Theory of Computation 12
Undecidability in Formal Languages

Frank Stephan
Department of Computer Science
Department of Mathematics
National University of Singapore

fstephan@comp.nus.edu.sg

Theory of Computation 12 Undecidability in Formal Languages — p. 1



Repetition 1

Polynomials P(N) and P(Z)
A function f(x,y1,...,yn) iSin P(Z) if it is a sum of products

of integer constants and variables x,y1,...,yn. This
function is in P(N) iff all the integer constants occurring are

in N.

Diophantine Sets
A set A C N is Diophantine iff there is f € P(Z) such that

x€eA<sdy,...,yn € Nf(x,y1,...,yn) = 0|.

Hilbert's Tenth Problem [1900]
Construct a Decision Procedure for Diophantine sets.

Theorem [Matiyasevich 1970]
A set is Diophantine iff it is r.e.; thus it can be undecidable
and the algorithm Hilbert looked for does not exist.

Theory of Computation 12 Undecidability in Formal Languages — p. 2



Repetition 2

Definition 11.11
A set A C N is called arithmetic iff there is a formula using

existential (3) and universal (V) quantifiers over variables
such that all variables except for x are quantified and that
the predicate behind the quantifiers only uses Boolean
combinations of polynomials from P(N) compared by < and
= in order to evaluate the formula.

Theorem [Church 1936; Turing 1936; Tarski 1936]
Arithmetic sets can be undecidable; the halting problem
(suitably coded) is an example of such a set.

Theory of Computation 12 Undecidability in Formal Languages — p. 3



Rep. 3 — The Entscheidungsproblem

Question 1928

Hilbert asked whether one can check whether a sentence in
first-order logic is valid, that is, true in all logical structures
which can be defined. For example, Vxdy|y < x] is not
valid, as it is not true in (N, <) and it applies to all structures
which have a relation called <. The formula
VxVy [x <y or =(x < y)| is an example of a valid formula.

Theorem [Church 1936; Turing 1936]
The Entscheidungsproblem is undecidable.

This proof also works by coding up the machine
computations and show that the corresponding halting set
IS undecidable; if ¢ codes the computations of machine e on
input e and 7 consists of sufficiently many axioms of (N, +, )
then 7 — o is valid iff the coded Turing machine e halts on
input e.

Theory of Computation 12 Undecidability in Formal Languages — p. 4



Repetition 4 — Undecidability

Proving Undecidability of Arithmetics
Code machine simulation into an arithmetic formula:

e Code the run of a Registermachine in Arithmetics;

e Make sure that the configurations of the Register
machine at the various steps can be decoded with an
arithmetic formula;

e Construct a formula which checks for each two
successive configurations that the next one is obtained
by going one step in the register program from the
previous configuration;

e Construct a formula which checks that the initial
configuration codes the input and the last one codes
the output and is in a halting line number,;

e Combine all this to one arithmetic formula which is true
iff there is a run and a way to code this run such that the
iInput produces the correct output.

Theory of Computation 12 Undecidability in Formal Languages —p. 5



Repetition 5 — Index Set

An index set contains either all or no indices of a function. It
IS based on acceptable numberings.

Definition 11.17: Acceptable Numbering [Godel 1931]

A numbering ¢, of partial functions is a partial-recursive
function e, x — pe(x). A numbering is acceptable iff for
every further numbering ¢ there is a recursive function f
such that, for all e, e = Pf(e)-

That is, f translates “indices” or “programs” of ) into
“indices” or “programs” of ¢ which do the same.

The universal functions for register machines and for Turing
machines constructed by Turing and others are actually
acceptable numberings.

Theory of Computation 12 Undecidability in Formal Languages — p. 6



Repetition 6 — Theorem of Rice

Theorem 12.19 [Rice 1953]
Let © be an acceptable numbering and I be an index set
(with respect to ).

(a) The setIis recursiveiff I =0 orI =N.

(b) The set 1 is recursively enumerable iff there is a
recursive enumeration of finite lists (x1,y1,...,Xn, yn) Of
conditions such that every index e satisfies that e € I iff
there is a list (x1,y1,...,Xn,yn) IN the enumeration for
which pe(x1) =y and ... and ve(xn) = yn.

