
Theory of Computation 10
Complexity Considerations

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 10 Complexity Considerations – p. 1

Repetition 1

Models of Computation

• Turing Machine: States like Finite Automaton plus
Turing tape carrying input/output and working space;
head of machine working and moving on tape; updates
of symbols, states and movement given by Turing table.

• Register Machine: Adding and Subtracting and
Comparing natural numbers in registers; conditional
and unconditional jumps between numbered
statements.

• Primitive recursive and µ-recursive functions: Functions
defined from some base functions together with
concatenation, primitive recursion and, in the case of
µ-recursive functions, search for places where some
condition holds.

Theory of Computation 10 Complexity Considerations – p. 2

Repetition 2

Example: Multiplication can be done naively by repeated
addition.

Line 1: Function Mult(R1,R2);

Line 2: R3 = 0;

Line 3: R4 = 0;

Line 4: If R3 = R1 Then Goto Line 8;

Line 5: R4 = R4 +R2;

Line 6: R3 = R3 + 1;

Line 7: Goto Line 4;

Line 8: Return(R4).

Theory of Computation 10 Complexity Considerations – p. 3

Repetition 3

Primitive Recurisive: Addition, Multiplication, Subtraction,
Exponentiation, Factorial, Choose-Function, Outcomes of
Comparisons, Linear Functrions and Polynomials.

Not Primitive Recursive: Ackermann Function:

• f(0,y) = y + 1;

• f(x+ 1,0) = f(x,1);

• f(x+ 1,y + 1) = f(x, f(x+ 1,y)).

Partial Recursive: Primitive recursive plus search for an
input which makes function to 0.

Theory of Computation 10 Complexity Considerations – p. 4

Repetition 4

Theorem 9.23
For a partial function f , the following are equivalent:

• f as a function from strings to strings can be computed
by a Turing machine;

• f as a function from natural numbers to natural numbers
can be computed by a register machine;

• f as a function from natural numbers to natural numbers
is partial recursive.

Church’s Thesis
All reasonable models of computation over Σ∗ and N are
equivalent and give the same notion as the partial recursive
functions.

Theory of Computation 10 Complexity Considerations – p. 5

Regular Sets and Turing Machines I

Theorem 10.1. A Turing machine with only one tape can
recognise in linear time of the input size exactly the regular
sets.

Proof Idea Trakhtenbrot as well as Hartmanis proved that a
one-tape Turing machine running in linear time visits each
cell at most k times for some constant k.

Instead of now modifying overwriting the tape symbol each
time, one enlarges the work tape alphabet and creates
symbols which are tuples holding for each of the visit all
information in a coordinate (number of visit,state, new
symbol, direction). Thus the symbols are now 4k+ 1-tuples
of “basic entries” which give a full picture of the Turing
machine behaviour when looking at it.

Theory of Computation 10 Complexity Considerations – p. 6

Regular Sets and Turing Machines II

The full result of the computation can be verified by a finite
automaton reading it from the left to the right.

An nfa can guess all these entries while scanning the input
word from the left to the right and memorise them for the
current and previous symbol in each step in the state.

While guessing and processing, it can verify that the
guessed information for the next symbol fits with that for the
current symbol and gives a full accepting run of the Turing
machine. If the verification and guessing goes through and
the computation ends in an accepting state then the nfa
accepts the word else it rejects the word.

Recall acceptance means that there is at least one
accepting computation and at least one accepting run of the
nfa.

Theory of Computation 10 Complexity Considerations – p. 7

Turing machine power

Exercise 10.2. Extend the proof sketch from previous slide
to a full proof and fill also in the details of the result of
Trakhtenbrot and Hartmanis. That is, show that every
language recognised by a linear time one-tape Turing
machine is regular.

Exercise 10.3. Show that a Turing machine with two tapes
can recognise the set of palindromes which is not regular.

Note the same applies to Turing machines which move with
two independent heads over the input, even if these do not
write anything but only read the symbols. Here the idea is
that one head goes to the end and the other one to the start
of the word. Then they move in opposite direction over the
word, one symbol per cycle and compare the symbols. If
both heads reach the opposite end of the word and the
corresponding symbols were always the same then the
word is a palindrome else it is not a planindrome.

