
Theory of Computation 8
Non-Deterministic Membership

Testing

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 8 Non-Deterministic Membership Testing – p. 1

Repetition 1

For a language L and a word w of length n, one wants to
decide whether w ∈ L. The following will be shown:

Regular language: Done by a finite automaton, time O(n).

Linear language: Special case of Cocke, Kasami and

Younger’s algorithm, time O(n2).

Context-free language: Cocke, Kasami and Younger’s

algorithm, time O(n3).

Context-sensitive language: Savitch’s algorithm, space

O(n2), time O(cn
2

) for some c.

Today: Non-deterministic Linear Time Algorithms for
Context-Free Languages.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 2

Repetition 2

Let (N,Σ,P,S) be in Chomsky Normal Form and a1a2 . . . an
be the input word.

1. Initialisation: For all k,

Ek,k = {A ∈ N : A → ak is a rule}.

2. Loop: Go through all pairs (i, j) such that they are
processed in increasing order of j− i and let

Ei,j = {A : ∃ rule A → BC ∃k

[i ≤ k < j and B ∈ Ei,k and C ∈ Ek+1,j]}.

3. Decision: Word is generated by the grammar iff S ∈ E1,n.

Set Ei,j contains all non-terminals generating ai . . . aj.

Time O(n3): O(n2) values Ei,j with O(n) choices of k.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 3

Repetition 3

Linear Grammars
Each rules if of the form A → u or A → vBw with
non-terminals A,B and terminal words u,v,w.

Faster Membership Test
Variant of Cocke Kasami Younger algorithm does it in

O(n2).

Combination of Context-Free Grammars
A regular combination of grammars L1, . . . ,Ln is formed
from these by taking unions, intersections, concatenations,
set difference, Kleene star and Kleene plus, if needed,
repeatedly.
All grammars which are a regular combination of some

context-free grammars have an O(n3) membership test.
Some regular combinations of linear grammars have an

O(n2) membership test, for example L∗ for linear L.
Theory of Computation 8 Non-Deterministic Membership Testing – p. 4

Repetition 4

Algorithm 8.16
Context-senstive grammar (N,Σ,P,S), input word w.

Recursive Call: Function Check(u,v, t)
Begin If u = v or u ⇒ v Then Return(1);
If t ≤ 1 and u 6= v and u 6⇒ v Then Return(0);
Let t′ = t/2; Let r′ = 0;
For all u′ ∈ (N ∪Σ)∗ with |u| ≤ |u′| ≤ |v| Do
Begin If Check(u,u′, t′) = 1 and Check(u′,v, t′) = 1

Then r′ = 1 End; Return(r′) End.

Decision: If Check(S,w,kn) = 1 Then w ∈ L Else w /∈ L.

Space Complexity, per call O(n), in total O(n2);

Value of t: kn/2h in depth h of recursion (k = |Σ|+ |N|+ 1);
Number of nested calls: O(log(kn)) = O(log(k) · n).

Runtime: O(cn
2

) for any c > (2k)log(k).
Theory of Computation 8 Non-Deterministic Membership Testing – p. 5

Repetition 5

Definition [Dahlhaus and Warmuth 1986]
A grammar (N,Σ,P,S) is growing context-sensitive iff
|l| < |r| for all rules l → r in the grammar.

Theorem [Dahlhaus and Warmuth 1986]
Given a growing context-senstive grammar there is a
polynomial time algorithm which decides membership of
the language generated by this growing grammar.

The language {0n12
n

: n > 0} has a growing
context-sensitive grammar but not a context-free one.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 6

Leftmost Derivation

The grammar ({S,T,U}, {0,1}, {S → SS|TU|UT,
U → 0|US|SU, T → 1|TS|ST},S) has on 1010 the left-most
derivation S ⇒ TU ⇒ TSU ⇒ 1SU ⇒ 1UTU ⇒ 10TU ⇒
101U ⇒ 1010. S

T

T

1

S

U

0

T

1

U

0

Theory of Computation 8 Non-Deterministic Membership Testing – p. 7

Idea for Algorithm

Chomsky Normal Form
Every rule either produces an additional non-terminal or
transforms a non-terminal into terminal.
Left-most derivation for word of length n needs 2n−1 steps.

Method to Check Derivation
Start with the symbol S on the stack and keep the
non-terminals of the left-most derivation on the stack while
the terminals, whenever generated, are compared with the
input word to be checked.

