
Brewer’s Conjecture and the Feasibility of

Consistent, Available, Partition-Tolerant Web

Services

Seth Gilbert∗ Nancy Lynch∗

Abstract

When designing distributed web services, there are three
properties that are commonly desired: consistency, avail-
ability, and partition tolerance. It is impossible to achieve
all three. In this note, we prove this conjecture in the asyn-
chronous network model, and then discuss solutions to this
dilemma in the partially synchronous model.

1 Introduction

At PODC 2000, Brewer1, in an invited talk [2], made the following con-
jecture: it is impossible for a web service to provide the following three
guarantees:

• Consistency

• Availability

• Partition-tolerance

All three of these properties are desirable – and expected – from real-world
web services. In this note, we will first discuss what Brewer meant by the
conjecture; next we will formalize these concepts and prove the conjecture;

∗Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139.

1Eric Brewer is a professor at the University of California, Berkeley, and the co-founder
and Chief Scientist of Inktomi.



finally, we will describe and attempt to formalize some real-world solutions
to this practical difficulty.

Most web services today attempt to provide strongly consistent data.
There has been significant research designing ACID2 databases, and most
of the new frameworks for building distributed web services depend on these
databases. Interactions with web services are expected to behave in a trans-
actional manner: operations commit or fail in their entirety (atomic), com-
mitted transactions are visible to all future transactions (consistent), un-
committed transactions are isolated from each other (isolated), and once a
transaction is committed it is permanent (durable). It is clearly important,
for example, that billing information and commercial transaction records be
handled with this type of strong consistency.

Web services are similarly expected to be highly available. Every request
should succeed and receive a response. When a service goes down, it may
well create significant real-world problems; the classic example of this is
the potential legal difficulties should the E-Trade web site go down. This
problem is exacerbated by the fact that a web-site is most likely to be
unavailable when it is most needed. The goal of most web services today is
to be as available as the network on which they run: if any service on the
network is available, then the web service should be accessible.

Finally, on a highly distributed network, it is desirable to provide some
amount of fault-tolerance. When some nodes crash or some communication
links fail, it is important that the service still perform as expected. One
desirable fault tolerance property is the ability to survive a network parti-
tioning into multiple components. In this note we will not consider stopping
failures, though in some cases a stopping failure can be modeled as a node
existing in its own unique component of a partition.

2 Formal Model

In this section, we will formally define what is meant by the terms consistent,
available, and partition tolerant.

2.1 Atomic Data Objects

The most natural way of formalizing the idea of a consistent service is as
an atomic data object. Atomic [5], or linearizable [4], consistency is the

2Atomic, Consistent, Isolated, Durable



condition expected by most web services today.3 Under this consistency
guarantee, there must exist a total order on all operations such that each
operation looks as if it were completed at a single instant. This is equivalent
to requiring requests of the distributed shared memory to act as if they were
executing on a single node, responding to operations one at a time. One
important property of an atomic read/write shared memory is that any
read operation that begins after a write operation completes must return
that value, or the result of a later write operation. This is the consistency
guarantee that generally provides the easiest model for users to understand,
and is most convenient for those attempting to design a client application
that uses the distributed service. See [6] for a more complete definition of
atomic consistency.

2.2 Available Data Objects

For a distributed system to be continuously available, every request received
by a non-failing node in the system must result in a response.4 That is, any
algorithm used by the service must eventually terminate. In some ways
this is a weak definition of availability: it puts no bound on how long the
algorithm may run before terminating, and therefore allows unbounded com-
putation. On the other hand, when qualified by the need for partition toler-
ance, this can be seen as a strong definition of availability: even when severe
network failures occur, every request must terminate.

2.3 Partition Tolerance

The above definitions of availability and atomicity are qualified by the need
to tolerate partitions. In order to model partition tolerance, the network
will be allowed to lose arbitrarily many messages sent from one node to
another. When a network is partitioned, all messages sent from nodes in
one component of the partition to nodes in another component are lost.
(And any pattern of message loss can be modeled as a temporary partition
separating the communicating nodes at the exact instant the message is lost.)

3Discussing atomic consistency is somewhat different than talking about an ACID
database, as database consistency refers to transactions, while atomic consistency refers
only to a property of a single request/response operation sequence. And it has a different
meaning than the Atomic in ACID, as it subsumes the database notions of both Atomic
and Consistent.

4Brewer originally only required almost all requests to receive a response. As allowing
probabilistic availability does not change the result when arbitrary failures occur, for
simplicity we are requiring 100% availability.