Theory of Computation 10 Complexity Considerations – p. 8

Register versus Turing machines

Complexities Register Machine Multitape TM

Floyd, Knuth [1990] Turing [1936]

Addition 1 Θ(n)

Subtraction 1 Θ(n)

Comparison 1 Θ(n)

Multiplication Θ(n) O(n logn)

Bitwise And, Or, . . . Θ(n) Θ(n)

Doubling 1 O(n)

Halving Θ(n) O(n)

Regular Set Θ(n) Θ(n)

Theory of Computation 10 Complexity Considerations – p. 9

Complexity Class P

Size parameter n (for example logarithm of input number,
number of digits); Algorithm is in polynomial time iff it needs
time polynomial in n to solve the problem, that is, time

(n+ k)k for some k > 0. For certain problem classes, other
parameters n are used like number of states of automaton.
Sometimes several parameters are there (number of nodes
and number of edges in graph).

Polynomial Time Computations can be used to describe
both the solving of decision problems in polynomial time
(Class P) and computing functions in polynomial time.

Theory of Computation 10 Complexity Considerations – p. 10

Equivalence of Computation Models

Consider two compoutation models C and D. C cannot
compute more than D in polynomial time iff there is a
polynomial p and a constant c such that the following holds:
1. Every primitive operation in C on inputs of length n can
be done in time p(n) steps in D;
2. Every primitive operation of C with inputs up to length n

produces only outputs of length up to n+ c.

Let p,q be polynomials. If algo using C needs q(n) steps
on inputs of length n then all intermediate values have at
most length n+ c · q(n) and need q(p(n+ c · q(n))) steps
according to model D.

Theory of Computation 10 Complexity Considerations – p. 11

Example 10.5

Register Machine model of Floyd and Knuth satisfies both
conditions compared to multitape Turing machines.

First, multitape Turing machines can add, subtract and
compare n-bit numbers in O(n) steps.
Second, comparing is {0,1}-valued and adding or
subtracting increases the bits needed to store the result at
most by 1.

Harmanis and Simon investigated a model allowing adding,
subtracting, comparing and bitwise and / or / eor to combine
binary numbers, one still is in polynomial time; however,
when the machine can also multiply in unit time, it can in
polynomial time solve all NP and PSPACE problems.

Theory of Computation 10 Complexity Considerations – p. 12

Non-Determinism

Non-deterministic register computations can computations
can guess numbers where the values generated by
non-determinism should be between 0 and the value of a
given register; non-deterministic Turing machines can
choose a new state non-deterministically in dependence of
choices in the Turing table.

The class NP is that of all sets A where a non-deterministic
computation produces an accepting computation (among
many choices) on members of A and does not produce any
accepting computation on non-members of A.
Furthermore, the run-time of the computation has always to
be bounded by a polynomial in the input-size.

Idea: NP is the class of problems where one can prove the
solvability of an instance by guessing a polynomial-sized
solution and then verifying the solution in polynomial time.

Theory of Computation 10 Complexity Considerations – p. 13

Example Provable Speed-Up

Stockmeyer proved that deterministic register machines
need Θ(n) steps to determine whether a number is odd.
A non-deterministic computation is faster:

Line 1: Function Remainderbytwo(R1);

Line 2: Guess R2 from range {0,1, . . . ,R1};

Line 3: R3 = R2 +R2;

Line 4: If R3 = R1 Then Return 0;

Line 5: R3 = R3 + 1;

Line 6: If R3 = R1 Then Return 1;

Line 7: Reject Computation.

The program guesses R2 = floor(R1/2) and checks
whether R1 is 2R2 or 2R2 + 1.

Computations must verify whether the result based on
guesses is correct and reject computations based on wrong
guesses.

Theory of Computation 10 Complexity Considerations – p. 14

NP-Complete Problems

Definition 10.8. A problem A is NP-complete iff for every
further problem B in NP there is a polynomial time
computable function f such that for all B-instances x, x ∈ B

iff f(x) ∈ A.

This implies that if one can solve A in polynomial time then
one can solve all NP-problems in polynomial time.

Example 10.9. Manders and Adleman [1976] showed that

set of all (a,b, c) ∈ N3 for which there are x,y ∈ N with

a · x2 + b · y = c is NP-complete.