Corollary 11.20
Let I = {e: Vx[pe(x) is defined]}. The set I of indices of
total functions is arithmetic and not recursively enumerable.

Theory of Computation 12 Undecidability in Formal Languages —p. 7



Repetition 7 — Reductions

Observation 11.21

If A, B are sets and B is recursively enumerable and if
there is a recursive function g with x € A < g(x) € B then
A is also recursively enumerable. Similarly, if B is recursive
then so is A.

Definition 11.22
A set A Is many-one reducible to a set B iff there is a
recursive function g such that, for all x, x € A & g(x) € B.

Theorem

A set is recursively enumerable iff it is many-one reducible
to the halting problem. A set is recursive iff it is many-one
reducible to the set of odd numbers.

One can prove undecidability of a set B by finding a set A
known to be undecidable such that one can construct a
many-one reduction from A to B.

Theory of Computation 12 Undecidability in Formal Languages —p. 8



Counter Automata

Counter automata are modifications of register machines.

e The counters (= registers) have much more restricted
operations: One can add or subtract 1 or compare
whether they are 0. Initival values of all counters is 0.

e Like a pushdown automaton, one can read one symbol
from the input at a time; depending on this symbol, the
automaton can go to the corresponding line. One
makes the additional rule that a run of the counter
automaton is only valid iff the full input was read.

e The counter automaton can either terminate in lines
with the special commands “ACCEPT” and “REJECT”
or signal “REJECT” by running forever.

Goal: Configurations and runs are more compatible with
grammars while automaton is still able to simulate
everything.

Theory of Computation 12 Undecidability in Formal Languages — p. 9



Example

Counter automaton accepts words which have, in all initial
parts, at least as many 0 as 1.

Line 1: Counter Automaton Zeroone;

Line 2: Input Symbol — Symbol 0: Goto Line 3; Symbol 1:
Goto Line 4; No further Input: Goto Line 7;

Line 3: R; = R + 1; Goto Line 2;

Line 4: If R{ = 0 Then Goto Line 6;

Line 5: R; = R; — 1; Goto Line 2;

_ine 6: REJECT;
_ine 7: ACCEPT.
Rune of automaton with input 001 and 001111000:
Line: 1 2 3 2 3 2 45 27 ... 5245246
Input: 0 0 1 — .. 1 1
R1: 0001122211 ... 2111000

Theory of Computation 12 Undecidability in Formal Languages — p. 10



Adding on Counter Machine

Counter Automaton Translation for R; = R> + Rs3.

Line 1: ... // R4 1S O;
Line 2: If R; = 0 Then Goto Line 4;
Line 3: Ry = R; — 1; Goto Line 2;
Line 4: If R, = 0 Then Goto Line 6;
Line5: Ry =R4+1; Ry =Ry — 1; Goto Line 4;
Line 6: If R4, = 0 Then Goto Line 8;
Line 7: Rl:Rl—l—l;Rz:R2+1;R4:R4—1;G0t0
Line 6;
Line 8: If R3 = 0 Then Goto Line 10;
Line 9: Ry =R4 +1; R3 =Rs — 1; Goto Line 8;
Line 10: If R4, = 0 Then Goto Line 12;
Line 11: R4 :R1—|—1;R3:R3+1;R4:R4—1;G0t0
Line 10;
Line 12: ... // Continue with next command, R4 is 0 again;

Theory of Computation 12 Undecidability in Formal Languages — p. 11




Program as While-Loops

Counter Translation for Ry = R2 + R3. Important is to
restore values of Rz, R3 while computing R; and using R4
which is 0 before and after operation.

