
NATIONAL UNIVERSITY OF SINGAPORE

CS 4232 – Theory of Computation

(Semester 1: AY 2017/2018)

Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES

1. Please write your Student Number. Do not write your name.

2. This assessment paper consists of TEN (10) questions and comprises TWEN-
TYONE (21) printed pages.

3. Students are required to answer ALL questions.

4. Students should answer the questions in the space provided.

5. This is a CLOSED BOOK assessment.

6. It is permitted to use calculators, provided that all memory and programs are
erased prior to the assessment; no other material or devices are permitted.

7. Every question is worth FIVE (5) marks. The maximum possible marks are 50.

STUDENT NO:

This portion is for examiner’s use only

Question Marks Remarks Question Marks Remarks
Q01: Q06:
Q02: Q07:
Q03: Q08:
Q04: Q09:
Q05: Q10:

Total:

Question 1 [5 marks] CS 4232 – Solutions

Construct a context-free grammar for L = {0n10n20m10m : n > 0 and m > 0} with
as few non-terminals as possible. Explain the choice of the given grammar.

Solution. The grammar is ({S, T}, {0, 1, 2}, {S → T2T, T → 0T0|010}, S).

The grammar uses that L consists of the concatenation of three languages: L =
H ·{2}·H where H = {0n10n : n > 0} and the words which can be derived from T are
exactly the members of H. The grammar for H is one of the standard constructions
for context-free grammars.

Note that a grammar with one non-terminal is impossible. Assume otherwise. Then
the starting symbol S is the only non-terminal. Now one considers a derivation of
the word 0n10n20n10n where only one step in the derivation is missing and n is larger
than the largest right side of every rule. Thus the currently derived word is of the
form vSw and there is a rule S → u with vuw = 0n10n20n10n. In at least one of v
and w, at least one 1 must occur, since the distance between the two 1s in the target
word is larger than |u|. Now one can also terminalise the derivation by making S
into 0102010, as S ⇒∗ 0102010 by definition of L. The resulting word has at least
three occurrences of 1 and the word is not in L. Thus if a grammar with exactly one
non-terminal generates all words in L, then this grammar also generates some words
outside L. Therefore the grammar above with two non-terminals is optimal.

2

Question 2 [5 marks] CS 4232 – Solutions

Consider the language L = {u2v2w : u, v, w ∈ {0, 1}+ and |u| = |v| = |w|} and let h
be a homomorphism with h(0) = ε, h(1) = 0 and h(2) = 1.

What is the level of h(L) in the Chomsky Hierarchy:
(a) regular,
(b) context-free and not regular,
(c) context-sensitive and not context-free?

When choosing (a), provide a regular expression for h(L); when choosing (b), provide
a context-free grammar and a proof that h(L) is not regular; when choosing (c),
provide a proof that h(L) is not context-free.

Solution. The correct choice is (a) and h(L) is regular. The regular expression for
h(L) is σ = {0}∗ · {1} · {0}∗ · {1} · {0}∗. Any word x generated by σ is of the form
x = 0i10j10k for some i, j, k and one can see that

x = h(0j+k+11i20i+k+11j20i+j+11k);

thus x ∈ h(L). So the range of h covers all words generated by σ. It is also easy to
see that the two 2s in each element of L are mapped by h to 1s while every other
symbol is mapped to 0 or ε, thus σ generates every element of h(L).

3

Question 3 [5 marks] CS 4232 – Solutions

Construct for the alphabet {0, 1, 2, 3, 4} a complete deterministic finite automaton
(dfa) with four states which recognises the language

L = {w ∈ {0, 1, 2, 3, 4}∗ : val5(w) is even and not a multiple of 5}.

Here val5(w) is the value of the number in the number system with base 5. Recall that
this system uses the digits 0, 1, 2, 3, 4; here some examples: val5(10) is five, val5(22) is
twelve and val5(111) is thirty-one. To make the dfa simpler, one defines val5(ε) = 0
and val5(0w) = val5(w) for all w ∈ {0, 1, 2, 3, 4}∗. Examples of elements of L are 2,
4, 11, 13, 22, 24 and 101; examples of non-elements of L are 0, 10, 200 and 333.