A nondeterministic register machine reads a,b, c, guesses
x,y with range {0,1, . . . , c} and then checks whether the

equation a · x2 + b · y = c is satisfied. If so then it ouputs
YES else it rejects the computation. The solvable instances
are those which have an accepting computation outputting
YES. Theory of Computation 10 Complexity Considerations – p. 15

10.10 Satisfiability Problems

A literal is a term of the form x or ¬x or 0 or 1 for a Boolean
variable x. A clause is a disjunction of literals like x ∨ y ∨ ¬z
or u ∨ 0. An instance is a conjunction of clauses.

SAT consists of all satisfiability instances for which there is
an assignment of Boolean values to the variables such that
all clauses are true, that is, such that in every clause some
literal is evaluated to 1. A kSAT instance is an instance of
satisfiability in which every clause has at most k literals.

While 1SAT and 2SAT are in P, the problems 3SAT,
4SAT, . . . and SAT itself are all NP-complete.

The complexity parameters of an instance are the number n
of variables used and the number m of clauses.

Theory of Computation 10 Complexity Considerations – p. 16

Graph Problems

Parameters numbers n of nodes and m of edges.

Example 10.11: CLIQUE. Let (V,E) be a graph and k ≤ n.
Now CLIQUE is the set of all such (V,E,n,k) for which
n = |V| and for which there is a subset W ⊆ V of k nodes
such that each two distinct nodes in W are connected by
an edge in E. CLIQUE is NP-complete.

Example 10.12: INDEPENDENTSET. Let (V,E) be a graph
and k ≤ n. Now INDEPENDENT is the set of all such
(V,E,n,k) for which n = |V| and for which there is a subset
W ⊆ V of k nodes such that no two distinct nodes in W are
connected by an edge in E. INDPENDENTSET is
NP-complete.

Theory of Computation 10 Complexity Considerations – p. 17

Example of Reduction

Recall that for NP-complete problems B and further
NP-problems A there is a polynomial time computable
function f with A(x) = B(f(x)) for all instances x.

1

3

2

4

is mapped to

1

3

2

4

The graphic illustrates a polynomial-time many-one
reduction from CLIQUE to INDEPENDENTSET where
the mapping exchanges edge and non-edge between each
possible pair of nodes. So a CLIQUE of size 3 is mapped
to an independent set of size 3 and (V,E,4,k) is in
CLIQUE iff (V, f(V,E),4,k) is in INDEPENDENTSET.

Theory of Computation 10 Complexity Considerations – p. 18

10.16. Polynomial Space

A register machine uses polynomial space iff there is a
polynomial p such that for inputs all between −2n and 2n,

all registers are all the time between −2p(n) and 2p(n).
PSPACE contains all problems solvable by a register
program using polynomial space; exhaustive search shows
that NP ⊆ PSPACE.

Example 10.17. A PSPACE-complete problem is quantified
satisfiability QSAT where there are variables
x1,y1,x2,y2, . . . ,xn,yn and where QSAT is the set of all
instances (F,n,m) of m clauses which satisfy that for all x1

there is y1 for all x2 there is y2 . . . for all xn there is yn such
that all clauses in F are satisfied.

Theory of Computation 10 Complexity Considerations – p. 19

Exercises 10.18 and 10.19

Exercise 10.18
Make a proof that every deterministic register program
whose space bound (register size) is bounded by p(n) bits
throughout the overall time and which always halts runs at

most in time 2O(p(n)) for the same polynomial p.

Exercise 10.19
Show that the following problem is in NP:
CONNECTEDHALVES is the set of all graphs (V,E)
such that one can split V into two subsets U,W such that
|U| ≤ |W| ≤ |U|+ 1 and every node in U is connected to
every node in W by an edge.

Theory of Computation 10 Complexity Considerations – p. 20

Primitive Recursive

Theorem
A function is primitive recursive iff it can be computed by a
register program where the only type of goto-commands
which can go backwards are For-Loops, where one cannot
go into or out of a For-Loop and once the For-Loop is
started, its boundaries cannot be modified and the
loop-variable can only be updated by the commands of the
loop itself.

Remark
One can replace the Goto-commands completely by
allowing only For-Loops, If-Then-Else statements and
Switch-statements which are properly nested.

