilon| \mathbf{0 S} 1 \mid \mathbf{1 S} 0\}, \mathbf{S})$.
Exercise 5.10
Construct a context-free grammar for $\mathbf{L} \cap\left(001^{+}\right)^{*}$.
Exercise 5.11
Construct a context-free grammar for $\mathrm{L} \cap 0^{*} 1^{*} 0^{*} \mathbf{1}^{*}$.

Context-Sensitive and Concatenation

Let L_{1} and L_{2} be context-sensitive languages not containing ε. Let $\left(\mathbf{N}_{1}, \Sigma, \mathbf{P}_{1}, \mathbf{S}_{\mathbf{1}}\right)$ and $\left(\mathbf{N}_{\mathbf{2}}, \Sigma, \mathbf{P}_{\mathbf{2}}, \mathbf{S}_{\mathbf{2}}\right)$ be two context-senstive grammers generating L_{1} and L_{2}, respectively, where $\mathrm{N}_{1} \cap \mathrm{~N}_{2}=\emptyset$ and where each rule $\mathrm{l} \rightarrow \mathrm{r}$ satisfies $|\mathrm{l}| \leq|\mathrm{r}|$ and $\mathrm{l} \in \mathrm{N}_{\mathrm{e}}^{+}$for the respective $\mathrm{e} \in\{\mathbf{1 , 2 \}}$. Let $\mathrm{S} \notin \mathrm{N}_{1} \cup \mathrm{~N}_{2} \cup \Sigma$.
Now $\left(\mathbf{N}_{1} \cup \mathbf{N}_{2} \cup\{\mathbf{S}\}, \boldsymbol{\Sigma}, \mathbf{P}_{1} \cup \mathbf{P}_{\mathbf{2}} \cup\left\{\mathbf{S} \rightarrow \mathbf{S}_{1} \mathbf{S}_{\mathbf{2}}\right\}, \mathbf{S}\right)$ generates $\mathrm{L}_{1} \cdot \mathrm{~L}_{2}$.
If $\mathrm{v} \in \mathrm{L}_{1}$ and $\mathrm{w} \in \mathrm{L}_{2}$ then $\mathrm{S} \Rightarrow \mathrm{S}_{1} \mathrm{~S}_{2} \Rightarrow^{*} \mathrm{vS}_{2} \Rightarrow^{*}$ vw.
Furthermore, the first rule has to be $\mathrm{S} \Rightarrow \mathrm{S}_{1} \mathrm{~S}_{2}$ and from then onwards, each rule has on the left side either $\mathrm{l} \in \mathrm{N}_{1}^{+}$ so that it applies to the part generated from S_{1} or it has in the left side $\mathrm{l} \in \mathrm{N}_{2}^{+}$so that l is in the part of the word generated from S_{2}. Hence every intermediate word z in the derivation is of the form $\mathrm{xy}=\mathrm{z}$ with $\mathrm{S}_{1} \Rightarrow^{*} \mathrm{x}$ and $\mathrm{S}_{2} \Rightarrow^{*} \mathrm{y}$.

Context-Sensitive and Kleene-star

Let $\left(\mathbf{N}_{1}, \Sigma, \mathbf{P}_{1}, \mathbf{S}_{1}\right)$ and $\left(\mathbf{N}_{2}, \boldsymbol{\Sigma}, \mathbf{P}_{\mathbf{2}}, \mathrm{S}_{\mathbf{2}}\right)$ be context-sensitive grammars for $\mathbf{L}-\{\varepsilon\}$ with $\mathbf{N}_{1} \cap \mathbf{N}_{\mathbf{2}}=\emptyset$ and all rules $\mathrm{l} \rightarrow \mathbf{r}$ satisfying $|\mathbf{l}| \leq|\mathrm{r}|$ and $\mathrm{l} \in \mathrm{N}_{1}^{+}$or $\mathrm{l} \in \mathrm{N}_{2}^{+}$, respectively. Let $\mathrm{S}, \mathrm{S}^{\prime}$ be symbols not in $\mathrm{N}_{1} \cup \mathbf{N}_{2} \cup \Sigma$.