The atomicity requirement (§2.1) therefore implies that every response will
be atomic, even though arbitrary messages sent as part of the algorithm
might not be delivered. The availability requirement (§2.2) implies that
every node receiving a request from a client must respond, even though
arbitrary messages that are sent may be lost. Note that this is similar to
wait-free termination in a pure shared-memory system: even if every other
node in the network fails (i.e. the node is in its own unique component of the
partition), a valid (atomic) response must be generated. No set of failures
less than total network failure is allowed to cause the system to respond
incorrectly.5

3 Asynchronous Networks

3.1 Impossibility Result

In proving this conjecture, we will use the asynchronous network model, as
formalized by Lynch in [7]. In the asynchronous model, there is no clock,
and nodes must make decisions based only on the messages received and
local computation.

Theorem 1 It is impossible in the asynchronous network model to imple-
ment a read/write data object that guarantees the following properties:

• Availability

• Atomic consistency

in all fair executions (including those in which messages are lost).

Proof: We prove this by contradiction. Assume an algorithm A exists that
meets the three criteria: atomicity, availability, and partition tolerance. We
construct an execution of A in which there exists a request that returns an
inconsistent response. The methodology is similar to proofs in Attiya et al.
[1] and Lynch [8]. Assume that the network consists of at least two nodes.
Thus it can be divided into two disjoint, non-empty sets: {G1, G2}. The
basic idea of the proof is to assume that all messages between G1 and G2

are lost. Then if a write occurs in G1, and later a read occurs in G2, then
the read operation cannot return the results of the earlier write operation.

5Brewer pointed out in the talk that partitions of one node are irrelevant: they are
equivalent to that node failing. However restricting our attention to partitions containing
only components of size greater than one does not change any of the results in this note.



More formally, let v0 be the initial value of the atomic object. Let α1 be
the prefix of an execution of A in which a single write of a value not equal to
v0 occurs in G1, ending with the termination of the write operation. Assume
that no other client requests occur in either G1 or G2. Further, assume
that no messages from G1 are received in G2, and no messages from G2

are received in G1. We know that this write completes, by the availability
requirement. Similarly, let α2 be the prefix of an execution in which a
single read occurs in G2, and no other client requests occur, ending with
the termination of the read operation. During α2 no messages from G2 are
received in G1, and no messages from G1 are received in G2. Again we know
that the read returns a value by the availability requirement. The value
returned by this execution must be v0, as no write operation has occurred
in α2.

Let α be an execution beginning with α1 and continuing with α2. To the
nodes in G2, α is indistinguishable from α2, as all the messages from G1 to
G2 are lost (in both α1 and α2, which together make up α), and α1 does not
include any client requests to nodes in G2. Therefore in the α execution,
the read request (from α2) must still return v0. However the read request
does not begin until after the write request (from α1) has completed. This
therefore contradicts the atomicity property, proving that no such algorithm
exists.

Corollary 1.1 It is impossible in the asynchronous network model to im-
plement a read/write data object that guarantees the following properties:

• Availability, in all fair executions,

• Atomic consistency, in fair executions in which no messages are lost.

Proof: The main idea is that in the asynchronous model an algorithm has no
way of determining whether a message has been lost, or has been arbitrarily
delayed in the transmission channel. Therefore if there existed an algorithm
that guaranteed atomic consistency in executions in which no messages were
lost, then there would exist an algorithm that guaranteed atomic consistency
in all executions. This would violate Theorem 1.

More formally, assume for the sake of contradiction that there exists
an algorithm A that always terminates, and guarantees atomic consistency
in fair executions in which all messages are delivered. Further, Theorem 1
implies that A does not guarantee atomic consistency in all fair executions,
so there exists some fair execution α of A in which some response is not
atomic.



At some finite point in execution α, the algorithm A returns a response
that is not atomic. Let α′ be the prefix of α ending with the invalid response.
Next, extend α′ to a fair execution α′′, in which all messages are delivered.
The execution α′′ is now a fair execution in which all messages are delivered.
However this execution is not atomic. Therefore no such algorithm A exists.

3.2 Solutions in the Asynchronous Model

While it is impossible to provide all three properties: atomicity, availability,
and partition tolerance, any two of these three properties can be achieved.

3.2.1 Atomic, Partition Tolerant

If availability is not required, then it is easy to achieve atomic data and
partition tolerance. The trivial system that ignores all requests meets these
requirements. However we can provide a stronger liveness criterion: if all
the messages in an execution are delivered, the system is available and all
operations terminate. A simple centralized algorithm meets these require-
ments: a single designated node maintains the value of an object. A node
receiving a request forwards the request to the designated node, which sends
a response. When an acknowledgment is received, the node sends a response
to the client.

