
Theory of Computation 11
Undecidable Sets

Frank Stephan

Department of Computer Science

Department of Mathematics

National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 11 Undecidable Sets – p. 1

Repetition 1 – Machines

Complexities Register Machine Multitape TM

Floyd, Knuth [1990] Turing [1936]

Addition 1 Θ(n)

Subtraction 1 Θ(n)

Comparison 1 Θ(n)

Multiplication Θ(n) O(n logn)

Bitwise And, Or, . . . Θ(n) Θ(n)

Doubling 1 O(n)

Halving Θ(n) O(n)

Regular Set Θ(n) Θ(n)

Theory of Computation 11 Undecidable Sets – p. 2

Repetition 2 – Complexity Classes

P: Class Polynomial time. All problems which can be solved
by a register machine in time p(n) for some polynomial p
and input size n. Normally applies to types of set member-
ship but also used to describe functions.

NP: Class Nondeterministic Polynomial Time. All problems
where a solution can be verified in polynomial time; for this
the size of the solution must be bounded by a polynomial in
the size of the instance. Most general formulation: A is in
NP iff there is a polynomial time computable function f and
a polynomial p such that for all instances x of size n, x ∈ A

iff there is an y of length up to p(n) with f(x,y) = 1.

PSPACE: Class Polynomial Space. All problems whose
instances can be solved by a register machine which always
terminates and where its variables during the computation

are never larger than 2p(n) where n is the size of the input.
Theory of Computation 11 Undecidable Sets – p. 3

Repetition 3 – Primitive Recursive

Theorem. A function is primitive recursive iff it can be
computed by a register program where the only type of
goto-commands which can go backwards are For-Loops,
where one cannot go into or out of a For-Loop and once the
For-Loop is started, its boundaries cannot be modified and
the loop-variable can only be updated by the commands of
the loop itself.

Remark. One can replace the Goto-commands completely
by allowing only For-Loops, If-Then-Else statements and
Switch-statements which are properly nested.

For full generality of Partial-Recursive functions, one would
then also need While-Loops in addition to the For-Loops.

Theory of Computation 11 Undecidable Sets – p. 4

Repetition 4 – Bounded Simulation

Theorem 10.22
For every partial-recursive function f there is a primitive
recursive function g and a register machine M such that for
all t,

If f(x1, . . . ,xn) is computed by M within t steps
Then g(x1, . . . ,xn, t) = f(x1, . . . ,xn) + 1

Else g(x1, . . . ,xn, t) = 0.

In short words, g simulates the program M of f for t steps
and if an output y comes then g outputs y + 1 else g

outputs 0.

f(x1, . . . ,xn) = g(x1, . . . ,xn,min{t : g(x1, . . . ,xn, t) > 0})−1.

Theory of Computation 11 Undecidable Sets – p. 5

Repetition 5 – Recursively Enumerable

Theorem 10.24
The following notions are equivalent for a set A ⊆ N:

(a) A is the range of a partial recursive function;

(b) A is empty or A is the range of a total recursive function;

(c) A is empty or A is the range of a primitive recursive
function;

(d) A is the set of inputs on which some register machine
terminates;

(e) A is the domain of a partial recursive function;

(f) There is a two-place recursive function g such that
A = {x : ∃y [g(x,y) > 0]}.

Definition 10.25
The set A is recursively enumerable iff it satisfies any of the
above equivalent properties.

Theory of Computation 11 Undecidable Sets – p. 6

Repetition 6 – Decidable Sets

A set L is called decidable or recursive iff there is a
recursive function f such that, for all x, if x ∈ L then f(x) = 1

else f(x) = 0. One says that the function f decides the
membership in L.

A set L is called undecidable or nonrecursive iff there is no
such recursive function f deciding the membership in L.

Observation
Every recursive set is recursively enumerable.

Theorem (given as Exercise)
A set is recursive if both the set and its complement are
recursively enumerable.

Theory of Computation 11 Undecidable Sets – p. 7

Repetition 7 – Halting Problem

Definition [Turing 1936]
Let e,x 7→ ϕe(x) be a universal partial recursive function
covering all one-variable partial recursive functions. Then
the set {(e,x) : ϕe(x) is defined} is called the general
halting problem and {e : ϕe(e) is defined } is called the
diagonal halting problem.

