
Theory of Computation 6
Normalforms and Algorithms

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 6 Normalforms and Algorithms – p. 1

Repetition 1

Let (Q1,Σ, δ1, s1,F1) and (Q2,Σ, δ2, s2,F2) be dfas which
recognise L1 and L2, respectively.

Consider (Q1 ×Q2,Σ, δ1 × δ2, (s1, s2),F) with
(δ1 × δ2)((q1,q2), a) = (δ1(q1, a), δ2(q2, a)). This automaton
is called a product automaton and one can choose F such
that it recognises the union or intersection or difference of
the respective languages.

Union: F = F1 ×Q2 ∪Q1 × F2;
Intersection: F = F1 × F2 = F1 ×Q2 ∩Q1 × F2;
Difference: F = F1 × (Q2 − F2);
Symmetric Difference: F = F1× (Q2−F2)∪ (Q1−F1)×F2.

Theory of Computation 6 Normalforms and Algorithms – p. 2

Repetition 2 and Gaps Filled

Regular languages are also closed under Kleene star,
Kleene plus and concatenation: Use nfas for these and
convert to dfas.

Context-free languages are closed under union, Kleene
star, Kleene plus, concatenation and intersection with
regular languages. They are in general not closed under
intersection and complement.

Context-sensitive languages are closed under union,
intersection, Kleene star, Kleene plus and concatenation.
While these are easy to see, the following result is more
difficult: They are also closed under complement (not part
of this course).

Recursively enumerable languages are closed under union,
intersection, Kleene star, Kleene plus and concatenation;
they are not closed under complement.

Theory of Computation 6 Normalforms and Algorithms – p. 3

Repetition 3: Palindromes

The members of the language {x ∈ Σ∗ : x = xmi} are called
palindromes. A palindrome is a word or phrase which looks
the same from both directions.

An example is the German name “OTTO”; furthermore,
when ignoring spaces and punctuation marks, a famous
palindrome is the phrase “A man, a plan, a canal: Panama.”
originating from the time when the canal in Panama was
built.

The grammar with the rules S → aSa|aa|a|ε with a ranging
over all members of Σ generates all palindromes; so for
Σ = {0,1,2} the rules of the grammar would be
S → 0S0 |1S1 |2S2 |00 |11 |22 |0 |1 |2 | ε.

The set of palindromes is not regular.

Theory of Computation 6 Normalforms and Algorithms – p. 4

Repetition 4: Homomorphisms

Example
Ascii(Year 2021) = 596561722032303231 represents each
letter of “Year 2021” by its two-digit hexadecimal ASCII
representation.

Definition 5.28
A homomorphism is a mapping h with domain Σ∗ for some
alphabet Σ which preserves concatenation:
h(v ·w) = h(v) · h(w).

Proposition 5.29
The homomorphism is determined by the images of the
single letters and h(w) = h(a1) · h(a2) · . . . · h(an) for a word
w = a1a2 . . . an; h(ε) = ε.

Description 5.46

If h is a homomorphism then h−1(L) = {w : h(w) ∈ L} is
the inverse image of L under h.

Theory of Computation 6 Normalforms and Algorithms – p. 5

Repetition 5: Homomorphism-Laws

Theorem 5.32
The homomorphic images of regular and context-free
languages are regular and context-free, respectively.

Theorem 5.38
Every language generated by some grammar is the
homomorphic image of a context-sensitive language; in
particular the class of context-sensitive languages is not
closed under homomorphism.

Theorem 5.47
If L is on level k of the Chomsky hierarchy and h is a

homomorphism then h−1(L) is also on level k.

Theory of Computation 6 Normalforms and Algorithms – p. 6

Definition 6.1: Normal Forms

The normal forms are named after Noam Chomsky (born
7.12.1928) and Sheila Greibach (born 6.10.1939).

Assume that the language does not contain ε.

Chomsky Normal Form
All rules are of the form A → BC or A → d where A,B,C
are non-terminals and d is a terminal.

Greibach Normal Form
All rules are of the form A → bw where b is a terminal and
A a non-terminal and w a (possibly empty) string of
non-terminals.