Now consider $\left(\mathbf{N}_{1} \cup \mathbf{N}_{2} \cup\left\{\mathbf{S}, \mathbf{S}^{\prime}\right\}, \boldsymbol{\Sigma}, \mathbf{P}, \mathbf{S}\right)$ where \mathbf{P} contains the rules $\mathrm{S} \rightarrow \mathrm{S}^{\prime} \mid \varepsilon$ and $\mathrm{S}^{\prime} \rightarrow \mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{~S}^{\prime}\left|\mathrm{S}_{1} \mathrm{~S}_{2}\right| \mathrm{S}_{1}$ plus all rules in $\mathrm{P}_{1} \cup \mathrm{P}_{\mathbf{2}}$.
This grammar generates L^{*}.

Context-Sensitive and Intersection

Theorem.
 The intersection of two context-sensitive languages is context-sensitive.

Construction.
Let $\left(\mathbf{N}_{\mathrm{k}}, \boldsymbol{\Sigma}, \mathrm{P}_{\mathrm{k}}, \mathrm{S}\right)$ be grammars for L_{1} and L_{2}. Now make a new non-terminal set $\mathbf{N}=\left(\mathbf{N}_{1} \cup \Sigma \cup\{\#\}\right) \times\left(\mathbf{N}_{2} \cup \Sigma \cup\{\#\}\right)$ with start symbol $\binom{\mathrm{S}}{\mathrm{S}}$ and following types of rules:
(a) Rules to generate and manage space;
(b) Rules to generate a word v in the upper row;
(c) Rules to generate a word w in the lower row;
(d) Rules to convert a string from N into v provided that the upper components and lower components of the string are both v .

Type of Rules

(a): $\binom{\mathbf{S}}{\mathbf{S}} \rightarrow\binom{\mathbf{S}}{\mathbf{S}}\binom{\#}{\#}$ for producing space; $\binom{\mathbf{A}}{\mathbf{B}}\binom{\#}{\mathbf{C}} \rightarrow\binom{\#}{\mathbf{B}}\binom{\mathbf{A}}{\mathbf{C}}$ and $\binom{\mathbf{A}}{\mathbf{C}}\binom{\mathbf{B}}{\#} \rightarrow\binom{\mathbf{A}}{\#}\binom{\mathbf{B}}{\mathbf{C}}$ for space management.
(b) and (c): For each rule in P_{1}, for example, for $\mathrm{AB} \rightarrow \mathrm{CDE} \in \mathrm{P}_{1}$, and all symbols $\mathrm{F}, \mathrm{G}, \mathrm{H}, \ldots$ in N_{2}, one has the corresponding rule $\binom{\mathbf{A}}{\mathbf{F}}\binom{\mathbf{B}}{\mathbf{G}}\binom{\#}{\mathbf{H}} \rightarrow\binom{\mathrm{C}}{\mathbf{F}}\binom{\mathbf{D}}{\mathbf{G}}\binom{\mathbf{E}}{\mathbf{H}}$. So rules in P_{1} are simulated in the upper half and rules in P_{2} are simulated in the lower half and they use up \# if the left side is shorter than the right one.
(d): Each rule $\binom{\mathrm{a}}{\mathrm{a}} \rightarrow \mathrm{a}$ for $\mathrm{a} \in \Sigma$ is there to convert a matching pair $\binom{$ a }{ a } from $\Sigma \times \Sigma$ (a nonterminal) to a (a terminal).

Grammar for $0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}}$ with $\mathrm{n}>0$