The name stems from the fact that ϕe(x) is defined iff the
e-th register machine with input x halts and produces some
output.

Theorem [Turing 1936]
Both the diagonal halting problem and the general halting
problem are recursively enumerable and undecidable.

Theory of Computation 11 Undecidable Sets – p. 8

Hilbert’s Tenth Problem

Polynomials P(N) and P(Z)
A function f(x,y1, . . . ,yn) is in P(Z) if it is a sum of products
of integer constants and variables x,y1, . . . ,yn. This
function is in P(N) iff all the integer constants occurring are
in N.

Diophantine Sets
A set A ⊆ N is Diophantine iff there is f ∈ P(Z) such that
x ∈ A ⇔ ∃y1, . . . ,yn ∈ N [f(x,y1, . . . ,yn) = 0].

Hilbert’s Tenth Problem [1900]
Construct an algorithm which decides the membership of a
given Diophantine set.

Theory of Computation 11 Undecidable Sets – p. 9

Alternative Characterisations

The following conditions are equivalent for a set A ⊆ N:

• A is Diophantine;

• There is f ∈ P(Z) such that
x ∈ A ⇔ ∃y1, . . . ,yn ∈ N [f(x,y1, . . . ,yn) = 0];

• There are f ,g ∈ P(N) such that
x ∈ A ⇔ ∃y1, . . . ,yn ∈ N

[f(x,y1, . . . ,yn) = g(x,y1, . . . ,yn)];

• There is f ∈ P(Z) such that
x ∈ A ⇔ ∃y1, . . . ,yn ∈ Z [f(x,y1, . . . ,yn) = 0];

• There is f ∈ P(Z) such that
x ∈ A ⇔ ∃y1, . . . ,yn ∈ Z [f(y1, . . . ,yn) = x].

Theory of Computation 11 Undecidable Sets – p. 10

Examples

Lagrange’s Four-Square Theorem: Every natural number is
the sum of four squares of natural numbers.

Composite Numbers

x is composite iff ∃y1, . . . ,y8 ∈ Z

[x = (2+ y2
1 + y2

2 + y2
3 + y2

4) · (2+ y2
5 + y2

6 + y2
7 + y2

8)]
iff ∃y1,y2 ∈ N [x = (2+ y1) · (2+ y2)].

Square Numbers

x is a square iff ∃y1 ∈ N [x = y2
1].

Non-Square Numbers

x is not a square iff ∃y1,y2,y3 ∈ N

[x = y2
1 + 1+ y2 and x+ y3 = y2

1 + 2y1] iff
∃y1,y2,y3 ∈ N

[(y2
1 + 1+ y2 − x)2 + (x+ y3 − y2

1 − 2y1)
2 = 0].

Theory of Computation 11 Undecidable Sets – p. 11

Exercises

Quiz
Which numbers are in the following Diophantine sets:

(a) {x ∈ N : ∃y ∈ N [x = 4 · y + 2]};

(b) {x ∈ N : ∃y ∈ N [x16 = 17 · y + 1]}?

Exercise 11.4
Show that the set of odd multiples of 97 is Diophantine.

Exercise 11.5
Show that the set of all numbers which are multiples of 5
but not multiples of 7 is Diophantine.

Exercise 11.6
The set {x ∈ N : ∃y1,y2 ∈ N [((2y1 + 3) · y2)− x = 0]} is
Diophantine. Give a verbal description for this set.

Theory of Computation 11 Undecidable Sets – p. 12

Diophantine ⇒ Rec. Enumerable

Proposition 11.7
Every Diophantine set is recursively enumerable.

Proof. Let A be Diophantine and non-empty and let a ∈ A.
There is a polynomial p(x,y1, . . . ,yn) in P(Z) such that

x ∈ A ⇔ ∃y1, . . . ,yn ∈ N [p(x,y1, . . . ,yn) = 0].

There is a register machine computing a function f with
input x,y1, . . . ,yn such that if p(x,y1, . . . ,yn) = 0 then
f(x,y1, . . . ,yn) = x else f(x,y1, . . . ,yn) = a. A is the range
of a recursive function and recursively enumerable.