Solution. The finite automaton is given by the following table.

state succ at 0 succ at 1 succ at 2 succ at 3 succ at 4 type
a a d c d c start,rej
b b c d c d rej
c a d c d c acc
d b c d c d rej

Note that the multiples of 5 end with 0. So a stands for even and multiple of 5, b
stands for odd and multiple of 5, c stands for even and not multiple of 5, d stands
for odd and not multiple of 5. As 5 modulo 2 is 1, one can add the digits modulo 2
in order to see whether the number is even or odd.

4

Question 4 [5 marks] CS 4232 – Solutions

Construct a context-free grammar in Greibach Normal Form for

L = {0n1m2k : n+m < k}

and derive the word 012222 by this grammar. How many steps are needed to derive
a word of length `?

In Greibach Normal Form, each left side of a rule is a single non-terminal and each
right side of a rule is a terminal followed by some (possibly none) non-terminals. As
this language does not contain ε, there cannot be any rule having ε on the right side.

Solution. A possible grammar is ({S, T, U, V,W}, {0, 1, 2}, P, S) where P contains
the rules S → 0SU |1TU |2U |2, T → 1TU |2U |2, U → 2U |2. Now the sample deriva-
tion is

S ⇒ 0SU ⇒ 01TUU ⇒ 012UUU ⇒ 0122UU ⇒ 01222U ⇒ 012222.

As in each step, exactly one terminal is generated, one needs ` steps to derive a word
of length `.

5

Question 5 [5 marks] CS 4232 – Solutions

Recall that a language L satisfies the Block Pumping Lemma with constant k such
when a word u ∈ L of length at least k is split into k + 1 parts u0, u1, . . . , uk−1, uk
such that all the inner blocks u1, . . . , uk−1 are non-empty, then one can find i, j with
1 ≤ i ≤ j < k such that u0 . . . ui−1(ui . . . uj)

∗uj+1 . . . uk ⊆ L.

Either find the smallest constant k such that

L = {w ∈ {0, 1, 2}∗ : w contains each of 0, 1, 2 at least once}

satisfies the Block Pumping Lemma with constant k and explain why this constant
is the correct choice

Or prove that L does not satisfy the Block Pumping Lemma with any constant k.

Solution. L satisfies the Block Pumping Lemma with constant k = 5 but not with
constant k = 4. In the case that k = 5, then one can for each of the letters 0, 1, 2
reserve one block which contains this letter and one of the inner blocks remains
unreserved which can be pumped so that, when pumping down, still all letters are in
the word. The choice k = 4 is not possible, as one can split the word u = 012 into
u0 = ε, u1 = 0, u2 = 1, u3 = 2, u4 = ε and pumping down would cause that at least
one of the letters 0, 1 and 2 is missing in the pumped down word.

6

Question 6 [5 marks] CS 4232 – Solutions

An example in the lecture notes shows that the language L = {w ∈ {0, 1, 2}∗ : w
contains as many 0 as 1} and H = {w ∈ {0, 1, 2}∗ : w contains as many 0 as 2}
are deterministic context-free; that is, L and H can be recognised by a deterministic
pushdown automata, but they are not regular. Consider the following languages:

• I = L ∩H;

• J = L ∩ ({0}∗ · {1}∗ · {2}∗);
• K = L ∪H;

• O = L ∪ ({0, 1}∗ · {2} · {0, 1, 2}∗).

For each of I, J,K,O, determine which of the following choices applies:

• regular;

• deterministic context-free but not regular;

• context-free but not deterministic context-free;

• context-sensitive but not context-free;

• not context-sensitive.

Give for each language a short reason for the choice taken.

Solution. I: This language is context-sensitive and not context-free; the reason is
that the intersection of I and {0}∗ · {1}∗ · {2}∗ gives {0n1n2n : n ∈ N} which is
the standard example for a language which is context-sensitive but not context-free.
However, context-free languages intersected with regular languages are context-free
and therefore I cannot be context-free either.