If the language contains ε, one allows in both normal forms
S → ε for the start symbol S which then is not allowed to
appear on the right side of a rule.

Theory of Computation 6 Normalforms and Algorithms – p. 7

CNF Algorithm Steps 1 and 2

Given context-free grammar (N0,Σ,P0,S).

1. Dealing with ε: Let N1 = N0 ∪ {S′} and
P1 = P0 ∪ {S′ → S};
While there are rules A → vBw,B → ε in P1 with
A → vw not in P1 Do Begin P1 = P1 ∪ {A → vw} End;
Remove all rules A → ε with A ∈ N0 from P1;
Continue with grammar (N1,Σ,P1,S

′).

2. Dealing with single terminal letters: Let N2 = N1, P2 = P1;
While there are a ∈ Σ and rule A → vaw in P2 with
vw 6= ε Do Begin Choose a new non-terminal B /∈ N2;
Replace in all rules in P2 all occurrences of a by B;
Update N2 = N2 ∪ {B} and P2 = P2 ∪ {B → a} End;
Continue with grammar (N2,Σ,P2,S

′).

Theory of Computation 6 Normalforms and Algorithms – p. 8

CNF Algorithm Steps 3 and 4

3. Breaking long ride hand sides: Let N3 = N2 and P 3 = P2;
While there is A → Bw in P3 with |Bw| ≥ 3

Do Begin Choose a new non-terminal C /∈ N3 and let
N3 = N3 ∪ {C}; Add the rules A → BC,C → w into P3

and remove the rule A → Bw from P3 End;
Continue with grammar (N3,Σ,P3,S

′).

4. Removing rules A → B: Make a table of all (A,B), (A, c)
such that A,B ∈ N3, c ∈ Σ and, in the grammar
(N3,Σ,P3,S

′), A ⇒∗ B and A ⇒∗ c, respectively;
Let N4 = N3 and P4 contain the following rules:
S′ → ε in the case that this rule is in P3;
A → a in the case that (A, a) is in the table;
A → BC in the case that there is D → EF in P3 with
(A,D), (E,B), (F,C) in the table;
The grammar (N4,Σ,P4,S

′) is in Chomsky Normalform.
Theory of Computation 6 Normalforms and Algorithms – p. 9

Example for Chomsky Normalform

The grammar ({S}, {0,1}, {S → 0S0|1S1|00|11},S)
generates all palindromes of even nonzero length.

Chomsky Normal Form
Non-terminals: {S,T,U,V,W}; terminals: {0,1}; start
symbol: S; rules: S → TV|UW, T → VS|0, U → WS|1,
V → 0, W → 1.

The derivation S ⇒ 0S0 ⇒ 01S10 ⇒ 010010 in the old
grammar is equivalent to
S ⇒ TV ⇒ VSV ⇒ 0SV ⇒ 0S0 ⇒ 0UW0 ⇒ 0WSW0 ⇒
0WS10 ⇒ 01S10 ⇒ 01TV10 ⇒ 010V10 ⇒ 010010

in the new grammar.

Theory of Computation 6 Normalforms and Algorithms – p. 10

Exercises 6.4 – 6.6

Bring the following grammars into Chomsky Normal Form.

Exercise 6.4
({S,T}, {0,1}, {S → TTTT,T → 0T1|ε},S).

Exercise 6.5
({S,T}, {0,1}, {S → ST|T,T → 0T1|01},S).

Exercise 6.6
({S}, {0,1}, {S → 0SS11SS0,0110},S).

Always choose exercises of the right difficulty level:
Students who are good in the field should take challenging
exercises; students who have difficulties should take
exercises they can master. So everyone should learn a bit
from the exercises done by oneself; students should also
try out exercises they do not present.

Theory of Computation 6 Normalforms and Algorithms – p. 11

Removing Useless Non-Terminals

Let (N0,Σ,P0,S) be in Chomsky Normal Form.