Lines 2-3: While R; > 0 Do Begin R; = R; — 1 End,;

Lines 4-5: While Ro > 0 Do Begin R4 = R4 + 1;
R =Rs —1 End,

Lines 6-7: While R4 > 0 Do Begin R; = Ry + 1;
Ro=Ro+1: R4 =Ry —1EnNd;

Lines 8-9: While R3 > 0 Do Begin R3 = R3 — 1;
Rs=R4+1 End,

Lines 10-11: While R4 > 0 Do Begin R1 = R1 + 1;
R3=R3+1;R;=R4—1EnNd;

In short: Lines 1,2 do R; = 0; Lines 3,4 do R4 = R5 which
makes R3 = 0; Lines 5,6 do R; = R4, R = R4 which
makes R4 = 0: Lines 8,9 do R4 = R3 which makes R3 = 0;
Lines 10,11 do R;+ = R4, R3 = R4 which makes R4 = 0.

Theory of Computation 12 Undecidability in Formal Languages — p. 12



Subtracting from Constant

Counter Automaton Translation for R; = 2 — Ro.

_ine 1: ... // Previous Operation

Line 2: If Ry = 0 Then Goto Line 4;

Line 3: Ry = R; — 1; Goto Line 2;

Line4: Ri =R1+1;R; = Ry +1;

Line 5: If Ry = 0 Then Goto Line 10:;

L ine 6: Ri=R{—-—1;Ro =Ry —1;

Line 7: If Ro = 0 Then Goto Line 9;
Line8: Ry =Ry —1;

Line 9: Ry = Ry +1;

Line 10: ... // Continue with next command;

Theory of Computation 12 Undecidability in Formal Languages —p. 13



Quiz

Quiz 12.3
Provide counter automaton translations for the following
commands:

e Rj =2
e Ry = Ro + 3;
® R3:R3—2.

Write them in a way that a counter Ry, having the value 0
does not perform Ry = Ry — 1.

Theory of Computation 12 Undecidability in Formal Languages — p. 14



Exercises

Exercise 12.4

Provide a translation for a subtraction: R; = R — R3. Here
the result is 0 in the case that R3 is greater than R». The
values of R2, Rg after the translated operation should be
the same as before.

Exercise 12.5

Provide a translation for a conditional jump: If R; < R then
Goto Line 200. The values of R1, R2 after doing the
conditional jump should be the same as before the
translation of the command.

Corollary 12.6

Every language recognised by a Turing machine or a
register machine can also be recognised by a counter
machine. In particular there are languages recognised by
counter machines for which the membership problem is
undecidable.

Theory of Computation 12 Undecidability in Formal Languages — p. 15



Main Result

Theorem 12.7

If K is recognised by a counter machine then there are
deterministic context-free languages L and H and a
homomorphism h such that K = h(L N H). In particular, K
IS generated by some grammar.

Proof

The main idea of the proof is the following: One makes L
and H contain computations such that for L the updates
after an odd number of steps and for H the updates after an
even number of steps is checked; furthermore, one
intersects one of them, say H with a regular language In
order to meet some other, easy to specify requirements on
the computation.

Furthermore, h(L N H) will get out the input words from the
valid counter automaton computations.

Theory of Computation 12 Undecidability in Formal Languages — p. 16



Coding Configurations

The simulated counter automaton M has registers
R1,R2,...,Rypandlines 1,2,...,m. A configuration
consists of the input read (if any), the line number of the
current statement and the register contents before the
current statement is done.

Code is b - 3LN . 4x

Here b € {¢,0,1,2}: ¢ — no input processed; 2 — input
exhausted; 0, 1 — respective input bit read.

4%: x = pi* - py? - ... - pR» where py,ps, ..., pn are the first
n primes.

Soif R1 =3, R3 =1 and R4 = 1 and all other registers are
0 then x = 23.5.7 = 280.

Theory of Computation 12 Undecidability in Formal Languages — p. 17



Update Set

Let I be the set of possible configurations,
I={0,1,2}-{3,33,...,3™} . {4}

where some illegal values of x are not checked (like p3 , ;).

LetJ = {v-w:v,w € Iand counter automaton goes from
configuration v to configuration w in one step}.

Next slides: J,J*, 1. J* are deterministic context-free. The
deterministic pushdown automaton for J is explained for
representative cases of configurations v, w.

General outline: The pushdown automaton stores values of

b, 3N in memory and counts up the 4 of v in stack and
counts down the 4 of w in stack, sometimes with different
speed to check multiplications / divisions by py,.