Each cycle, pull top symbol of stack for one step.
If new non-terminals are made, push them back to stack.
If a terminal is made, compare it with the next input symbol.
If they agree then continue into next cycle else reject.

Accept when the whole input is compared and stack empty.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 8

Formal Definition 8.2

Pushdown Automaton (Q,Σ,N, δ, s,S,F)
Q are states with start state s and accepting states F;
N are stack symbols with start symbol S;
Σ is terminal alphabet;
δ gives choices what to do in cycle; δ maps
(state, current input, top stack symbol) to choices for
(new state,new top of stack) where the input is from
{ε} ∪Σ and the new top of stack is from N∗.

In each cycle, the pushdown automaton follows an option of
δ what it can do.

A run is successful iff all input gets processed and an
accepting state gets reached (acceptance by state);
acceptance by empty stack requires in addition that the
stack is empty.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 9

Example 8.3 of PDA

Pushdown Automaton for Grammar from Slide 7.

• States Q = {s} and F = {s};

• Terminals Σ = {0,1};

• Stack Symbols N = {S,T,U} with start symbol S;

• δ(s, ε,S) = {(s,SS), (s,TU), (s,UT)};
δ(s, ε,T) = {(s,TS), (s,ST)};
δ(s, ε,U) = {(s,US), (s,SU)};
δ(s,0,U) = {(s, ε)};
δ(s,1,T) = {(s, ε)};
δ(s,v,A) = ∅ for all other choices of (v,A).

Here a sample processing of the word 0011:

current input start ε 0 ε ε 0 1 1

new stack S UT T ST UTT TT T ε
Theory of Computation 8 Non-Deterministic Membership Testing – p. 10

Algorithm 8.4 CTF → PDA by ES

Let (N,Σ,P,S) be a grammar in Chomsky Normal Form
generating a language L. Then one can construct a
pushdown automaton recognising the same language L by
empty stack as follows:

• Q = {s} and F = {s};

• Σ and N are taken over from the grammar; furthermore,
S is again the start symbol;

• For every non-terminal A ∈ N, one defines that
δ(s, ε,A) = {(s,BC) : A → BC is in P} ∪ {(s, ε) : S → ε
is in P and A = S},
for a ∈ Σ, if A → a is in P then δ(s, a,A) = {(s, ε)} else
δ(s, a,A) = ∅.

Every context-free language can be recognised by a push-
down automaton with empty stack acceptance condition.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 11

Verification I

Let v ∈ Σ∗, w ∈ N∗ and vw 6= ε.

One proves by induction the following:
The grammar (N,Σ,P,S) can derive vw in n steps iff the
pushdown automaton can go from S in the stack to w in the
stack in n steps while processing input v. Clear for n = 0.

Case w = BCw̃, rule A → BC in grammar and grammar
derives S ⇒∗ vAw̃ ⇒ vBCw̃ in n+ 1 steps. By hypothesis
PDA has after n steps processed v and stack Aw̃. One
more step gets BCw̃ in stack.

Case v = ṽa, rule A → a and grammar derives
S ⇒∗ ṽAw ⇒ ṽaw in n+ 1 steps. Then PDA processes
input ṽ in n steps and has stack Aw. It can in next step
read input a and consume stack symbol A in order to get
v = ṽa processed and stack to be w.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 12

Verification II

Other direction: Case PDA processes input v with stack
Aw̃ in n steps and then replaces A by BC. The grammar
can derive vAw̃ in n steps by induction hypothesis and then
apply rule A → BC to get vBCw̃.

Case PDA processes input ṽ with stack Aw in n steps and
then reads input a and removes A in one step. By induction
hypothesis, grammar reaches ṽAw in n steps; it has rule
A → a to reach ṽaw in one further step.

Summary
The grammar can derive a nonempty word in vw ∈ Σ∗ ·N∗

iff the pushdown automaton can while processing input v
reach a situation where w is in the stack. In particular, the
language of words in Σ+ generated by the grammar is the
same as the language recognised by the PDA.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 13

Exercises

Construct pushdown automata recognising by empty stack
for the below languages.

Exercise 8.5
The language is {0n1m2k : n+m+ 1 = k}.

Exercise 8.6
The language is {0n1m2k : n+m < k}.