Theory of Computation 11 Undecidable Sets – p. 13

Closure Properties

Proposition 11.8
If A,B are Diophantine sets so are A ∪B and A ∩B.

Proof
Let p(x,y1, . . . ,yn) and q(x, z1, . . . , zm) witness that A and
B are Diophantine, respectively, that is, x is in A or B when
the corresponding polynomial can be made 0 by choosing
the other variables accordingly.

Now x is in A ∪B iff p(x,y1, . . . ,yn) · q(x, z1, . . . , zm) = 0 for
some y1, . . . ,yn, z1, . . . , zm ∈ N and x ∈ A ∩B iff

(p(x,y1, . . . ,yn))
2 + (q(x, z1, . . . , zm))2 = 0 for some

y1, . . . ,yn, z1, . . . , zm ∈ N. Thus A ∪B and A ∩B are
Diophantine.

Exercise 11.9
Given a Diophantine A, show that the set

B = {x ∈ N : ∃x′ ∈ N [(x+x′)2+x ∈ A]} is also Diophantine.
Theory of Computation 11 Undecidable Sets – p. 14

Hilbert’s Tenth Problem

Hilbert’s List of 23 Problems [1900]
No 10: Provide an algorithm to decide membership in
Diophantine sets.

Entscheidungsproblem [1928]
Given a first-order formula in some logical language without
free variables, check whether the formula is true in all
structures for this language.

Theorem [Church 1936; Turing 1936]
The Entscheidungsproblem is undecidable.

Theorem [Matiyasevich 1970]
A set of natural numbers is Diophantine iff it is recursively
enumerable. Thus the algorithm for which Hilbert asked in
his Tenth Problem does not exist.

Open Question
Is the version of Diophantine sets for Q undecidable?

Theory of Computation 11 Undecidable Sets – p. 15

Arithmetics

Definition 11.11
A set A ⊆ N is called arithmetic iff there is a formula using
existential (∃) and universal (∀) quantifiers over variables
such that all variables except for x are quantified and that
the predicate behind the quantifiers only uses Boolean
combinations of polynomials from P(N) compared by < and
= in order to evaluate the formula.

Example 11.12
The set P of all prime numbers is defined by

x ∈ P ⇔ ∀y, z [x > 1 and (y + 2) · (z+ 2) 6= x]

and also every Diophantine set is arithmetic. Arithmetic
sets are closed under union, intersection and complement.

Theory of Computation 11 Undecidable Sets – p. 16

Powers of 2 and of Primes

Example 11.12
The set T of all powers of 2 is defined by

x ∈ T ⇔ ∀y,y′ ∃z [x > 0 and
(x = y · y′ ⇒ (y = 1 or y = 2 · z))]

and, in general, the set E of all prime powers is defined by

(p,x) ∈ E ⇔ ∀y,y′ ∃z [p > 1 and x ≥ p and
(x = y · y′ ⇒ (y = 1 or y = p · z))]

which says that (p,x) ∈ E iff p is a prime number and x is a
non-zero power of p. In the last equations, E is a subset of
N×N rather than N itself.

Theory of Computation 11 Undecidable Sets – p. 17

Configurations of RM

Configuration at step t
Tuple consisting of line number LN and register contents
R1, . . . ,Rn of the n registers at time t; it is the register
content before doing the instructions of line LN.

Update Set U
U contains tuples of form updates of tuples of the form

(LN,R1, . . . ,Rn,LN
′,R′

1, . . . ,R
′

n,p)

where p is upper bound on all other values and the register
machine, in the case that it is in line LN and contains
R1, . . . ,Rn in the registers, it updates in one step to line
LN′ and has the register contents R′

1, . . . ,R
′

n.

Theory of Computation 11 Undecidable Sets – p. 18

Sample Program

For giving a sample value of U, consider the following, a bit
condensed program – otherwise the formula gets too big for
slides.

Line 1: Function Sum(R1); R2 = 0; R3 = 0;

Line 2: R2 = R2 +R3; R3 = R3 + 1;

Line 3: If R3 ≤ R1 Then Goto Line 2;

Line 4: Return(R2);

This program computes 0+ 1+ . . .+R1.