Grammar $\mathrm{L}_{1}: \mathrm{S} \rightarrow \mathrm{S} 2|0 \mathrm{~S} 1| 01$.
Grammar $\mathrm{L}_{2}: \mathrm{S} \rightarrow \mathbf{0 S}|\mathbf{1 S 2}| 12$.
Grammar for Intersection.
$\mathbf{N}=\left\{\binom{\mathbf{A}}{\mathbf{B}}: \mathbf{A}, \mathbf{B} \in\{\mathbf{S}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \#\}\right\}$.
Rules where A, B, C stand for any members of
$\{\mathbf{S}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \#\}:\binom{\mathrm{S}}{\mathrm{S}} \rightarrow\binom{\mathrm{S}}{\mathrm{S}}\binom{\#}{\#}$;
$\binom{$ A }{$\mathbf{B}}\binom{\#}{\mathbf{C}} \rightarrow\binom{\#}{\mathbf{B}}\binom{\mathbf{A}}{\mathbf{C}} ;\binom{\mathbf{A}}{\mathbf{C}}\binom{\mathrm{B}}{\#} \rightarrow\binom{\mathbf{A}}{\#}\binom{\mathrm{~B}}{\mathbf{C}}$;
$\binom{\mathrm{S}}{\mathbf{A}}\binom{\#}{\mathrm{~B}} \rightarrow\binom{\mathrm{~S}}{\mathbf{A}}\binom{\mathbf{2}}{\mathrm{~B}} ;\binom{\mathbf{S}}{\mathbf{A}}\binom{\#}{\mathrm{~B}}\binom{\#}{\mathrm{C}} \rightarrow\binom{\mathbf{0}}{\mathbf{A}}\binom{\mathrm{S}}{\mathbf{B}}\binom{1}{\mathrm{C}} ;$
$\binom{\mathrm{S}}{\mathrm{A}}\binom{\#}{\mathrm{~B}} \rightarrow\binom{0}{\mathrm{~A}}\binom{1}{\mathrm{~B}} ;$
$\binom{\mathrm{A}}{\mathrm{S}}\binom{\mathrm{B}}{\#} \rightarrow\binom{\mathrm{~A}}{0}\binom{\mathrm{~B}}{\mathrm{~S}} ;\binom{\mathrm{A}}{\mathrm{S}}\binom{\mathrm{B}}{\#}\binom{\mathrm{C}}{\#} \rightarrow\binom{\mathrm{~A}}{1}\binom{\mathrm{~B}}{\mathrm{~S}}\binom{\mathrm{C}}{2}$;
$\binom{\mathrm{A}}{\mathrm{S}}\binom{\mathrm{B}}{\#} \rightarrow\binom{\mathrm{~A}}{1}\binom{\mathrm{~B}}{2}$;
$\binom{0}{0} \rightarrow 0 ;\binom{1}{1} \rightarrow 1 ;\binom{2}{2} \rightarrow 2$.

Deriving 001122

$$
\begin{aligned}
& \binom{\mathbf{S}}{\mathbf{S}} \Rightarrow^{*}\binom{\mathbf{S}}{\mathbf{S}}\binom{\#}{\#}\binom{\#}{\#}\binom{\#}{\#}\binom{\#}{\#}\binom{\#}{\#} \Rightarrow\binom{\mathbf{S}}{\mathbf{S}}\binom{\mathbf{2}}{\#}\binom{\#}{\#}\binom{\#}{\#}\binom{\#}{\#}\binom{\#}{\#} \Rightarrow^{*} \\
& \binom{\mathrm{~S}}{\mathrm{~S}}\binom{\#}{\#}\binom{\#}{\#}\binom{\#}{\#}\binom{\#}{\#}\binom{\mathbf{2}}{\#} \Rightarrow\binom{\mathrm{~S}}{\mathrm{~S}}\binom{\mathbf{2}}{\#}\binom{\#}{\#}\binom{\#}{\#}\binom{\#}{\#}\binom{\mathbf{2}}{\#} \Rightarrow^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{0}{\mathrm{~S}}\binom{\mathrm{~S}}{\#}\binom{\#}{\#}\binom{1}{\#}\binom{2}{\#}\binom{2}{\#} \Rightarrow\binom{0}{\mathrm{~S}}\binom{0}{\#}\binom{1}{\#}\binom{1}{\#}\binom{2}{\#}\binom{2}{\#} \Rightarrow \\
& \binom{0}{0}\binom{0}{\mathrm{~S}}\binom{1}{\#}\binom{1}{\#}\binom{2}{\#}\binom{2}{\#} \Rightarrow\binom{0}{0}\binom{0}{0}\binom{1}{\mathrm{~S}}\binom{1}{\#}\binom{2}{\#}\binom{2}{\#} \Rightarrow \\
& \binom{0}{0}\binom{0}{0}\binom{1}{1}\binom{1}{\mathrm{~S}}\binom{2}{2}\binom{2}{\#} \Rightarrow\binom{0}{0}\binom{0}{0}\binom{1}{1}\binom{1}{\mathrm{~S}}\binom{2}{\#}\binom{2}{2} \Rightarrow \\
& \binom{0}{0}\binom{0}{0}\binom{1}{1}\binom{1}{1}\binom{2}{2}\binom{2}{2} \Rightarrow^{*} 001122 .
\end{aligned}
$$