Exercise 8.7
The language is {0n1m2k : n 6= m and k > 0}.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 14

Algorithm 8.8 CTF → PDA by STATE

Assume that (N,Σ,P,S) is a context-free language in
Chomsky Normal Form. The pushdown automaton
({s, t},Σ,N ∪N′, δ, s,S′, {t}) accepts by state where
N′ = {A′ : A ∈ N} is a “primed copy” of N and for every
non-terminal A ∈ N and the corresponding A′ ∈ N′, δ is
defined as follows:

δ(s, ε,A) = {(s,BC) : A → BC is a rule in P};
δ(s, ε,A′) = {(s,BC′) : A → BC is a rule in P}
∪ {(t, ε) : A′ = S′ and S → ε is a rule in P};
for all terminals a, if the rule A → a is in P

then δ(s, a,A) = {(s, ε)} and δ(s, a,A′) = {(t, ε)}
else δ(s, a,A) = ∅ and δ(s, a,A′) = ∅;
δ(t,v,A), δ(t,v,A′) are ∅ for all v.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 15

Ideas of Verification

Last symbol on stack is of type A′, all others are of type A.

Pushdown automaton goes into the accepting state t only
when processing some A′ and then stops doing anything;
this simulates acceptance by empty stack without having it
as a rule of the pushdown automaton.

One shows the following two statements:

S ⇒∗ vwA with v ∈ Σ∗, w ∈ N∗ and A ∈ N iff the pushdown
automaton can, on input v reach the stack content wA′ and
is in state s.

The pushdown automaton can process input v and reach
empty stack iff it can process v and reach the state t.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 16

Exercises

Construct pushdown automata accepting by state for the
following languages.

Exercise 8.9
Construct a pushdown automaton accepting by state for the

language {0n1m2k : n+m > k}.

Exercise 8.10
Construct a pushdown automaton accepting by state for the

language {0n1m2k : n 6= k or m 6= k}.

Exercise 8.11
Construct a pushdown automaton accepting by state for the
language {w ∈ {0,1}∗ : w is not a palindrome}.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 17

PDA by STATE → PDA by ES

Theorem 8.12
If L can be recognised by a pushdown automaton accepting
by final state then it can also be recognised by a pushdown
automaton accepting by empty stack.

Construction
Given a pushdown automaton (Q,Σ,N, δ, s,S,F) for L, one
constructs a new automaton (Q ∪ {t},N, δ′, s,S,F ∪ {t}) as
follows (where t is a new state outside Q):

• For all q ∈ Q, A ∈ N and v,
δ′(q,v,A) = δ(q,v,A) ∪ {(t, ε) : v = ε and q ∈ F};

• For all A ∈ N and v 6= ε, δ′(t, ε,A) = {(t, ε)} and
δ′(t,v,A) = ∅.

Idea: Simulate old PDA, but from accepting state can transit
to t and remove all remaining stack symbols.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 18

Algorithm 8.13 PDA by ES to CTF

Given a pushdown automaton (Q,Σ,N, δ, s,S,F) for L, let
the grammar ((Q×N×Q) ∪ {S′},Σ,P,S′) be defined by
putting the following rules into P:

• For all p ∈ F, put all rules S′ → (s,S,p) into P;

• For all q, r ∈ Q, A ∈ N, v ∈ Σ∗, (p1,w) ∈ δ(q,v,A) with
w = B1B2 . . .Bn and n > 0, p2, . . . ,pn ∈ Q, put the rule

(q,A, r) → v(p1,B1,p2)(p2,B2,p3) . . . (pn,Bn, r)

into P;

• For each q ∈ Q, A ∈ N, v ∈ Σ∗ and (p, ε) ∈ δ(q,v,A),
put the rule (q,A,p) → v into P.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 19

Ideas of Verification

The main construction guideline is that

(q,A, r) ⇒∗ v iff the pushdown automaton can
process input v while using up the non-terminal A
without touching the stack behind A and transiting
from state q to state r.

The rule

(q,A, r) → v(p1,B1,p2)(p2,B2,p3) . . . (pn,Bn, r)

considers any combination of intermediate states
p2,p3, . . . ,pn which do not lead to a terminating derivation if
guessed wrongly, but lead to a correct termination if
guessed correctly. p1 is computed by the transition function.
The rule (q,A, r) → v is only put into the grammar if the δ
updates from q to r by using up A and reading v.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 20

Example: Pushdown Automaton

Example 8.14
The following pushdown automaton accepts by empty stack
a language.