Plan
Formalise one-step update in arithmetics;
Formalise run of register machine in arithmetics;
Formalise f(x) = y in arithmetics.

Theory of Computation 11 Undecidable Sets – p. 19

Arithmetic Formula for U

(LN,R1,R2,R3,LN
′,R′

1,R
′

2,R
′

3,p) is in U iff

LN < p and R1 < p and R2 < p and R3 < p and LN′ < p

and R′

1 < p and R′

2 < p and R′

3 < p and

[(LN = 1 and LN′ = 2 and R′

1 = R1 and R′

2 = 0 and

R′

3 = 0) or

(LN = 2 and LN′ = 3 and R′

1 = R1 and R′

2 = R2 +R3 and

R′

3 = R3 + 1) or

(LN = 3 and LN′ = 2 and R′

1 = R1 and R′

2 = R2 and

R′

3 = R3 and R3 ≤ R1) or

(LN = 3 and LN′ = 4 and R′

1 = R1 and R′

2 = R2 and

R′

3 = R3 and R3 > R1)].

Long programs and many registers give long formulas. For
each register machine, one can define the corresponding
U.

Theory of Computation 11 Undecidable Sets – p. 20

Run of Register Machine

Run with p = 10

Sequence of register contents and line numbers per step;
contents always prior to action of the current line.

LN: 1 2 3 2 3 2 3 2 3 4

R1: 3 3 3 3 3 3 3 3 3 3

R2: 0 0 0 0 1 1 3 3 6 6

R3: 0 0 1 1 2 2 3 3 4 4

Code these values as single numbers: For p = 10, the digit

for 10t contains the values of LN and R1,R2,R3 prior to
step t. So LN = 4323232321, R1 = 3333333333,
R2 = 6633110000 and R3 = 4433221100. In general, one
uses prime p greater than all values of LN,R1,R2,R3

occurring throughout the run.

Theory of Computation 11 Undecidable Sets – p. 21

Formula for “Sum(x) Computes y”

Sum(x) = y iff there are p,q and a computation
(LN,R1,R2,R3) coded up using p,q such that

1. (p,q) ∈ E and

2. ∃rLN, r1 [R1 = r1 · p+ x and LN = rLN · p+ 1 and
p > x+ 1] and

3. ∃r2, rLN < q [R2 = q · y + r2 and LN = q · 4+ rLN and
p > y + 4] and

4. ∀p′,p′′ ≤ q ∃rLN, r1, r2, r3, r
′

LN, r
′

1, r
′

2, r
′

3, r
′′

LN, r
′′

1, r
′′

2, r
′′

3,

r′′′LN, r
′′′

1 , r
′′′

2 , r
′′′

3 [if p′ · p′′ = q and p′ < q then rLN < p′

and LN = rLN + p′ · r′LN + p′ · p · r′′LN + p′ · p2 · r′′′LN and

r1 < p′ and R1 = r1 + p′ · r′1 + p′ · p · r′′1 + p′ · p2 · r′′′1 and

r2 < p′ and R2 = r2 + p′ · r′2 + p′ · p · r′′2 + p′ · p2 · r′′′2 and

r3 < p′ and R3 = r3 + p′ · r′3 + p′ · p · r′′3 + p′ · p2 · r′′′3 and

(r′LN, r
′

1, r
′

2, r
′

3, r
′′

LN, r
′′

1, r
′′

2, r
′′

3,p) ∈ U].

Theory of Computation 11 Undecidable Sets – p. 22

Formalising the Halting Problem

Thus there exists an arithmetic formula R with
Sum(x) = y ⇔ R(x,y) where R is the formula from the last
slide.

This formula is based on arithmetics of the natural
numbers, (N,+, ·), and uses both types of quantifier (∃, ∀)
as well as <,= for comparing numbers and Boolean
connectives to connect subformulas. R(x,y) is true iff the
register machine computes from input x the output y.

Furthermore, one can also define when this register
machine halts on input x by saying that the machine halts
on x iff ∃y [(x,y) ∈ R].