Exercises 5.14 and 5.17

```
Exercise 5.14
Let \(\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}}: \mathrm{n} \in \mathbb{N}\right\}\) and construct a context-sensitive grammar for \(\mathbf{L}^{*}\).
```

Exercise 5.17
Consider the language $\mathrm{L}=\{00\} \cdot\{0,1,2,3\}^{*} \cup\{1,2,3\}$. $\{0,1,2,3\}^{*} \cup\{0,1,2,3\}^{*} \cdot\{02,03,13,10,20,30,21,31,32\}$. $\{0,1,2,3\}^{*} \cup\{\varepsilon\} \cup\left\{01^{\mathrm{n}} 2^{\mathrm{n}} 3^{\mathrm{n}}: \mathbf{n} \in \mathbb{N}\right\}$.
Which versions of the Pumping Lemma does it satisfy:

- Regular Pumping Lemma (with / without bounds);
- Context-Free Pumping Lemma (with / without bounds);
- Block Pumping Lemma (for regular languages)?

Determine the exact position of L in the Chomsky hierarchy.

Mirror Images

Define $\left(a_{1} a_{2} \ldots a_{n}\right)^{m i}=a_{n} \ldots a_{2} a_{1}$ as the mirror image of a string.

It follows from the definition of context-free and context-sensitive, that if L is context-free / context-sensitive so is $L^{\text {mi }}$. This can be achieved by replacing every rule $\mathrm{l} \rightarrow \mathrm{r}$ by $\mathrm{l}^{\mathrm{mi}} \rightarrow \mathbf{r}^{\mathrm{mi}}$.
For example, the mirror image of the language of the words $0^{n} 1^{3 n+3}$ is given by language of the words $1^{3 n+3} 0^{n}$. While L is generated by a context-free grammar with one non-terminal S and rules $S \rightarrow 0 \mathrm{~S} 111 \mid 111, \mathrm{~L}^{\mathrm{mi}}$ is then generated by a similar grammar with the rules $\mathrm{S} \rightarrow 111 \mathrm{~S} 0 \mid 111$.

Exercise 5.18

Recall that x^{mi} is the mirror image of x , so
$(01001)^{\mathrm{mi}}=10010$. Furthermore, $\mathrm{L}^{\mathrm{mi}}=\left\{\mathrm{x}^{\mathrm{mi}}: \mathrm{x} \in \mathrm{L}\right\}$.
Show the following two statements:
(a) If an nfa with n states recognises L then there is also an nfa with up to $n+1$ states recognising L^{mi}.
(b) Find the smallest nfas which recognise $\mathrm{L}=0^{*}\left(1^{*} \cup 2^{*}\right)$ as well as L^{mi}.

Palindromes

The members of the language $\left\{x \in \Sigma^{*}: x=x^{\text {mi }}\right\}$ are called palindromes. A palindrome is a word or phrase which looks the same from both directions.

An example is the German name "OTTO"; furthermore, when ignoring spaces and punctuation marks, a famous palindrome is the phrase "A man, a plan, a canal: Panama." This palindrome was found by Leigh Mercer (1893-1977), a British hobby-writer, who created lots of palindromes.
The grammar with the rules $S \rightarrow \mathrm{aSa}|\mathrm{aa}| \mathbf{a} \mid \varepsilon$ with a ranging over all members of Σ generates all palindromes; so for $\Sigma=\{0,1,2\}$ the rules of the grammar would be $\mathrm{S} \rightarrow \mathbf{0 S} 0|\mathbf{1 S} 1| 2 \mathrm{~S} 2|00| 11|22| 0|1| 2 \mid \varepsilon$. Therefore the set of palindromes is context-free.
The set of palindromes is not regular.

Exercises

Exercise 5.20

Let $\mathrm{w} \in\{0,1,2,3,4,5,6,7,8,9\}^{*}$ be a palindrome of even length and n be its decimal value. Prove that n is a multiple of 11 . Note that it is essential that the length is even, as for odd length there are counter examples (like 111 and 202).