• Q = {s, t}, F = {t}, start state is s;

• Σ = {0,1};

• N = {S,U,T}, start symbol is S;

• δ(s,0,S) = {(s,SU), (t,U), (t, ε)};
δ(s,1,S) = {(s,ST), (t,T), (t, ε)};
δ(t,0,U) = {(t, ε)}; δ(t,1,U) = ∅;
δ(t,1,T) = {(t, ε)}; δ(t,0,T) = ∅;
δ(q, ε,A) = ∅ for all q ∈ Q and A ∈ N.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 21

Grammars for PDA

The corresponding pushdown automaton has the states
{s, t} × {S,U,T} × {s, t} ∪ {S′}; one can omit most states
and get the following grammar:

• Non-terminals: S′, (s,S, t), (t,U, t), (t,T, t);

• Terminals: 0,1;

• S′ → (s,S, t);
(s,S, t) → 0(s,S, t)(t,U, t)|0(t,U, t)|0;
(s,S, t) → 1(s,S, t)(t,T, t)|1(t,T, t)|1;
(t,U, t) → 0;
(t,T, t) → 1;

• Start symbol S′.

Improved grammar:
({S}, {0,1}, {S → 0S0|1S1|00|11|0|1},S).

Theory of Computation 8 Non-Deterministic Membership Testing – p. 22

Algorithm 8.15 GNF to PDA

Greibach Normal Form grammar (N,Σ,P,S) to PDA
(Q,Σ,N′, δ, s,S,F) by accepting state:

• The set of states is {s, t,u}; start state s;
if ε is in the language then F = {s,u} else F = {u};

• Let N′ = {A,A′ : A ∈ N} and S′ be the start symbol;

• The terminal alphabet is Σ as for the grammar;

• For all symbols a ∈ Σ and A ∈ N,
δ(s, a,S′) = {(t,B1B2 . . .B

′

n) : S → aB1B2 . . .Bn is a
rule in P with n > 0} ∪ {(u, ε) : S → a is a rule in P};
δ(t, a,A) = {(t,B1B2 . . .Bn) : A → aB1B2 . . .Bn is a
rule in P with n ≥ 0};
δ(t, a,A′) = {(t,B1B2 . . .B

′

n) : A → aB1B2 . . .Bn is a
rule in P with n > 0} ∪ {(u, ε) : A → a is a rule in P};
δ(q,v,A), δ(q,v,A′) are ∅ for all states q, A ∈ N and v

where not defined before.
Theory of Computation 8 Non-Deterministic Membership Testing – p. 23

Greibach Normal Form

The pushdown automaton from the previous slide was
complicated in order to accomodate ε in the case that it is in
the language. If it is not, an easier way is to do it by
acceptance by empty stack.

Exercise 8.16
Given a grammar (N,Σ,P,S) in Greibach Normal Form for
a language L not containing ε, explain how to define δ for a
pushdown automaton ({s},Σ,N, δ, s,S, {s}) accepting by
empty stack the same language L. This pushdown
automaton should process one input symbol in every step.
Explain the key ideas of the construction and its verification.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 24

Digit Sum at Average 1

Example 8.17: Deterministic PDA

• Q = {s}; F = {s}; start state s;

• N = {S}; start symbol S;

• Σ = {0,1,2,3};

• δ(s,0,S) = {(s, ε)};
δ(s,1,S) = {(s,S)};
δ(s,2,S) = {(s,SS)};
δ(s,3,S) = {(s,SSS)};
δ(s, ε,S) = ∅;

• Acceptance mode is by empty stack.

The PDA recognises {w : digitsum(w) < |w| and all proper
prefixes v of w satisfy digitsum(v) ≥ |v|} deterministically.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 25

Deterministic Context-Free

Exercise 8.18
Make context-free grammars in Chomsky Normal Form and
Greibach Normal Form for the language of the PDA from
Example 8.17.

Definition 8.19
A deterministic pushdown automaton is given as
(Q,Σ,N, δ, s,S,F) and has the acceptance mode by state
with the additional constraint that for every A ∈ N and every
a ∈ Σ and every q ∈ Q, only one of the sets
δ(q, ε,A), δ(q, a,A) can be non-empty and the non-empty
one contains exactly one pair (p,w).