For full generality of Partial-Recursive functions, one would
then also need While-Loops in addition to the For-Loops.

Theory of Computation 10 Complexity Considerations – p. 21

Example

Line 1: Function Factor(R1,R2);

Line 2: R3 = R1;

Line 3: R4 = 0;

Line 4: If R2 < 2 Then Goto Line 10;

Line 5: For R5 = 0 to R1

Line 6: If Remainder(R3,R2) > 0 Then Goto Line 9;

Line 7: R3 = Divide(R3,R2);

Line 8: R4 = R4 + 1;

Line 9: Next R5;

Line 10: Return(R4).

This function computes how often R2 is a factor of R1 and
is primitive recursive.

Theory of Computation 10 Complexity Considerations – p. 22

Collatz Function

Not known whether primitive recursive or whether total at
all.

Line 1: Function Collatz(R1);

Line 2: If Remainder(R1,2) = 0 Then Goto Line 6;

Line 3: If R1 = 1 Then Goto Line 8;

Line 4: R1 = Mult(R1,3) + 1;

Line 5: Goto Line 2;

Line 6: R1 = Divide(R1,2);

Line 7: Goto Line 2;

Line 8: Return(R1).

Lothar Collatz conjectured in 1937 that this function is total.

Theory of Computation 10 Complexity Considerations – p. 23

Simulating Collatz Function

Line 1: Function Collatz(R1,R2);

Line 2: LN = 2;

Line 3: For T = 0 to R2

Line 4: If LN = 2 Then Begin If Remainder(R1,2) = 0

Then LN = 6 Else LN = 3; Goto Line 10 End;

Line 5: If LN = 3 Then Begin If R1 = 1 Then LN = 8

Else LN = 4; Goto Line 10 End;

Line 6: If LN = 4 Then Begin R1 = Mult(R1,3) + 1;
LN = 5; Goto Line 10 End;

Line 7: If LN = 5 Then Begin LN = 2; Goto Line 10 End;

Line 8: If LN = 6 Then Begin R1 = Divide(R1,2);
LN = 7; Goto Line 10 End;

Line 9: If LN = 7 Then Begin LN = 2; Goto Line 10 End;

Line 10: Next T;

Line 11: If LN = 8 Then Return(R1 + 1) Else Return(0).
Theory of Computation 10 Complexity Considerations – p. 24

Exercise 10.20

Write a program for a primitive recursive function which
simulate the following function with input R1 for R2 steps.

Line 1: Function Expo(R1);

Line 2: R3 = 1;

Line 3: If R1 = 0 Then Goto Line 7;

Line 4: R3 = R3 +R3;

Line 5: R1 = R1 − 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

Theory of Computation 10 Complexity Considerations – p. 25

Exercise 10.21

Write a program for a primitive recursive function which
simulate the following function with input R1 for R2 steps.

Line 1: Function Repeatadd(R1);

Line 2: R3 = 3;

Line 3: If R1 = 0 Then Goto Line 7;

Line 4: R3 = R3 +R3 +R3 + 3;

Line 5: R1 = R1 − 1;

Line 6: Goto Line 3;

Line 7: Return(R3).

Theory of Computation 10 Complexity Considerations – p. 26

Bounded Simulation

Theorem 10.22
For every partial-recursive function f there is a primitive
recursive function g and a register machine M such that for
all t,

If f(x1, . . . ,xn) is computed by M within t steps
Then g(x1, . . . ,xn, t) = f(x1, . . . ,xn) + 1

Else g(x1, . . . ,xn, t) = 0.

In short words, g simulates the program M of f for t steps
and if an output y comes then g outputs y + 1 else g

outputs 0.

Theory of Computation 10 Complexity Considerations – p. 27

Recursively Enumerable

Theorem 10.24
The following notions are equivalent for a set A ⊆ N:

(a) A is the range of a partial recursive function;

(b) A is empty or A is the range of a total recursive function;

(c) A is empty or A is the range of a primitive recursive
function;

(d) A is the set of inputs on which some register machine
terminates;

(e) A is the domain of a partial recursive function;

(f) There is a two-place recursive function g such that
A = {x : ∃y [g(x,y) > 0]}.

Definition 10.25
The set A is recursively enumerable iff it satisfies any of the
above equivalent properties.