Exercise 5.21

Given a context-free grammar for a language L , is there also one for $\mathbf{L} \cap \mathbf{L}^{\text {mi }}$? If so, explain how to construct the grammar; if not, provide a counter example where L is context-free but $\mathrm{L} \cap \mathrm{L}^{\mathrm{mi}}$ is not.

Exercises

Exercise 5.22

Is the following statement true or false? Prove your answer:
Given a language L, the language $L \cap \mathbf{L}^{\text {mi }}$ equals to $\{\mathrm{w} \in \mathrm{L}: \mathrm{w}$ is a palindrome $\}$.
Exercise 5.23
Let $\mathrm{L}=\left\{\mathrm{w} \in\{0,1,2\}^{*}: \mathbf{w}=\mathrm{w}^{\mathrm{mi}}\right\}$ and consider $\mathrm{H}=\mathrm{L} \cap\{012,210,00,11,22\}^{*} \cap\left(\{0,1\}^{*} \cdot\{1,2\}^{*} \cdot\{0,1\}^{*}\right)$. This is the intersection of a context-free and regular language and thus context-free. Construct a context-free grammar for H .

Exercises

In the following, one considers regular expressions consisting of the symbol L of palindromes over $\{0,1,2\}$ and the mentioned operations. What is the most difficult level in the hierarchy "regular, linear, context-free, context-sensitive" such expressions can generate. It can be used that $\left\{10^{\mathrm{i}} 10^{\mathrm{j}} 10^{\mathrm{k}} 1: \mathrm{i} \neq \mathrm{j}, \mathrm{i} \neq \mathrm{k}, \mathrm{j} \neq \mathrm{k}\right\}$ is not context-free.
Exercise 5.24: Expressions containing L and \cup and finite sets.

Exercise 5.25: Expressions containing L and \cup and \cdot and Kleene star and finite sets.

Exercise 5.26: Expressions containing L and \cup and \cdot and and \cap and Kleene star and finite sets.

Exercise 5.27: Expressions containing L and • and set difference and Kleene star and finite sets.

Homomorphism

Example
Let ascii(Year 2021) $=596561722032303231$ represent each letter of "Year 2021" by its two-digit hexadecimal ASCII representation.

Definition 5.28
A homomorphism is a mapping h with domain Σ^{*} for some alphabet Σ which preserves concatenation:
$\mathbf{h}(\mathbf{v} \cdot \mathbf{w})=\mathbf{h}(\mathbf{v}) \cdot \mathbf{h}(\mathbf{w})$.
Proposition 5.29
The homomorphism is determined by the images of the single letters and $\mathbf{h}(\mathbf{w})=\mathbf{h}\left(\mathbf{a}_{1}\right) \cdot \mathbf{h}\left(\mathbf{a}_{2}\right) \cdot \ldots \cdot h\left(\mathbf{a}_{\mathbf{n}}\right)$ for a word $\mathbf{w}=\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{\mathbf{n}} ; \mathbf{h}(\varepsilon)=\varepsilon$.
Quiz
What is ascii(Year 1819) for above homomorphism ascii?

Exercises 5.30 and 5.31

Count the number of homomorphisms and list them; explain why there are not more. Two homomorphisms are the same iff they have the same values $h(0), h(1), h(2), h(3)$. Here they take values from 4^{*}.

Exercise 5.30

How many homomorphisms h satisfy $\mathrm{h}(012)=44444$, $\mathrm{h}(102)=444444, \mathrm{~h}(00)=44444$ and $\mathrm{h}(3)=4$?
Exercise 5.31
How many homomorphisms h satisfy $\mathbf{h}(012)=44444$, $\mathrm{h}(102)=44444, \mathrm{~h}(0011)=444444$ and $\mathrm{h}(3)=44$?

Homomorphic Images

Theorem 5.32

The homomorphic images of regular and context-free languages are regular and context-free, respectively.