1. Removing non-terminating non-terminals: Let N1 = {A ∈ N0:
there is a rule A → a or A → ε in P0};
While there is a rule A → BC in P0 with A ∈ N0 −N1

and B,C ∈ N1 Do Begin N1 = N1 ∪ {A} End;
Let P1 = {A → w from P0 with A ∈ N1 and
w ∈ N1 ·N1 ∪Σ ∪ {ε}};
If S /∈ N1 then terminate with empty grammar else
continue with grammar (N1,Σ,P1,S).

2. Selecting all reacheable non-terminals: Let N2 = {S};
While there is a rule A → BC in P1 with A ∈ N2 and
{B,C} 6⊆ N2 Do Begin N2 = N2 ∪ {B,C} End;
Let P2 = {A → w from P1: A ∈ N2};
The grammar (N2,Σ,P2,S) does not contain any
useless non-terminal.

Theory of Computation 6 Normalforms and Algorithms – p. 12

Quiz 6.8

Σ = {0}; N = {Q,R,S,T,U,V,W,X,Y,Z};
rules S → TU|UV, T → UT|TV|TW, R → VW|QQ|0,
Q → 0, U → VW|WX, V → WX|XY|0, W → XY|YZ|0;
start symbol S.

Determine the set of reacheable and terminating
non-terminals.

Theory of Computation 6 Normalforms and Algorithms – p. 13

Exercises 6.9 and 6.10

Exercise 6.9: Consider the grammar

({S0,S1, . . . ,S9}, {0}, {S0 → S0S0, S1 → S2S3,
S2 → S4S6|0, S3 → S6S9, S4 → S8S2, S5 → S0S5,
S6 → S2S8, S7 → S4S1|0, S8 → S6S4|0, S9 → S8S7},
S1).

Exercise 6.10: Consider the grammar

({S0,S1, . . . ,S9}, {0}, {S0 → S1S1, S1 → S2S2,
S2 → S3S3, S3 → S0S0|S4S4, S4 → S5S5,
S5 → S6S6|S3S3, S6 → S7S7|0, S7 → S8S8|S7S7,
S8 → S7S6|S8S6, S9 → S7S8|0}, S1).

For each of the two grammars, determine the set of
reacheable and terminating non-terminals and explain the
steps on the way to this set. What is the shortest word
generated by the grammar?

Theory of Computation 6 Normalforms and Algorithms – p. 14

Emptyness Check

The removing of useless non-terminals results in an empty
grammar in the case that the grammar does not generate
any word. Here an algorithm for a context-free grammar
(N,Σ,P,S) which is not in any normalform.

Initialisation: Let N′ = ∅;

Loop: While there are A ∈ N−N′ and a rule A → w with
w ∈ (N′ ∪Σ)∗

Do Begin N′ = N′ ∪ {A} End;

Decision: If S /∈ N′ then the language of the grammar is
empty else the language of the grammar constains
some word.

Theory of Computation 6 Normalforms and Algorithms – p. 15

Finiteness Check

Let (N,Σ,P,S) be in Chomsky Normal Form. One
computes N′′(A) as the set of non-terminals occurring in a
derivation of a terminal word from A after at least one step.

Initialisation 1: Let N′ = ∅;

Loop 1: While there are A ∈ N−N′ and a rule A → w with
w ∈ (N′ ∪Σ)∗

Do Begin N′ = N′ ∪ {A} End;

Initialisation 2: For all A ∈ N, let N′′(A) = ∅;

Loop 2: While there are A,B,C,D ∈ N′ and a rule B → CD

with B ∈ N′′(A) ∪ {A} and {C,D} 6⊆ N′′(A)
Do Begin N′′(A) = N′′(A) ∪ {C,D} End;

Decision: If there is A ∈ N′′(S) ∪ {S} with A ∈ N′′(A) then
the language of the grammar is infinite else it is finite.

Theory of Computation 6 Normalforms and Algorithms – p. 16

Exercise 6.13: Time Complexity

Polynomial time means that the algorithm uses time p(n)
for inputs of length n to decide some property. If a grammar
is in Chomsky Normal Form, n can just be the number of
non-terminals.

