Midterm Examination CS 4232: Theory of Computation

Thursday 29 October 2015, Duration 40 Minutes

Student Number: _____

Rules: This test carries 20 marks and consists of 4 questions. Each questions carries 5 marks; full marks for a correct solution; a partial solution can give a partial credit. Use the backside of the page if the space for a question is insufficient.

Question 1 [5 marks]

Let $L = \{5^n \cdot 6^m \cdot 7^k : n \ge m \text{ and } m \ge k\}$ and let $h : \{0, 1, 2, 3\}^* \to \{5, 6, 7\}^*$ be a homomorphism given by h(0) = 5, h(1) = 5, h(2) = 55, h(3) = 6. Consider the set

$$H = h^{-1}(L) \cap (\{1\}^* \cdot \{2\}^* \cdot \{3\}^*).$$

Determine the best possible position of H in the Chomsky hierarchy (regular, context-free, context-sensitive, recursively enumerable) and construct the corresponding grammar.

Solution. The set H consists of all words $1^h 2^i 3^j$ such that $h + 2i \ge j$, as a 1 is mapped to one 5 and a 2 to two 5s while a 3 is mapped to a 6. The choice is therefore context-free and the grammar would look as follows: The non-terminals are S, T, the terminals are 0, 1, 2, 3, the start symbol is S and the rules are

- $S \rightarrow 1S3|1S|T$,
- $T \rightarrow 2T33|2T3|2T|\varepsilon$.

Note that h(2) = 55 which can therefore balance out two 3, as h(3) = 6.

Question 2 [5 marks]

CS 4232 – Solutions

It is known that the language $L = \{w \in \{0, 1, 2\}^* : w \text{ contains strictly more 0 than 1}\}$ is deterministic context-free. What about the languages $H = L \cup \{0^n 1^n 2^n : n \in \mathbb{N}\}$ and $K = (L \cap (\{0\}^* \cdot \{1\}^* \cdot \{2\}^*)) \cup \{2, 3\}^*$? Prove your answer; theorems from the lecture can be used.

Solution. The language $H = L \cup \{0^n 1^n 2^n : n \in \mathbb{N}\}$ is not context-free and therefore also not deterministic context-free. Assume by way of contradiction that H satisfies the context-free pumping lemma with constant n. Let $u = 0^n 1^n 2^n$ and let vwxyzbe the word u splitted according to the pumping lemma. If w, y contains the same amount of 0, 1 then vwwxyyz must also be of the form $0^m 1^m 2^m$ for some m > n and this is impossible as the pump cannot contain any 2 by $|wxy| \leq n$. If w, y contain more 0 than 1 then vxz contains less 0 than 1 and is not in H so that again the pumping lemma is not satisfied. If w, y contain less 0 than 1 then vwwxyyz contains less 0 than 1 and is not in H and again the pumping lemma is not satisfied.

The language $L \cap (\{0\}^* \cdot \{1\}^* \cdot \{2\}^*)$ is the intersection of a deterministic context-free language and a regular language and thus deterministic context-free. Now K is the union of that language and a regular language and also deterministic context-free.

Question 3 [5 marks]

Write a register machine program which computes the function F given by $x \mapsto x^2+2x+5$; the register machine can use addition, comparison, subtraction, conditional jump and unconditional jump; note that the register machine has always natural numbers in the variables and that therefore 2-5 is 0 and not -3. All macros used must be defined within this question by their own programs.

Solution. The following program computes the function. R_2 is a counter which goes from 0 to the input R_1 and R_3 holds each time in Line 4 the value $R_2 \cdot (R_1 + 2) + 5$ which at the end will be $R_1^2 + 2R_1 + 5$ when the program gives the return value $F(R_1)$ in Line 8.

Line 1: Function $F(R_1)$; Line 2: $R_2 = 0$; Line 3: $R_3 = 5$; Line 4: If $R_2 = R_1$ Then Goto Line 8; Line 5: $R_2 = R_2 + 1$; Line 6: $R_3 = R_3 + R_1 + 2$; Line 7: Goto Line 4; Line 8: Return (R_3) .

Question 4 [5 marks]

CS 4232 – Solutions

Consider the grammar

 $(\{S,T,U\},\{0,1\},\{S\rightarrow TT|UU,T\rightarrow UU,U\rightarrow 0|1\},S)$

and apply the algorithm of Cocke, Kasami and Younger to check whether the word 1001 is in the language L generated by the grammar. Furthermore, determine how many words L contains.

Additional Space for Question 4

CS 4232 – Solutions

Solution. The table of the algorithm looks as follows for the word 1001:

$$E_{1,4} = \{S\}$$

$$E_{1,3} = \emptyset \qquad E_{2,4} = \emptyset$$

$$E_{1,2} = \{S,T\} \qquad E_{2,3} = \{S,T\} \qquad E_{3,4} = \{S,T\}$$

$$E_{1,1} = \{U\} \qquad E_{2,2} = \{U\} \qquad E_{3,3} = \{U\} \qquad E_{4,4} = \{U\}$$

$$0 \qquad 1 \qquad 1$$

Thus the word is in the language. Indeed, one can see that U can generate every word in $\{0, 1\}$. Furthermore, S and T can both generate UU and thus generate every word in $\{0, 1\}^2$. As there is also the rule $S \to TT$, S can also generate every word in $\{0, 1\}^4$ by deriving $S \Rightarrow TT \Rightarrow UUT \Rightarrow UUUU$ and then onward to any word of four bits by replacing each U according to the target. Thus the language contains all two-bit and all four-bit words which are in total 20 words.