This can be generalised to (e,x) ∈ H iff the e-th register
machine with input x halts; the corresponding H uses a
translation of a universal register machine.

Theory of Computation 11 Undecidable Sets – p. 23

Undecidability of Arithmetics

Theorem 11.15 [Church 1936, Turing 1936]
There is an arithmetic set L which is undecidable.

An example of such an arithmetic set is the halting problem
H or the diagonal halting problem K = {e : (e, e) ∈ H}.

One might ask whether every arithmetic set is recursively
enumerable. The next results will show that this is not the
case.

Definition 11.16
A set I ⊆ N is an index set iff for all d, e ∈ N, if ϕd = ϕe then
either d, e are both in I or d, e are both outside I.

Theory of Computation 11 Undecidable Sets – p. 24

Acceptable Numberings

The definition of an index set has implicit the notion of the
numbering on which it is based. For getting the intended
results, one has to assume that the numbering has a
certain property which is called “acceptable”.

Definition 11.17: Acceptable Numbering [Gödel 1931]
A numbering ϕe of partial functions is a partial-recursive
function e,x 7→ ϕe(x). A numbering is acceptable iff for
every further numbering ψ there is a recursive function f

such that, for all e, ψe = ϕf(e).

That is, f translates “indices” or “programs” of ψ into
“indices” or “programs” of ϕ which do the same.

The universal functions for register machines and for Turing
machines constructed by Turing and others are actually
acceptable numberings.

Theory of Computation 11 Undecidable Sets – p. 25

A Useful Proposition

Proposition 11.18
Let ϕ be an acceptable numbering and f be a
partial-recursive function with n+ 1 inputs. Then there is a
recursive function g with n inputs such that

∀e1, . . . , en,x [f(e1, . . . , en,x) = ϕg(e1,...,en)(x)].

Proof Idea for n = 2: There is a recursive bijection

c(e1, e2) = (e1 + e2) · (e1 + e2 + 1)/2+ e2 from N2 to N.
Define ψ by

∀e1, e2,x [ψc(e1,e2)(x) = f(e1, e2,x)].

There is a recursive g̃ translating ψ indices into ϕ indices.
The recursive function g(e1, e2) = g̃(c(e1, e2)) satisfies

∀e1, e2,x [ϕg(e1,e2)(x) = f(e1, e2,x)].
Theory of Computation 11 Undecidable Sets – p. 26

Rice’s Theorem

Theorem 11.19 [Rice 1953]
Let ϕ be an acceptable numbering and I be an index set
(with respect to ϕ).

(a) The set I is recursive iff I = ∅ or I = N.

(b) The set I is recursively enumerable iff there is a
recursive enumeration of finite lists (x1,y1, . . . ,xn,yn) of
conditions such that every index e satisfies that e ∈ I iff
there is a list (x1,y1, . . . ,xn,yn) in the enumeration for
which ϕe(x1) = y1 and . . . and ϕe(xn) = yn.

Corollary 11.20
Let I = {e : ∀x [ϕe(x) is defined]}. The set I of indices of
total functions is arithmetic and not recursively enumerable.

Theory of Computation 11 Undecidable Sets – p. 27

Proof of Theorem 11.19 (b), Part 1

Assume that there is an enumeration E of conditions such
that e ∈ I iff there is (x1,y1, . . . ,xn,yn) ∈ E with
ϕe(x1) = y1, . . . , ϕe(xn) = yn.

If ϕe satisfies the d-th condition in E then f(d, e) = e else
f(d, e) is undefined. The function f is partial recursive and I

is the range of a partial recursive function, thus I is
recursively enumerable.

Now assume that I is recursively enumerable and define the
following partial recursive function f : If ϕi(x) gets computed
at time t and ϕj(j) does not get computed within time t+ x

then let f(i, j,x) = ϕi(x) else f(i, j,x) remains undefined. By
Proposition 11.18 there is a recursive function g such that
∀i, j,x [ϕg(i,j)(x) = f(i, j,x)]. Consider any i ∈ I.

Theory of Computation 11 Undecidable Sets – p. 28

Proof of Theorem 11.19 (b), Part 2

For all j with ϕj(j) being undefined, it holds that ϕi = ϕg(i,j)

and g(i, j) ∈ I.