The checks whether a grammar in CNF generates some
word or generates infinitely many words are in polynomial
time. How complex is it to not only check whether some
word is generated but also to output one such witness?
Possible answers are polynomial time, exponential time and
double exponential time. Here the time to output a word of
length m is m computation steps. Give reasons for the
answer.

Theory of Computation 6 Normalforms and Algorithms – p. 17

Exercises 6.14 – 6.17

For grammar ({S,T,U,V,W}, {0,1,2},P,S) with below
rules determine how many words the grammar generates:
(a) None, (b) One, (c) Two, (d) Three, (e) Finitely many and
at least four, (f) Infinitely many?

Exercise 6.14: The rules are S → TT, T → UU,
U → VW|WV, V → 0, W → 1.

Exercise 6.15: The rules are S → ST, T → TU, U → UV,
V → VW, W → 0.

Exercise 6.16: The rules are S → UT|TU|2, T → VV,
U → WW, V → 0, W → 1.

Exercise 6.17: The rules are S → SS|TT|UU, T → VV,
U → WW, V → 0, W → WW.

Theory of Computation 6 Normalforms and Algorithms – p. 18

Derivation Tree

For grammar ({S,T,U}, {0,1}, {S → SS|TU|UT,
U → 0|US|SU, T → 1|TS|ST},S), a derivation S ⇒ TU ⇒
TSU ⇒ TUTU ⇒ 1UTU ⇒ 10TU ⇒ 101U ⇒ 1010 can
be represented by a tree: S

T

T

1

S

U

0

T

1

U

0

Theory of Computation 6 Normalforms and Algorithms – p. 19

Properties of Derivation Trees

Each node has a symbol in it.

If the symbol is a non-terminal then the successor nodes
have the symbols of the rule applied at this symbol; if the
symbol is a terminal then the node is a leaf.

The derivation does not depend on the order of rules on
incomparable nodes are applied; however, the rule of each
node has to be applied before it is applied to any successor.

The leaves below a node have the part of the word
generated from the corresponding symbol.

Trees are more precise then derivations by lists of rules, as
they explicitly say which non-terminal derives into which
symbols and these are on the successor nodes.

Sometimes a derivation is ambiguous: For TU ⇒ TSU, the
rule can be T → TS or U → SU.

Theory of Computation 6 Normalforms and Algorithms – p. 20

Number of Derivation Trees

As the rules to derive a word are not always unique but can
be ambiguous, there can be different derivation trees for the
same word. Indeed, one can prove that for some grammars
it is impossible to have the derivation tree all the time
unique. Consider the grammar
({S,T,U}, {0,1}, {S → SS|TU|UT, U → 0|US|SU,
T → 1|TS|ST},S), how many derivation trees has the word
below?

Exercise 6.19: How many derivation trees are there for
011001?

Exercise 6.20: How many derivation trees are there for
000111?

Theory of Computation 6 Normalforms and Algorithms – p. 21

Exercise 6.21

One can generalise the notion of derivation tree to all
context-free grammars and might then have nodes with
more than two successors. Consider the grammar

({S,T}, {0,1,2}, {S → TT,T → 0T1|2},S).

and draw the derivation tree for the word 00211021. Prove
that all words in the language of this grammar have a
unique derivation tree.

Theory of Computation 6 Normalforms and Algorithms – p. 22

Pumping Lemma

Theorem 2.15 (b)
Let L ⊆ Σ∗ be an infinite context-free language generated
by a grammar (N,Σ,P,S) in Chomsky Normal Form with h

non-terminals. Then the constant k = 2h+1 satisfies that for
every u ∈ L of length at least k there is a representation
vwxyz = u such that |wxy| ≤ k, (w 6= ε or y 6= ε) and

vwℓxyℓz ∈ L for all ℓ ∈ N.