The languages recognised by a deterministic pushdown
automaton are called deterministic context-free languages.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 26

Closure Under Complement

Given a deterministic PDA (Q,Σ,N, δ, s,S,F) with
acceptance by state, construct the new PDA as follows:

• Q′ = Q ∪ {t,u} for new states t,u; F′ = {u} ∪Q− F;
start state t;

• Σ is same, new start symbol S′; N′ = N ∪ {S′};

• The new transition function δ′ is as follows, where
v ∈ Σ ∪ {ε}, a ∈ Σ, q ∈ Q, A ∈ N:
1. δ′(t, ε,S′) = {(s,SS′)};
2. if δ(q,v,A) 6= ∅ then δ′(q,v,A) = δ(q,v,A);
3. if δ(q, a,A) and δ(q, ε,A) are both ∅ then
δ′(q, a,A) = (u,S′);
4. δ′(q, a,S′) = {(u,S′)};
5. δ′(u, a,S′) = {(u,S′)};
6. δ′ is ∅ everywhere else.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 27

Verification Ideas I

• It starts with state t and symbol S′ and pushes SS′ onto
the stack before simulating the old automaton by
instruction of type 1;

• It then simulates the old automaton using instructions of
type 2 and it accepts iff the old automaton rejects;

• When the old automaton gets stuck by a missing
instruction then the new automaton pushes S′ and goes
to state u by instruction of type 3;

• When the old automaton gets stuck by empty stack
then this is indicated by S′ being the symbol to be used
and the new automaton pushes S′ back onto the stack
and goes to state u by instruction of type 4;

Theory of Computation 8 Non-Deterministic Membership Testing – p. 28

Verification Ideas II

• Once the automaton reaches state u and has S′ on the
top of the stack, it stays in this situation forever and
accepts all subsequent inputs by instructions of type 5;

• The instruction set is completed by defining that δ′ takes
∅ in the remaining cases in order to remain
deterministic and to avoid choices in the transitions.

New Automaton gets never stuck. Doing complementation
twice gives PDA for old language which never gets stuck.

Every deterministic context-free language is recognised by
a deterministic pushdown automaton (Q,Σ,N, δ, s,S,F)
which has the acceptance mode by state with the additional
constraint that for every A ∈ N and every a ∈ Σ and every
q ∈ Q there is exactly one pair (p,w) ∈ δ(q, ε,A)∪ δ(q, a,A);
this pair is also only in one of these two sets.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 29

Combining with Regular Languages

Proposition 8.21
If L is recognised by a deterministic pushdown automaton
(Q,Σ,N, δ, s,S,F) which never gets stuck and H is
recognised by a complete deterministic finite automaton
(Q′,Σ, δ′, s′,F′) then L ∩H is recognised by the
deterministic pushdown automaton

(Q×Q′,Σ,N′, δ × δ′, (s, s′),S,F× F′)

and L ∪H is recognised by the deterministic pushdown
automaton

(Q×Q′,Σ,N′, δ × δ′, (s, s′),S, (Q× F′) ∪ (F×Q′))

where (δ × δ′)((q,q′), a,A) = {(p,p′),w) : (p,w) ∈ δ(q, a,A)
and p′ = δ′(q′, a)} and
(δ × δ′)((q,q′), ε,A) = {(p,q′),w) : (p,w) ∈ δ(q, ε,A)}.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 30

Example 8.22

There is a deterministic pushdown-automaton which
accepts iff two types of symbols appear in the same
quantity, say 0 and 1 and which never gets stuck:

• Q = {s, t}; s is start state and accepting;

• 0,1 ∈ Σ;

• N = {S,T,U,V,W} with start symbol S;

• δ(q, a,A) = {(q,A)} for all a ∈ Σ− {0,1} and A ∈ N;
δ(s,0,S) = {(t,US)}; δ(s,1,S) = {(t,TS)};
δ(t,1,U) = {(s, ε)}; δ(t,0,U) = {(t,VU)};
δ(t,1,V) = {(t, ε)}; δ(t,0,V) = {(t,VV)};
δ(t,0,T) = {(s, ε)}; δ(t,1,T) = {(t,WT)};
δ(t,0,W) = {(t, ε)}; δ(t,1,W) = {(t,WW)};
δ takes value ∅ everywhere else.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 31

Closure under Union and Intersection

Theorem 8.23
The deterministic context-free languages are closed neither
under union and nor under intersection.

Proof
The language La,b = {w ∈ {0,1,2}∗ : w has as many a as

b} is deterministic context-free (where (a,b) = (0,1), (1,2)).