The set {j : g(i, j) ∈ I} is recursively enumerable and
{j : ϕj(j) is undefined} is not; thus there are j with ϕj(j)

being defined and g(i, j) ∈ I. For all such j one can compute
the (x,y) with ϕg(i,j)(x) = y explicitly as the time of the

computation ϕg(i,j)(x) needed plus x must be below the

time the computation ϕj(j) needs. Now let E be a recursive

enumeration of all lists obtained for such i, j with i ∈ I and
ϕj(j) being defined; E satisfies these conditions:

• If e ∈ I then a there is a list (x1,y1, . . . ,xn,yn) ∈ E such
that ϕe(x1) = y1, . . . , ϕe(xn) = yn;

• If (x1,y1, . . . ,xn,yn) appears in E then there is an index
e ∈ I such that ϕe is defined exactly at x1, . . . ,xn and
takes the values y1, . . . ,yn, respectively.

Theory of Computation 11 Undecidable Sets – p. 29

Proof of Theorem 11.19 (b), Part 3

Assume that ϕi extends a list (x1,y1, . . . ,xn,yn) in E and
define f ′(j,x) according the first condition found to apply:

• If x = xm then f ′(j,x) = ym;

• If ϕj(j) halts and ϕi(x) halts then f ′(j,x) = ϕi(x);

• If none of the above conditions are satisfied then f ′(j,x)
is undefined.

The function f ′ is partial recursive and by Proposition 11.18
there is a recursive function g′ with ∀j,x [ϕg′(j)(x) = f ′(j,x)].

If i ∈ I then {j : g′(j) ∈ I} = N;
If i /∈ I then {j : g′(j) ∈ I} = {j : ϕj(j) is undefined}.

The latter cannot hold as {j : g′(j) ∈ I} is recursively
enumerable; thus i ∈ I.

So the conditions in E describe I.

Theory of Computation 11 Undecidable Sets – p. 30

Proof of Theorem 11.19 (a)

It is obvious that ∅ and N are recursive index sets.

So assume now that I is a recursive index set. Then both I

and N− I are recursively enumerable. One of these sets,
say I, contains an index e of the everywhere undefined
function.

By part (b), there is a recursively enumerable set E of
conditions to describe the indices in I. This enumeration E

must contain the empty list, as otherwise the index e would
not qualify to be in I. Now every index satisfies the
condition for the empty list and therefore I = N.

Thus ∅ and N are the only two recursive index sets.

Theory of Computation 11 Undecidable Sets – p. 31

Index Set of Total Functions

Recall that the halting problem

H = {(e,x) : ϕe(x) is defined}

is definable in arithmetic. Thus also the set

T = {e : ∀x [(e,x) ∈ H]}

of indices of all total functions is also arithmetic. If this set
would be recursively enumerable then there would
recursive enumeration of lists of finite conditions such that
when a function satisfies one list of conditions then it is in
the index set. However, for each such list there is a function
with finite domain satisfying it, hence T would contain an
index of a function with a finite domain, a contradiction. So
T is not recursively enumerable.

Theory of Computation 11 Undecidable Sets – p. 32

Many-One Reducibility

The proof of Rice’s Theorem and also the above proof have
implicitly used the following observation.

Observation 11.21
If A,B are sets and B is recursively enumerable and if
there is a recursive function g with x ∈ A ⇔ g(x) ∈ B then
A is also recursively enumerable. Similarly, if B is recursive
then so is A.

The first can be seen as if B is the domain of a partial
recursive function h then A is the domain of the partial
recursive function x 7→ h(g(x)). The second follows from
the fact that a set is recursive iff both the set and its
complement are recursively enumerable.

Definition 11.22
A set A is many-one reducible to a set B iff there is a
recursive function g such that, for all x, x ∈ A ⇔ g(x) ∈ B.

Theory of Computation 11 Undecidable Sets – p. 33

Proving Undecidability

If A is not recursive / recursively enumerable and A is
many-one reducible to B then B is not recursive /
recursively enumerable, respectively.