Proof Idea
In the derivation tree of a word u longer than 2h+1, find the
lowest node having a non-terminal A which is also on a
branch somewhere below. Below A, no branch repeats a
non-terminal and therefore each branch has at most the
length h. Thus there are at most 2h+1 leaves below A.
Since A itself repeats, one has that S ⇒∗ vAz ⇒∗ vwAyz

⇒∗ vwxyz and |wxy| ≤ 2h+1 and A ⇒∗ wAy and wy 6= ε.
Theory of Computation 6 Normalforms and Algorithms – p. 23

Example of Derivation Tree

S

T at r

T at r′

1

S

T at r′′

1

U

0

U

0

Lowest node r with non-terminal repeated below at r′ or r′′.

Possible Pumpings: 1(10)ℓ0, 1ℓ10ℓ0.
Theory of Computation 6 Normalforms and Algorithms – p. 24

Ogden’s Lemma

Marked Symbols
Mark the first four 1 in word 0000011111 as 0000011111.
The word can be pumped such that at least one but at most
four marked symbols are pumped or between the pumped

parts: 0000ℓ 011ℓ 111.

Theorem 6.22
Let L ⊆ Σ∗ be an infinite context-free language generated
by a grammar (N,Σ,P,S) in Chomsky Normal Form with h

non-terminals. Then the constant k = 2h+1 satisfies that for
every u ∈ L with at least k marked symbols, there is a
representation vwxyz = u such that wxy contains at most
k marked symbols, wy contains at least 1 marked symbol

and vwℓxyℓz ∈ L for all ℓ ∈ N.

Theory of Computation 6 Normalforms and Algorithms – p. 25

Example 6.23

The Language

Let L be the language of all words w ∈ 1+(0+1+)+ with no
two runs of zeroes of equal lengths. That is, words in L

start and end with 1 and do not contain a subword 10h1

twice for any h > 0.

L contains words 1000101 and 1100110001 and 1111111.
L neither contains 100111001 nor 10100110100001.

Traditional Context-Free Pumping Lemma Satisfied
More precisely: Each word longer than 2 symbols in L can
somewhere be pumped by a single one-symbol pump.

If w ∈ 1+0+1+ then pump some 0 in the middle.
If w contains a border of at least two 1 then pump a 1 in this
border.
If w has a longest run of 0 separated by a single 1 from
another run of 0 then pump this separating 1.

Theory of Computation 6 Normalforms and Algorithms – p. 26

L does not satisfy Ogden’s Lemma

If k is a constant supposed to work for Ogden’s Pumping

Lemma then consider u = 101021031 . . .104k1 and mark
the zeroes of the subword 10k1.
Let vwxyz split u into five parts.

If w or y in {0,1}+ − {0}∗ − {1}∗ then vw4xy4z contains a

subword 10h1 at least twice.
One of w and y must be in 0+ and contain some of the
marked zeroes.
In the word vwwxyyz pumping has replaced 10k1 by

10k+h1 for h ∈ {1,2, . . . ,k} and thus the subword 10k+h1 in

u must also be pumped and replaced by 10k+h+ℓ1 for

ℓ ∈ {1,2, . . . ,k+ h}. However, 10k+h+ℓ1 is also a subword
of u which occurs in vwwxyyz and thus vwwxyyz /∈ L (as
h ≤ k and ℓ ≤ 2k and h+ k+ ℓ ≤ 4k).

Theory of Computation 6 Normalforms and Algorithms – p. 27

Square-Containing Words

Theorem 6.24 [Ehrenfeucht and Rozenberg 1983; Ross
and Winklmann 1982]
The language L of square-containing words over {0,1,2} is
not context-free.

Proposition 6.25
The language L of square-containing words over {0,1,2}
satisfies Ogden’s Lemma with constant 6.

If u = 012012102012012102 then one can see that
012(01)∗2102012012102 ⊆ L. Details on next page.

Theory of Computation 6 Normalforms and Algorithms – p. 28

Proof of Proposition

For given word u ∈ L with at least six letters marked,
consider those splittings vwxyz = u where the following
conditions are met:

• v ends with the same letter a with which z starts;

• w contains at least one marked letter;

• x, y are ε.

Such splittings exist obviously when there is a ∈ {0,1,2}
such that there are three marked letters a or there are two
marked letters a with one other marked letter in between.