Theory of Computation 12 Undecidability in Formal Languages —p. 18



Increment

Linei: Ry = Ry + 1;
In this case, one has that the configuration update must be
of the form

{31} {4} {0,1,2,2} - {31} . {4} P

and the deterministic pushdown automaton checks whether
the new number of 3 is one larger than the old one and
whether when comparing the second run of 4 those are py
times many of the previous run, that is, it would count down
the stack only after every py-th 4 and keep track using the
state that the second number of 4 is a multiple of py.

Theory of Computation 12 Undecidability in Formal Languages — p. 19



Decrement

Linei: Ry = Ry — 1;
In this case, one has that the configuration update must be
of the form

{Si} -{4}*-{0,1,2,¢} - {3i+1} . {4}X/pk

and the deterministic register machine checks whether the
new number of 3 is one larger than the old one and whether
when comparing the second run of 4 it would count down
the stack by px symbols for each 4 read and it would use
the state to check whether the first run of 4 was a multiple
of py in order to make sure that the subtraction is allowed.

Theory of Computation 12 Undecidability in Formal Languages — p. 20



Conditional Branching

Line i: If Ry = 0 then Goto Line j;
In this case, the configuration update must either be of the
form

{31} ) {4}X ' {07 1, 27 5} | {SJ} ' {4}X
with x not being a multiple of py or it must be of the form
{3} - {4}*-{0,1,2,} - {371} - {4}

with x being a multiple of py,. Being a multiple of p, can be
checked by using the state and can be done in parallel with
counting; the preservation of the value is done accordingly.

Theory of Computation 12 Undecidability in Formal Languages — p. 21



Processing Input

Line i: If input symbol is 0 then goto Line jg; If input symbol
IS 1 then goto Line ji; If input is exhausted then goto Line js;
Now the configuration update must be of one of the form

u- {3 - {4} {0,1,2,} - {3} - {4}

for some u € {0,1, 2} and the deterministic pushdown
automaton can use the state to memorise u,i and the stack
to compare the two occurrences of 4*. Again, if the format
IS not adherred to, the pushdown automaton goes into an
always rejecting state and ignores all future input.

Theory of Computation 12 Undecidability in Formal Languages — p. 22



General Remarks

The pushdown automaton maintains a stack of the form S
or ST or STU™ where the T and U are used to count the 4
and the T is a symbol signalling that it is just above S (in
order to manage the state correctly). The automaton can
easily be adjusted to handle J* in place of J: After each
checking of J, it has in the case of success again to have
the stack S and the last 4 processed from the entry in J will
follow up with a digit from 0, 1, 2, 3 for the next entry from
the next configuration.

The language I - J* is also recognisable by a deterministic
pushdown automaton, as the entry from I consists of digits
from 0, 1, 2, 3 followed by at least one 4 with the next entry
from J again be starting with one of 0, 1, 2, 3.

For the regular languages {¢} UI and R, it holds that
L=J"-(Tu{e})andH=(I-J"-(Iu{e})) NR are also
deterministic context-free.

Theory of Computation 12 Undecidability in Formal Languages — p. 23



Choosing R and Conclusion

The permitted runs are from
LNH=J"-Tu{e})nTd-J*-Tu{e})) NR

and R codes that the last line number is that of a line
having the command ACCEPT and that the first line
number is 1 and the initial value of all registers is 0 and that
once a 2 is read from the input (for exhausted input) then all
further attempts to read an input are answered with 2. For
example, if the lines 5 and 8 carry the command ACCEPT
then

R = ({34} -T*-{3°,3%) . {41 ") N ({0,1,3,4}* - {2,3,4}*).

Furthermore, h(0) =0, h(1) =1, h(2) = ¢, h(3) = ¢,
h(4) =e. As the 0,1 are only from the input read,
K =h(LNH).

Theory of Computation 12 Undecidability in Formal Languages — p. 24



Exercises

Exercise 12.8

In the format of the proof before and with respect to the
sample multi counter machine from the beginning of today’s
lecture, give the encoded version (as word from
{0,1,2,3,4}") of the run of the machine on the input 001.