Construction

Given a homomorphism h , replace in any rule of a given regular / context-free grammar every terminal a by the word $\mathrm{h}(\mathrm{a})$; these replacements only occur on the right side of the rules. The type of the grammar remains unchanged.
For a proof that $S \Rightarrow{ }^{*} w$ in the original grammar iff $S \Rightarrow h(w)$ in the new grammar, one shows by induction for a derivation $\mathrm{S} \Rightarrow \mathrm{v}_{\mathbf{1}} \Rightarrow \ldots \Rightarrow \mathrm{v}_{\mathrm{n}} \Rightarrow \mathrm{w}$ translates into $\mathrm{h}(\mathrm{S}) \Rightarrow \mathrm{h}\left(\mathrm{v}_{\mathbf{1}}\right) \Rightarrow \ldots \Rightarrow \mathrm{h}\left(\mathbf{v}_{\mathbf{n}}\right) \Rightarrow \mathrm{h}(\mathrm{w})$ where h is extended by letting $\mathbf{h}(\mathbf{A})=\mathbf{A}$ for all non-terminals \mathbf{A}. The converse also holds.

Example 5.33

One can apply the homomorphisms also directly to regular expressions using the rules $h(\mathbf{L} \cup \mathbf{H})=\mathbf{h}(\mathbf{L}) \cup \mathbf{h}(\mathbf{H})$, $\mathbf{h}(\mathbf{L} \cdot \mathbf{H})=\mathbf{h}(\mathbf{L}) \cdot \mathbf{h}(\mathbf{H})$ and $\mathbf{h}\left(\mathbf{L}^{*}\right)=(\mathbf{h}(\mathbf{L}))^{*}$. Thus one can move a homomorphism into the inner parts (which are the finite sets used in the regular expression) and then apply the homomorphism there.
So for the language $\left(\{0,1\}^{*} \cup\{0,2\}^{*}\right) \cdot\{33\}^{*}$ and the homomorphism which maps each symbol a to aa, one obtains the language $\left(\{00,11\}^{*} \cup\{00,22\}^{*}\right) \cdot\{3333\}^{*}$.

Context-Senstive Languages

Theorem 5.38

Every recursively enumerable language (= language generated by some grammar) is the homomorphic image of a context-sensitive language.
The idea is that if some grammar generates ($\mathbf{N},\{1,2, \ldots, \mathrm{k}\}, \mathbf{P}, \mathbf{S}$) for L , one can make a new grammar for a context-sensitive language H such that for all $\mathrm{w} \in\{1,2, \ldots, \mathrm{k}\}^{*}, \mathrm{w} \in \mathrm{L}$ iff $\mathrm{w} \cdot \mathbf{0}^{\ell} \in \mathrm{H}$ for some ℓ. These additional 0 will be used to make words longer so that in the new grammar, all rules $l \rightarrow r$ satisfy $|\mathbf{l}| \leq|r|$ which is obtained sufficiently many 0 on the right side and by making rules for 0 to swap with other symbols to move right.

Images of Homomorphisms

Determine $\mathbf{h}(\mathbf{L})$ for the following languages:
(a) $\{0,1,2\}^{*}$;
(b) $\{00,11,22\}^{*} \cap\{000,111,222\}^{*}$;
(c) $\left(\{00,11\}^{*} \cup\{00,22\}^{*} \cup\{11,22\}^{*}\right) \cdot\{011222\}$;
(d) $\left\{\mathbf{w} \in\{0,1\}^{*}: \mathbf{w}\right.$ has more 1 s than it has 0 s$\}$.

Exercise 5.40
h is given as $h(0)=1, h(1)=22, h(2)=333$.
Exercise 5.41
h is given as $h(0)=3, h(1)=4, h(2)=334433$.

Exercise 5.42

Let a homomorphism h : $\{0,1,2,3,4,5,6,7,8,9\}^{*} \rightarrow$ $\{0,1,2,3\}^{*}$ be given by the equations $\mathrm{h}(0)=0$, $\mathrm{h}(1)=\mathrm{h}(4)=\mathrm{h}(7)=1, \mathrm{~h}(2)=\mathrm{h}(5)=\mathrm{h}(8)=2$, $h(3)=h(6)=h(9)=3$. Interpret the images of h as quaternary numbers (numbers of base four, so 12321 represents 1 times two hundred fifty six plus 2 times sixty four plus 3 times sixteen plus 2 times four plus 1). Prove the following:

- Every quaternary number is the image of a decimal number without leading zeroes;
- A decimal number w has leading zeroes iff the quaternary number $\mathrm{h}(\mathrm{w})$ has leading zeroes;
- A decimal number w is a multiple of three iff the quaternary number $h(w)$ is a multiple of three.

