Midterm Examination CS 4232: Theory of Computation

Thursday 29 October 2015, Duration 40 Minutes

Student Number: \qquad

Rules: This test carries 20 marks and consists of 4 questions. Each questions carries 5 marks; full marks for a correct solution; a partial solution can give a partial credit. Use the backside of the page if the space for a question is insufficient.

Question 1 [5 marks]

Let $L=\left\{5^{n} \cdot 6^{m} \cdot 7^{k}: n \geq m\right.$ and $\left.m \geq k\right\}$ and let $h:\{0,1,2,3\}^{*} \rightarrow\{5,6,7\}^{*}$ be a homomorphism given by $h(0)=5, h(1)=5, h(2)=55, h(3)=6$. Consider the set

$$
H=h^{-1}(L) \cap\left(\{1\}^{*} \cdot\{2\}^{*} \cdot\{3\}^{*}\right) .
$$

Determine the best possible position of H in the Chomsky hierarchy (regular, contextfree, context-senstive, recursively enumerable) and construct the corresponding grammar.

Solution. The set H consists of all words $1^{h} 2^{i} 3^{j}$ such that $h+2 i \geq j$, as a 1 is mapped to one 5 and a 2 to two 5 s while a 3 is mapped to a 6 . The choice is therefore context-free and the grammar would look as follows: The non-terminals are S, T, the terminals are $0,1,2,3$, the start symbol is S and the rules are

- $S \rightarrow 1 S 3|1 S| T$,
- $T \rightarrow 2 T 33|2 T 3| 2 T \mid \varepsilon$.

Note that $h(2)=55$ which can therefore balance out two 3 , as $h(3)=6$.

Question 2 [5 marks]

It is known that the language $L=\left\{w \in\{0,1,2\}^{*}: w\right.$ contains strictly more 0 than 1$\}$ is deterministic context-free. What about the languages $H=L \cup\left\{0^{n} 1^{n} 2^{n}: n \in \mathbb{N}\right\}$ and $K=\left(L \cap\left(\{0\}^{*} \cdot\{1\}^{*} \cdot\{2\}^{*}\right)\right) \cup\{2,3\}^{*}$? Prove your answer; theorems from the lecture can be used.

Solution. The language $H=L \cup\left\{0^{n} 1^{n} 2^{n}: n \in \mathbb{N}\right\}$ is not context-free and therefore also not deterministic context-free. Assume by way of contradiction that H satisfies the context-free pumping lemma with constant n. Let $u=0^{n} 1^{n} 2^{n}$ and let vwxyz be the word u splitted according to the pumping lemma. If w, y contains the same amount of 0,1 then vwwxyyz must also be of the form $0^{m} 1^{m} 2^{m}$ for some $m>n$ and this is impossible as the pump cannot contain any 2 by $|w x y| \leq n$. If w, y contain more 0 than 1 then $v x z$ contains less 0 than 1 and is not in H so that again the pumping lemma is not satisfied. If w, y contain less 0 than 1 then vwwxyyz contains less 0 than 1 and is not in H and again the pumping lemma is not satisfied.

The language $L \cap\left(\{0\}^{*} \cdot\{1\}^{*} \cdot\{2\}^{*}\right)$ is the intersection of a deterministic context-free language and a regular language and thus deterministic context-free. Now K is the union of that language and a regular language and also determinitistic context-free.

Question 3 [5 marks]

CS 4232 - Solutions

Write a register machine program which computes the function F given by $x \mapsto$ $x^{2}+2 x+5$; the register machine can use addition, comparison, subtraction, conditional jump and unconditional jump; note that the register machine has always natural numbers in the variables and that therefore $2-5$ is 0 and not -3 . All macros used must be defined within this question by their own programs.
Solution. The following program computes the function. R_{2} is a counter which goes from 0 to the input R_{1} and R_{3} holds each time in Line 4 the value $R_{2} \cdot\left(R_{1}+2\right)+5$ which at the end will be $R_{1}^{2}+2 R_{1}+5$ when the program gives the return value $\mathrm{F}\left(R_{1}\right)$ in Line 8.

Line 1: Function $\mathrm{F}\left(R_{1}\right)$;
Line 2: $R_{2}=0$;
Line 3: $R_{3}=5$;
Line 4: If $R_{2}=R_{1}$ Then Goto Line 8;
Line 5: $R_{2}=R_{2}+1$;
Line 6: $R_{3}=R_{3}+R_{1}+2$;
Line 7: Goto Line 4;
Line 8: Return $\left(R_{3}\right)$.

Question 4 [5 marks]

CS 4232 - Solutions

Consider the grammar

$$
(\{S, T, U\},\{0,1\},\{S \rightarrow T T|U U, T \rightarrow U U, U \rightarrow 0| 1\}, S)
$$

and apply the algorithm of Cocke, Kasami and Younger to check whether the word 1001 is in the language L generated by the grammar. Furthermore, determine how many words L contains.

Additional Space for Question 4

CS 4232 - Solutions

Solution. The table of the algorithm looks as follows for the word 1001:

$$
\begin{gathered}
E_{1,4}=\{S\} \\
E_{1,3}=\emptyset \\
E_{1,2}=\{S, T\}
\end{gathered} E_{2,3}=\{S, T\} \quad E_{2,4}=\emptyset \quad E_{3,4}=\{S, T\} \quad 10 E_{3,4}=\{U\}
$$

Thus the word is in the language. Indeed, one can see that U can generate every word in $\{0,1\}$. Furthermore, S and T can both generate $U U$ and thus generate every word in $\{0,1\}^{2}$. As there is also the rule $S \rightarrow T T, S$ can also generate every word in $\{0,1\}^{4}$ by deriving $S \Rightarrow T T \Rightarrow U U T \Rightarrow U U U U$ and then onward to any word of four bits by replacing each U according to the target. Thus the language contains all two-bit and all four-bit words which are in total 20 words.