Exercise 12.9

In the format of the proof before and with respect to the
sample multi counter machine from the beginning of today’s
lecture give the encoded version (as word from
{0,1,2,3,4}") of the run of the machine on the input
001111000.

Theory of Computation 12 Undecidability in Formal Languages — p. 25



Generated by Grammar = R.E.

Theorem 12.10

A set K C X* is recursively enumerable iff it is generated by
some grammar. In particular, there are grammars for which
it is undecidable which words they generate.

Proof.

If K is generated by some grammar, then every word w has
a derivation S = vq; = v = ... = vy in this grammar. An
algorithm can check, by all possible substitutions, whether
Vvm = Vmi1. 1hus there is a partial recursive f which on
input S = vi = vy = ... = v, checks whether all steps of
the derivation are correct and whether v,, € X*; if so, then f
outputs v, else f is undefined. K is the range of f.

For the converse direction, if K is recursively enumerable
then K is recognised by a Turing machine and then K is
recognised by a counter automaton and then K is
generated by some grammar.

Theory of Computation 12 Undecidability in Formal Languages — p. 26



Undecidable Questions

Corollary 12.11
The following questions are undecidable:

(a) Given a grammar and a word, does this grammar
generate the word?

(b) Given two deterministic context-free languages by
deterministic push down automata, does their
intersection contain a word?

(c) Given a context-free language given by a grammar,
does this grammar generate {0,1,2,3,4}*7

(d) Given a context-sensitive grammar, does its language
contain any word?

Let K be the halting problem with inputs from {0, 1}* and
L, H simulating the computations of a fixed counter
machine which recognises K. Choosing a grammar for K
answers item (a).

Theory of Computation 12 Undecidability in Formal Languages — p. 27



Items (b), (¢), (d)

One can compute for w € {0,1}* a deterministic pushdown
automaton which recognises

Hy, = HN({3,4}"{b1}-{3,4}"{ba}-.. -{3,4}"-{bn}-{2,3,4}")

so that L N Hy, contains all accepting computations which
read bibs ... b, = w. This gives item (b).

Item (c) follows from studying {0,1,2,3,4}* — (LN Hy)
which has a context-free grammar which can be computed
from the deterministic pushdown automata for
{0,1,2,3,4}* — L and {0,1,2,3,4}* — Hy, the language
sought for is the union of these two languages.

The last item (d) follows from converting the two pushdown
automata for L and H,, into a context-sensitive grammar for
L N H,, which contains a member iff w € K. Also this test is
undecidable.

Theory of Computation 12 Undecidability in Formal Languages — p. 28



Post’s Correspondence Problem

An instance of Post’s Correspondence Problem is a list
(x1,¥1), (X2,¥2), ..., (Xn,yn) Of pairs of words. Such an
instance has a solution iff there is a sequence kq,ks, ... . km
of numbersin {1,... n} suchthatm > 1 and

Xk1Xko + -+ Xk — Yk1Yks - - Yk,

For example, the following pairs: (a,a), (a,amanap),
(canal,nam), (man,lanac), (0,00), (panama,a), (plan,nalp).
This list has some trivial solutions like 1, 1,1 giving aaa for
both words. It has also the famous solution 2,4,1,7.1,3,6
which gives the palindrome as a solution:

a man a plan a canal panama
amanap lanac a nalp a nam a

The instance (alpha,beta), (gamma,delta) has no solution.

Theory of Computation 12 Undecidability in Formal Languages — p. 29



Exercises

Exercise 12.13 and 12.14

For the following instances of Post’s Correspondence
Problem, determine whether it has a solution:

12.13: (23,45), (2289,2298), (123,1258), (7/77,773577),
(1,9999), (11111,9).

12.14: (1,9), (125,625), (25,125), (5,25), (625,3125), (89,8),
(998,9958).

Exercise 12.15

Use Post’s Correspondence Problem to prove that it is
undecidable whether the intersection of two deterministic
context-free languages is non-empty. See the lecture notes
for hints.