Theory of Computation 10 Complexity Considerations – p. 28

(a) to (c) and (c) to (b)

If A is empty then (c) holds; if A is not empty then there is
an element a ∈ A which is now taken as a constant. For the
partial function f whose range A is, there is, by Theorem
10.22, a primitive function g such that either g(x, t) = 0 or
g(x, t) = f(x) + 1 and whenever f(x) takes a value there is
also a t with g(x, t) = f(x) + 1. Now one defines a new
function h which is also primitive recursive such that if
g(x, t) = 0 then h(x, t) = a else h(x, t) = g(x, t)− 1. The
range of h is A.

(c) ⇒ (b): This follows by definition as every primitive
recursive function is also recursive.

Theory of Computation 10 Complexity Considerations – p. 29

(b) to (d) and (d) to (e)

(b) ⇒ (d): Given a function h whose range is A, one can
make a register machine which simulates h and searches
over all possible inputs and checks whether h on these
inputs is x. If such inputs are found then the search
terminates else the register machine runs forever. Thus
x ∈ A iff the register machine program following this
behaviour terminates after some time.

(d) ⇒ (e): The domain of a register machine is the set of
inputs on which it halts and outputs a return value. Thus
this implication is satisfied trivially by taking the function for
(e) to be exactly the function computed from the register
program for (d).

Theory of Computation 10 Complexity Considerations – p. 30

(e) to (f) and (f) to (a)

(e) ⇒ (f): Given a register program f whose domain A is
according to (e), one takes the function g as defined by
Theorem 10.22 and this function indeed satisfies that f(x) is
defined iff there is a t such that g(x, t) > 0.

(f) ⇒ (a): Given the function g as defined in (f), one
defines that if there is a t with g(x, t) > 0 then f(x) = x else
f(x) is undefined. The latter comes by infinite search for a t

which is not found. Thus the partial recursive function f has
range A.

Theory of Computation 10 Complexity Considerations – p. 31

Decidable and Undecidable Problems

A set L is called decidable or recursive iff there is a
recursive function f such that, for all x, if x ∈ L then f(x) = 1

else f(x) = 0. One says that the function f decides the
membership in L.

A set L is called undecidable or nonrecursive iff there is no
such recursive function f deciding the membership in L.

Observation
Every recursive set is recursively enumerable.

Theory of Computation 10 Complexity Considerations – p. 32

The Halting Problem

Definition 10.27 [Turing 1936]
Let e,x 7→ ϕe(x) be a universal partial recursive function
covering all one-variable partial recursive functions. Then
the set {(e,x) : ϕe(x) is defined} is called the general
halting problem and K = {e : ϕe(e) is defined} is called the
diagonal halting problem.

The name stems from the fact that ϕe(x) is defined iff the
e-th register machine with input x halts and produces some
output.

Theorem 10.28 [Turing 1936]
Both the diagonal halting problem and the general halting
problem are recursively enumerable and undecidable.

Theory of Computation 10 Complexity Considerations – p. 33

Proof

Let F be a function with inputs e,x which simulates ϕe(x)
and F(e,x) = ϕe(x) if and only if this simulation terminates.
Note that F exists and is partial-recursive.

Assume that there is a function Halt which can check
whether ϕe(e) halts. If so, then Halt(e) = 1 else
Halt(e) = 0.

Now condider this program.

Line 1: Function Diagonalise(R1);

Line 2: R2 = 0;

Line 3: If Halt(R1) = 0 Then Goto Line 5;

Line 4: R2 = F(R1,R1) + 1;

Line 5: Return(R2).

Theory of Computation 10 Complexity Considerations – p. 34

Function Diagonalise

The function Diagonalise has only one input.

If ϕe(e) is undefined then Halt(e) = 0 and
Diagonalise(e) = 0.

If ϕe(e) is defined then Halt(e) = 1 and F(e, e) = ϕe(e) will
be computed in Line 4 and the output will be ϕe(e) + 1.

Thus Diagonalise(e) differs from ϕe(e) for all e and is not
among ϕ0, ϕ1, . . .; as all partial-recursive functions with one
input are in this list, neither Diagonalise nor Halt can be
recursive.