So is L1,2 ∩ 0∗1∗2∗. However,

L0,1 ∩ (L1,2 ∩ 0∗1∗2∗) = {0n1n2n : n ∈ N}

is neither context-free nor deterministic context-free.

As L ∩H = Σ∗ − ((Σ∗ − L) ∪ (Σ∗ −H)) for all L,H and as
deterministic context-free languages are closed under
complement, the deterministic context-free languages are
also not closed under union.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 32

Other Closure Properties

Answer the questions and give reasons for the answer.

Exercise 8.24
Show that the language L = {0n10m : n ≥ m} is
deterministic context-free. What about L∗?

Exercise 8.25
Assume that L is deterministic context-free and H is
regular. Is it always true that L ·H is deterministic
context-free?

Exercise 8.26
Assume that L is deterministic context-free and H is
regular. Is it always true that H · L is deterministic
context-free?

Exercise 8.27
Is Lmi deterministic context-free whenever L is?

Theory of Computation 8 Non-Deterministic Membership Testing – p. 33

Derivatives

Exercise 8.28
Assume that L is recognised by a grammar in Greibach
normal form such that for every b ∈ Σ and every
nonterminal A ∈ N there is exactly one rule A → bw with
w ∈ N∗ in the grammar. Show that there is a finite family of
languages H1, . . . ,Hn with H1 = L, H2 = {ε} and H3 = ∅
such that for every a ∈ Σ and every Hk, the derivative
(Hk)a is either an Hℓ or a product of several of the Hℓ. Note
that ∅a = ∅ for all a ∈ Σ.

Exercise 8.29
Assume L is prefix-free and L 6= {ε} and L satisfies that
every derivative of L is the product of some fixed languages
H1, . . . ,Hn. Is then L is recognised by a grammar in
Greibach normal form where for every A ∈ N and b ∈ Σ

there is at most one rule in the grammar of form A → bw?

Theory of Computation 8 Non-Deterministic Membership Testing – p. 34

Additional Exercises

Exercise 8.30
Consider the language L of all ternary words which have as
many 0 as 1. Show that every derivative of L is the product
of several items of L, L0 and L1 but that there is no
grammar in Greibach normal form for L which has for every
A ∈ N and b ∈ Σ at most one rule of the form A → bw with
w ∈ N∗.

Exercise 8.31
Consider the context-free language L over the alphabet
{f , (,),0,1, , } with the last symbol being a comma. The
rules of the grammar are S → f(S,S)|0|1 and create all

expressions of a binary function f from {0,1}2 to {0,1}.
Construct for L a grammar in Greibach normal form where
for each pair (A,b) there is at most one rule A → bw in the
grammar.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 35

Characterisation from Chapter 6

Exercise 6.32
Prove the following rules of the derivative:
(L ∪H)x = Lx ∪Hx;
If ε ∈ L and a ∈ Σ then (L ·H)a = La ·H ∪Ha else
(L ·H)a = La ·H.

Theorem 6.33
A language L is context-free iff there is a finite list of
languages H1,H2, . . . ,Hn with L = H1 such that for every
word x and every Hm, (Hm)x is a finite union of finite
products of some Hk.

Exercise 6.34
Prove this theorem.

Theory of Computation 8 Non-Deterministic Membership Testing – p. 36

	Repetition 1
	Repetition 2
	Repetition 3
	Repetition 4
	Repetition 5
	Leftmost Derivation
	Idea for Algorithm
	Formal Definition 8.2
	Example 8.3 of PDA
	Algorithm 8.4 CTF $edy ightarrow $ PDA by ES
	Verification I
	Verification II
	Exercises
	Algorithm 8.8 CTF $edy ightarrow $ PDA by STATE
	Ideas of Verification
	Exercises
	PDA by STATE $edy ightarrow $ PDA by ES
	Algorithm 8.13 PDA by ES to CTF
	Ideas of Verification
	Example: Pushdown Automaton
	Grammars for PDA
	Algorithm 8.15 GNF to PDA
	Greibach Normal Form
	Digit Sum at Average 1
	Deterministic Context-Free
	Closure Under Complement
	Verification Ideas I
	Verification Ideas II
	Combining with Regular Languages
	Example 8.22
	Closure under Union and Intersection
	Other Closure Properties
	Derivatives
	Additional Exercises
	Characterisation from Chapter 6