Theory of Computation 12 Undecidability in Formal Languages — p. 30



Non-deterministic machines

One way to implement non-determinism in counter and
register machines is to allow multiple targets for a Goto
command and the machine chooses just one of the line
numbers.

e A function f computes on input x a value y iff there is an
accepting run which produces the output y and every
further accepting run produces the same output;
rejected runs and non-terminating runs are irrelevant in
this context.

e A set L is recognised by a non-deterministic machine iff
for every x it holds that x € L iff there is an accepting
run of the machine for this input x.

One can use non-determinism to characterise the regular
and context-sensitive languages via Turing machines or
register machines.

Theory of Computation 12 Undecidability in Formal Languages — p. 31



Characterisations

Theorem 12.17

A language L is context-senstive iff there is a Turing
machine which recognises L and which modifies only those
cells on the Turing tape which are occupied by the input iff
there is a non-deterministic register machine recognising
the language and a constant c such that the register
machine on any run for an input consisting of n symbols
never takes in its registers values larger than c™.

Theorem 12.18

A language L is regular iff there is a non-deterministic
Turing machine recognising L and numbers a, b such that
the Turing machine makes for each input consisting of n
symbols in each run at most a- n + b steps.

Note that a linear time Turing machines can modify the tape
on which the input is written while a finite automaton does
not have this possibility.

Theory of Computation 12 Undecidability in Formal Languages — p. 32



Example 12.19

Assume that a Turing machine has as input alphabet
{0,1,...,9} and additional tape symbol LI. This Turing
machine does the following: For an input word, the Turing
machine goes four times over the word from left to right and
each time it replaces the current word w by v with 3v = w;
If the division by 3 has a remainder, the Turing machine
rejects. It accepts iff the final word is from

{0}7- {110} - {0}" - {110} - {0}".
The language recognised by this Turing machine is
{o}*. {891} -{0}*- {891} - {0} and thus regular.

Theory of Computation 12 Undecidability in Formal Languages — p. 33



Exercises

Exercise 12.20

Assume that a Turing machine does the following: It has 5
passes over the input word w and at each pass, it replaces
the current word v by v/3. In the case that during this
process of dividing by 3 a remainder different from 0 occurs
for the division of the full word, then computation is aborted
as rejecting. If all divisions go through and the resulting
word v is w/3° then the Turing machine adds up the digits
and accepts iff the sum of digits is exactly 2.

Determine a regular expression for this language.

Exercise 12.21

A Turing machine does two passes over a word and divides
it the decimal number on the tape each time by 7. It then
accepts iff the remainders of the two divisions sum up to 10.
Construct a dfa for this language.

Theory of Computation 12 Undecidability in Formal Languages — p. 34



Exercise 12.22

Assume that a Turing machine works on an input word from
{0,1,2}* as below.

nitialise ¢ = 0 and update cto 1 — ¢ whenever a 1 is read.
~or each symbol do the following replacement:
fc=0then1 —-0,2—1,0— O;

fc=1then1 —-2,2—-20— 1.

Before pass 0100101221010210
After pass 0011200222001220

The Turing machine accepts if before the pass there are an

even number of 1 and afterwards there are an odd number
of 1.

Explain what the language recognised by this Turing
machine is and why it is regular. As a hint: interpret the
numbers as natural numbers in ternary representation and
analyse what the tests and the operations do.

Theory of Computation 12 Undecidability in Formal Languages — p. 35




	Repetition 1
	Repetition 2
	Rep. 3 -- The Entscheidungsproblem
	Repetition 4 -- Undecidability
	Repetition 5 -- Index Set
	Repetition 6 -- Theorem of Rice
	Repetition 7 -- Reductions
	Counter Automata
	Example
	Adding on Counter Machine
	Program as While-Loops
	Subtracting from Constant
	Quiz
	Exercises
	Main Result
	Coding Configurations
	Update Set
	Increment
	Decrement
	Conditional Branching
	Processing Input
	General Remarks
	Choosing R and Conclusion
	Exercises
	Generated by Grammar = R.E.
	Undecidable Questions
	Items (b),
(c), (d)
	Post's Correspondence Problem
	Exercises
	Non-deterministic machines
	Characterisations
	Example 12.19
	Exercises
	Exercise 12.22