The halting problem equals {(e,x) : F(e,x) halts}. Thus it is
the domain of a partial recursive function and recursively
enumerable. Similarly, the diagonal halting problem
K = {e : F(e, e) halts} is the domain of a partial-recursive
function and recursively enumerable.

Theory of Computation 10 Complexity Considerations – p. 35

R.E. and Recursive

Theorem 10.29
A set L is recursive iff both L and N− L are recursively
enumerable.

Exercise 10.30
Prove this connection.

Exercises 10.31 – 10.33
Prove that the following variants of the halting problem are
undecidable:
10.31: {e : ϕe(2e+ 5) is defined};

10.32: {e : ϕe(e
2 + 1) is defined};

10.33: {e : ϕe(e/2) is defined}, where 1/2 is rounded to 0

and 3/2 to 1 and so on.

Theory of Computation 10 Complexity Considerations – p. 36

Further Homeworks 10.34-10.36

Show that the following sets are recursively enumerable by
proving that a register machine halts exactly on the
members of the set:
Exercise 10.34: {x ∈ N : x is a square}.
Exercise 10.35: {x ∈ N : x is prime}.

Exercise 10.36
Prove that the set {e : ϕe(e/2) is defined} is recursively
enumerable by proving that it is the range of a primitive
recursive function. Here e/2 is the downrounded value of e
divided by 2, so 1/2 is 0 and 3/2 is 1.

Theory of Computation 10 Complexity Considerations – p. 37

Further Homeworks 10.37-10.39

Exercise 10.37: Prove or disprove: Every recursively
enumerable set is either ∅ or the range of a function which
can be computed in polynomial time.

Exercise 10.38: Prove or disprove: Every recursively
enumerable set is either ∅ or the domain of a function f

where the graph {(x, f(x)) : x ∈ dom(f)} can be decided in
polynomial time, that is, given inputs x,y, one can decide in
polynomial time whether (x,y) = (x, f(x)).

Exercise 10.39: Prove or disprove: Every recursively
enumerable set is either ∅ or the domain of a {0,1}-valued
function f where the graph {(x, f(x)) : x ∈ dom(f)} can be
decided in polynomial time.

Summary of Lecture:
P ⊆ NP ⊆ PSPACE ⊂ PRIMREC ⊂ REC ⊂ RE. It is an
open problem whether the first two inclusions are proper.

Theory of Computation 10 Complexity Considerations – p. 38

Weeks 12 and 13

Two identical lectures on Wednesday 3 November and
Friday 5 November 2021, both from 10:00 hrs to 12:00 hrs.
Go to the one you prefer. Both use the same login for the
Friday 5 November Lecture.

Alternative offered as staff and students should have the
possiblity for rest on the NUS Well-Being Day. So those
who prefer the usual time can go for the class as usual and
those who want to take rest can go for the Wednesday
class. Those who cannot make it for both can self-study
and then use the office hour in either week 12 or week 13
for questions.

Tutorial in Week 13 for both Lectures 11 and 12. Those who
want to do tutorial questions for last lecture in Week 13 can
do so, but need to learn ahead in notes beforehand, as the
corresponding Lecture is on Friday in Week 13.

Theory of Computation 10 Complexity Considerations – p. 39

	Repetition 1
	Repetition 2
	Repetition 3
	Repetition 4
	Regular Sets and Turing Machines I
	Regular Sets and Turing Machines II
	Turing machine power
	Register versus Turing machines
	Complexity Class P
	Equivalence of Computation Models
	Example 10.5
	Non-Determinism
	Example Provable Speed-Up
	NP-Complete Problems
	10.10 Satisfiability Problems
	Graph Problems
	Example of Reduction
	10.16. Polynomial Space
	Exercises 10.18 and 10.19
	Primitive Recursive
	Example
	Collatz Function
	Simulating Collatz Function
	Exercise 10.20
	Exercise 10.21
	Bounded Simulation
	Recursively Enumerable
	(a) to
(c) and (c) to (b)
	(b) to
(d) and (d) to (e)
	(e) to
(f) and (f) to (a)
	Decidable and Undecidable Problems
	The Halting Problem
	Proof
	Function Diagonalise
	R.E. and Recursive
	Further Homeworks 10.34-10.36
	Further Homeworks 10.37-10.39
	Weeks 12 and 13