The remaining case is wlog of form r00r10r21r31r42r52r6.
If r1 is in 0∗ then one let w = 1 and v everything left of the
first 1 and z everything right of it. If r1 contains a b 6= 0 then
one let w be all the part right of this b and left of the first
marked b and w contains the marked letter 0.

Theory of Computation 6 Normalforms and Algorithms – p. 29

Exercises 6.27 and 6.28

Exercise 6.27
Prove that the language

L = {ah ·w: a ∈ {0,1,2}, w ∈ {0,1,2}∗, w is
square-free and h ∈ N}

satisfies Theorem 2.15 (b) but does not satisfy Ogden’s
Pumping Lemma. The fact that there are infinitely many
square-free words can be used without proof.

Exercise 6.28
Use the Block Pumping Lemma to prove the following
variant of Ogden’s Lemma for regular languages: If a
language L satisfies the Block Pumping Lemma with
constant k+ 1 then one can, for each word u having at least
k marked symbols, find a splitting of the word into parts
x,y, z such that u = xyz and xy∗z ⊆ L and y contains at
least 1 and at most k marked symbols.

Theory of Computation 6 Normalforms and Algorithms – p. 30

Greibach Normal Form

Example 6.29
Consider ({S}, {0,1}, {S → 0S0|1S1|00|11|0|1},S). For the
Greibach Normal Form, one needs two additional
non-terminals T,U and updates the rules as follows:

S → 0ST|1SU|0T|1U|0|1, T → 0, U → 1.

Consider ({S}, {0,1}, {S → SS|0S1|1S0|10|01},S). For the
Greibach Normal Form, one needs two additional
non-terminals T,U and updates the rules as follows:

S → 0SU|0U|1ST|1T, T → 0|0S, U → 1|1S.

Exercises 6.30 and 6.31
Construct Greibach Normal Form for the intersection of
0∗1∗0∗1∗ with each of these two languages, respectively.

Theory of Computation 6 Normalforms and Algorithms – p. 31

Languages and Derivatives
Exercise 6.32. Prove the following rules of the derivative
with a ∈ Σ and x ∈ Σ∗:

• (L ∪H)x = Lx ∪Hx and (L ∩H)x = Lx ∩Hx;
• If ε ∈ L then (L ·H)a = La ·H∪Ha else (L ·H)a = La ·H;
• (L∗)a = La · L

∗.

The following theorem characterises the context-free
languages by stating that all derivatives have to be formed
from a finite set of languages using concatenation and
union; furthermore, all the derivatives of these finitely many
languages satisfy the same condition.

Theorem 6.33. A language L is context-free iff there is a
finite list of languages H1,H2, . . . ,Hn with L = H1 such that
for every word x and every Hm, (Hm)x is a finite union of
finite products of some Hk.

Exercise 6.34. Prove this theorem using Exercise 6.32 and
Existence of Greibach Normal Form.

Theory of Computation 6 Normalforms and Algorithms – p. 32

	Repetition 1
	Repetition 2 and Gaps Filled
	Repetition 3: Palindromes
	Repetition 4: Homomorphisms
	Repetition 5: Homomorphism-Laws
	Definition 6.1: Normal Forms
	CNF Algorithm Steps 1 and 2
	CNF Algorithm Steps 3 and 4
	Example for Chomsky Normalform
	Exercises 6.4 -- 6.6
	Removing Useless Non-Terminals
	Quiz 6.8
	Exercises 6.9 and 6.10
	Emptyness Check
	Finiteness Check
	Exercise 6.13: Time Complexity
	Exercises 6.14 -- 6.17
	Derivation Tree
	Properties of Derivation Trees
	Number of Derivation Trees
	Exercise 6.21
	Pumping Lemma
	Example of Derivation Tree
	Ogden's Lemma
	Example 6.23
	L does not satisfy Ogden's Lemma
	Square-Containing Words
	Proof of Proposition
	Exercises 6.27 and 6.28
	Greibach Normal Form
	Languages and Derivatives