J : Deterministic context-free languages intersected or unioned with regular sets are
again deterministic context-free, thus J as the intersection of L and a regular language
is deterministic context-free. The language J equals to {0n1n2m : n,m ∈ N} and is
not regular, as the dfa cannot memorise the number of 0 in order to compare them
to the number of 1 which follows.

K: This is not deterministic context-free, as the pushdown automaton has to guess
in advance whether to count 0 versus 1 or 0 versus 2 and this needs non-determinism.
However, the language is context-free, as it is the union of two context-free languages.

O: This language is the union of a deterministic context-free language and a regular
language. Thus it is deterministic context-free. As the language O ∩ ({0}∗ · {1}∗)
equals to the nonregular language {0n1n : n ∈ N} and regular sets are closed under
intersection, the language O cannot be regular.

7

Question 7 [5 marks] CS 4232 – Solutions

Let f be a recursive function from N to N, that is, a function for which there exists
an algorithm computing it. Furthermore, assume that f(n+ 1) ≥ f(n) for all n.

Is the set Lf = {f(2n+ 5) : n ∈ N} decidable? Yes, No.

In the case of the answer “yes”, provide an algorithm and explain why it is correct;
in the case of the answer “no”, provide an example of such an f where the set Lf is
not decidable.

Solution. The answer is “yes”. One defines a new recursive function g by g(n) =
f(2n+ 5). Note that Lf is equal to the range of g.

In the case that there is a value m such that g(n) = g(m) for all n ≥ m, the algorithm
does the following:

On input k, check for n = 0, 1, . . . ,m whether g(n) = k; if this is true for
one of these n then output that k ∈ Lf else output that k /∈ Lf .

In the case that there is no such value m then the algorithm does the following search:

While g(n) < k Do Begin n = n + 1 End; If g(n) = k then output that
k ∈ Lf else output that k /∈ Lf .

The search terminates, as for every m there is an n > m with g(n) > g(m) and thus
there is an n with g(n) ≥ k; the first such n founds then gives away whether k is in
the range of f or not.

Which of these two algorithms one has to use, depends on f . So one can prove that
the algorithm exists; however, one cannot construct the algorithm from a program
for f , as one does not know whether m exists and if it exists, what the value of m is.

8

Question 8 [5 marks] CS 4232 – Solutions

Recall that L ⊆ H means that L is a subset of H but can also be equal to H; L ⊂ H
means that L is a proper subset of H and H has an element which is not in L.
Furthermore, recall that h is a generalised homomorphism iff h(∅) = ∅, h(L ∪H) =
h(L) ∪ h(H), h(L ·H) = h(L) · h(H) and h(L∗) = (h(L))∗ for all regular sets L and
H.

Consider now a generalised homomorphism h mapping regular subsets of {0, 1, 2}∗ to
regular subsets of {0, 1, 2}∗. Which of following two statements are true?

(a) If {0} ⊂ h({0}) and {1} ⊂ h({1}) and {2} ⊂ h({2}) then L ⊂ h(L) for all
nonempty regular subsets L of {0, 1, 2}∗: Yes, No.

(b) If {0} ⊆ h({0}) and {1} ⊆ h({1}) and {2} ⊆ h({2}) then L ⊆ h(L) for all
nonempty regular subsets L of {0, 1, 2}∗: Yes, No.

Prove each of the answers. If needed, use structural induction.

Solution. (a) is false. Note that each generalised homomorphism satisfies by def-
inition that h(∅) = ∅ and h({ε}) = h(∅∗) = (h(∅))∗ = ∅∗ = {ε}. Furthermore, as
h({0, 1, 2}∗) is a subset of {0, 1, 2}∗, it cannot be a proper superset of the same.