Example 11.23
The set E = {e : ∀ even x [ϕe(x) is defined]} is not
recursively enumerable: Define f(e,2x) = ϕe(x) and
f(e,2x+ 1) = ϕe(x). There is recursive g with
∀e,x [ϕg(e)(x) = f(e,x)]. Thus ϕe is total iff ∀x [ϕg(e)(2x) is

defined]. So g is many-one reduction from indices of total
functions to E. Thus E is not recursively enumerable.

Example 11.24
The set F = {e : ϕe is somewhere defined} is not recursive.
There is a partial recursive f(e,x) with f(e,x) = ϕe(e) and a
recursive function g with ϕg(e)(x) = f(e,x) = ϕe(e). Now

e ∈ K iff g(e) ∈ F and thus F is not recursive.
Theory of Computation 11 Undecidable Sets – p. 34

Diagonal Halting Problem

Theorem 11.25
Every recursively enumerable set is many-one reducible to
the diagonal halting problem K = {e : ϕe(e) is defined}.

Proof. Assume that A is recursively enumerable. A is the

domain of a partial recursive function f̃ . There is also a

partial recursive f with f(e,x) = f̃(e) for all e,x. By
Proposition 11.18 there is a recursive g satisfying

∀e,x [ϕg(e)(x) = f(e,x)].

If e ∈ A then ϕg(e) is total and ϕg(e)(g(e)) is defined and

g(e) ∈ K;
if e /∈ A then ϕg(e) is nowhere defined and ϕg(e)(g(e)) is

undefined and g(e) /∈ K.
Thus g is a many-one reduction from A to K.

Theory of Computation 11 Undecidable Sets – p. 35

Exercises

Exercise 11.26
Show that the set F = {e : ϕe is defined on at least one x} is
many-one reducible to the set {e : ϕe(x) is defined for
exactly one input x}.

Determine for the each of the following sets whether it is
recursive, recursively enumerable and non-recursive or
even not recursively enumerable:

Exercise 11.27: A = {e : ∀x [ϕe(x) is defined iff ϕx(x+ 1) is
undefined]};

Exercise 11.28: B = {e : There are at least five numbers x

where ϕe(x) is defined};

Exercise 11.29: C = {e : There are infinitely many x where
ϕe(x) is defined}.

Theory of Computation 11 Undecidable Sets – p. 36

Exercises

Exercise 11.30
Assume that ϕ is an acceptable numbering. Now define ψ
such that

ψ(d+e)·(d+e+1)/2+e(x) =

{

undefined if d = 0 and x = 0;
d− 1 if d > 0 and x = 0;
ϕe(x) if x > 0.

Is the numbering ψ enumerating all partial recursive
functions? Is the numbering ψ an acceptable numbering?

Exercise 11.31
Is there a numbering ϑ with the following properties:

• The set {e : ϑe is total} is recursively enumerable;

• Every partial recursive function ϕe is equal to some ϑd.

Prove your answer.
Theory of Computation 11 Undecidable Sets – p. 37

	Repetition 1 -- Machines
	Repetition 2 -- Complexity Classes
	Repetition 3 -- Primitive Recursive
	Repetition 4 -- Bounded Simulation
	Repetition 5 -- Recursively Enumerable
	Repetition 6 -- Decidable Sets
	Repetition 7 -- Halting Problem
	Hilbert's Tenth Problem
	Alternative Characterisations
	Examples
	Exercises
	Diophantine $
edy Rightarrow $ Rec. Enumerable
	Closure Properties
	Hilbert's Tenth Problem
	Arithmetics
	Powers of 2 and of Primes
	Configurations of RM
	Sample Program
	Arithmetic Formula for U
	Run of Register Machine
	Formula for ``Sum(x)
Computes y''
	Formalising the Halting Problem
	Undecidability of Arithmetics
	Acceptable Numberings
	A Useful Proposition
	Rice's Theorem
	Proof of Theorem 11.19 (b),
Part 1
	Proof of Theorem 11.19 (b),
Part 2
	Proof of Theorem 11.19 (b),
Part 3
	Proof of Theorem 11.19 (a)
	Index Set of Total Functions
	Many-One Reducibility
	Proving Undecidability
	Diagonal Halting Problem
	Exercises
	Exercises