Exercise 5.43

Consider only homomorphisms
$\mathrm{h}:\{0,1,2,3,4,5,6,7,8,9\}^{*} \rightarrow\{0,1\}^{*}$ such that

- $\mathbf{h}(\mathrm{w})$ has leading zeroes iff w has;
- $\mathbf{h}(0)=0$;
- the range of h is $\{0,1\}^{*}$.

For each of $p=2,3,5$, answer the following question: Can one choose h such that, in addition, w is a multiple of p iff $h(w)$ is, as a binary number, a multiple of p ?
If h can be chosen as desired then list this h else prove that such a homomorphism h cannot exist.

Inverse Homomorphism

Description 5.46
Let h have domain Σ^{*} and the set $h^{-1}(L)=\left\{w \in \Sigma^{*}: h(w) \in L\right\}$ is called the inverse image of h. h^{-1} satisfies the following rules:
(a) $\mathrm{h}^{-1}(\mathrm{~L}) \cap \mathrm{h}^{-1}(\mathrm{H})=\mathrm{h}^{-1}(\mathrm{~L} \cap \mathrm{H})$;
(b) $\mathrm{h}^{-1}(\mathrm{~L}) \cup \mathrm{h}^{-1}(\mathrm{H})=\mathrm{h}^{-1}(\mathrm{~L} \cup \mathrm{H})$;
(c) $\mathrm{h}^{-1}(\mathrm{~L}) \cdot \mathrm{h}^{-1}(\mathrm{H}) \subseteq \mathrm{h}^{-1}(\mathrm{~L} \cdot \mathrm{H})$;
(d) $\mathrm{h}^{-1}(\mathrm{~L})^{*} \subseteq \mathrm{~h}^{-1}\left(\mathbf{L}^{*}\right)$.

Here $\mathbf{L}=\mathbf{H}=\{0\}$ and $\mathbf{h}(\mathbf{a})=$ aa for all $\mathbf{a} \in \boldsymbol{\Sigma}$ implies $\mathbf{h}^{-1}(\mathbf{L})=\mathbf{h}^{-\mathbf{1}}(\mathbf{H})=\emptyset,\left(\mathbf{h}^{-1}(\mathbf{L})\right)^{*}=\{\varepsilon\}, \mathbf{h}^{-1}(\mathbf{L} \cdot \mathbf{H})=\{0\}$ and $h^{-1}\left(\mathbf{L}^{*}\right)=\{0\}^{*}$.

Theorem 5.47 and Exercise 5.48

Theorem 5.47

If L is on level k of the Chomsky hierarchy and h is an homomorphism then $\mathrm{h}^{-1}(\mathrm{~L})$ is on level k of the Chomsky hierarchy.
Construction for the regular case: If $(\mathbf{Q}, \Gamma, \gamma, \mathbf{s}, \mathbf{F})$ is a dfa recognising L and $\mathrm{h}: \Sigma^{*} \rightarrow \Gamma^{*}$ is an homomorphism then $(\mathbf{Q}, \boldsymbol{\Sigma}, \delta, \mathrm{s}, \mathbf{F})$ is a dfa recognising $\mathbf{h}^{-1}(\mathbf{L})$ where, for every $\mathbf{q} \in \mathbf{Q}$ and $\mathbf{a} \in \boldsymbol{\Sigma}, \delta(\mathbf{q}, \mathbf{a})=\gamma(\mathbf{q}, \mathbf{h}(\mathbf{a}))$.
Exercise 5.48
Let $\mathrm{h}:\{0,1,2,3\}^{*} \rightarrow\{0,1,2,3\}^{*}$ be given by $\mathrm{h}(0)=00$, $\mathrm{h}(1)=012, \mathrm{~h}(2)=123$ and $\mathrm{h}(3)=1$ and let L consist of all words containing exactly five 0 s and at least one 2 .
Construct a complete dfa recognising $\mathrm{h}^{-1}(\mathrm{~L})$.