(b) is true. Note that every regular subset of {0, 1, 2}∗ can be constructed from the
base sets ∅, {ε}, {0}, {1} and {2} using concatenation, union and Kleene star finitely
often. As h(∅) = ∅ and h({ε}) = {ε}, the conditions in (b) imply that L ⊆ h(L) for
all base sets.

Now consider for the inductive step any two regular sets L and H with L ⊆ h(L)
and H ⊆ h(H). Now the inductive step follows from the properties of a generalised
homomorphism in all of the following three cases:

• L ∪H ⊆ h(L) ∪ h(H) = h(L ∪H);

• L · H = {v · w : v ∈ L and w ∈ H} ⊆ {v · w : v ∈ h(L) and w ∈ h(H)} =
h(L) · h(H) = h(L ·H);

• L∗ ⊆ (h(L))∗ = h(L∗).

Thus for all three possibilities of combining L and H, the new set also satisfies that
h maps the set to a not necessarily proper superset. This completes the proof of the
inductive step and so the statement follows by structural induction.

9

Question 9 [5 marks] CS 4232 – Solutions

A subset A of N is Diophantine iff there is a polynomial p with n variables for some
n and with coefficients from Z such that, for all x ∈ N,

x ∈ A⇔ ∃y1, . . . , yn ∈ N [p(x, y1, . . . , yn) = 0].

For a number x, let sqrt(x) be the uprounded square-root of x, that is, sqrt(x) =
min{y ∈ N : x ≤ y · y}. Now let A = {x : sqrt(x) is odd}. Provide a formula which
witnesses that A is Diophantine; such a formula exists, as all r.e. sets of natural
numbers are Diophantine.

Solution. First note that

A = {x ∈ N : ∃y ∈ N [(2y)2 + 1 ≤ x ≤ (2y + 1)2]}

and now the ≤ has to expressed by adding natural numbers which is done by

A = {x ∈ N : ∃y1, y2, y3 ∈ N [(2y1)
2 + 1 + y2 = x and x+ y3 = (2y1 + 1)2]}

and one can now deal with the conjunction in the formula by adding two squares
which are 0 when the two equalities are true. This gives

A = {x ∈ N : ∃y1, y2, y3 ∈ N [((2y1)
2 + 1 + y2 − x)2 + (x+ y3 − (2y1 + 1)2)2 = 0]}

and the underlying polynomial is the function

x, y1, y2, y3 7→ ((2y1)
2 + 1 + y2 − x)2 + (x+ y3 − (2y1 + 1)2)2

which can be written as a sum of monomials with integer coefficients.

10

Question 10 [5 marks] CS 4232 – Solutions

Let cbrt(x) = min{y ∈ N : y3 ≥ x}. So cbrt(0) = 0, cbrt(1) = 1, cbrt(2) = cbrt(3) =
. . . = cbrt(8) = 2, cbrt(9) = cbrt(10) = . . . = cbrt(27) = 3.

Write a register machine program which computes the cube-root cbrt of the input ac-
cording to this definition. The registers and constants can be added and subtracted
and compared. The possible register values are natural numbers (including 0). The
program can have conditional and unconditional jump instructions (“Goto”, “If con-
dition Then Goto”). The Return-statement identifies the value of the function.

Solution. For input R1, the program counts R2 up until the cube R4 of R2 is
at least R1. As cubes are difficult to compute, one uses the following formulas:
(x+ 1)3 = x3 + 3x3 + 3x+ 1; (x+ 1)2 = x2 + 2x+ 1. So one does not only maintain
R2 = x and R4 = x3, but also R3 = x2 and updates these registers in order R4, R3, R2

in each run through the loop.

Line 1: Function Cbrt(R1);

Line 2: R2 = 0;

Line 3: R3 = 0;

Line 4: R4 = 0;

Line 5: If R4 ≥ R1 Then Goto Line 10;

Line 6: R4 = R4 +R3 +R3 +R3 +R2 +R2 +R2 + 1;

Line 7: R3 = R3 +R2 +R2 + 1;

Line 8: R2 = R2 + 1;

Line 9: Goto Line 5;

Line 10: Return(R2).

END OF PAPER

11