Many distributed databases provide this type of guarantee, especially
algorithms based on distributed locking or quorums: if certain failure pat-
terns occur, then the liveness condition is weakened and the service no longer
returns responses. If there are no failures, then liveness is guaranteed.

3.2.2 Atomic, Available

If there are no partitions, it is clearly possible to provide atomic, available
data. In fact, the centralized algorithm described in Section 3.2.1 meets
these requirements. Systems that run on intranets and LANs are an example
of these types of algorithms.

3.2.3 Available, Partition Tolerant

It is possible to provide high availability and partition tolerance, if atomic
consistency is not required. If there are no consistency requirements, the
service can trivially return v0, the initial value, in response to every request.



However it is possible to provide weakened consistency in an available, par-
tition tolerant setting. Web caches are one example of a weakly consistent
network. In Section 4.3 we consider some of the weaker consistency condi-
tions that are possible.

4 Partially Synchronous Networks

4.1 Partially Synchronous Model

The most obvious way to try to circumvent the impossibility result of The-
orem 1 is to realize that in the real world, most networks are not purely
asynchronous. If you allow each node in the network to have a clock, it is
possible to build a more powerful service.

For the rest of this paper, we will discuss a partially synchronous model
in which every node has a clock, and all clocks increase at the same rate.
However, the clocks themselves are not synchronized, in that they may dis-
play different values at the same real time. In effect, the clocks act as timers:
local state variables that the processes can observe to measure how much
time has passed. A local timer can be used to schedule an action to occur
a certain interval of time after some other event. Furthermore, assume that
every message is either delivered within a given, known time: tmsg, or it is
lost. Also, every node processes a received message within a given, known
time: tlocal, and local processing takes zero time. This can be formalized as
a special case of the General Timed Automata model defined by Lynch [9].

4.2 Impossibility Result

It is still impossible to have an always available, atomic data object when
arbitrary messages may be lost, even in the partially synchronous model.
That is, the following analogue of Theorem 1 holds:

Theorem 2 It is impossible in the partially synchronous network model to
implement a read/write data object that guarantees the following properties:

• Availability

• Atomic consistency

in all executions (even those in which messages are lost).

Proof: This proof is rather similar to the proof of Theorem 1. We will follow
the same methodology: divide the network into two components, {G1, G2},



and construct an admissable execution in which a write happens in one
component, followed by a read operation in the other component. This read
operation can be shown to return inconsistent data.

More formally, construct execution α1 as before in Theorem 1: a single
write request and acknowledgment occur in G1, and all messages between the
two components, {G1, G2}, are lost. We will construct the second execution,
α′

2, slightly differently. Let α′
2 be an execution that begins with a long

interval of time during which no client requests occur. This interval must
be at least as long as the entire duration of α1. Then append to α′

2 the
events of α2, as defined above in Theorem 1: a single read request and
response in G2, again assuming all messages between the two components
are lost. Finally, construct α by superimposing the two executions α1 and
α′

2. The long interval of time in α2 ensures that the write request completes
before the read request begins. However, as in Theorem 1, the read request
returns the initial value, rather than the new value written by the write
request, violating atomic consistency.

4.3 Solutions in the Partially Synchronous Model

In the partially synchronous model, however, the analogue of Corollary 1.1
does not hold. The proof of this corollary does in fact depend on nodes
being unaware of when a message is lost. There are partially synchronous
algorithms that will return atomic data when all messages in an execution
are delivered (i.e., there are no partitions), and will only return inconsistent
(and, in particular, stale) data when messages are lost. One example of such
an algorithm is the centralized protocol described in Section 3.2.1, modified
to time-out lost messages. On a read (or write) request, a message is sent
to the central node. If a response from the central node is received, then the
node delivers the requested data (or an acknowledgment). If no response is
received within 2 ∗ tmsg + tlocal, then the node concludes that the message
was lost. The client is then sent a response: either the best known value of
the local node, or an acknowledgment. In this case, atomic consistency may
be violated.

4.4 Weaker Consistency Conditions

While it is useful to guarantee that atomic data will be returned in execu-
tions in which all messages are delivered (within some time bound), it is
equally important to specify what happens in executions in which some of
the messages are lost. In this section, we will discuss one possible weaker con-



sistency condition that would allow stale data to be returned when there are
partitions, yet still place formal requirements on the quality of the stale data
returned. This consistency guarantee will require availability and atomic
consistency in executions in which no messages are lost, and is therefore
impossible to guarantee in the asynchronous model as a result of Corollary
1.1.

In the partially synchronous model it often makes sense to base guar-
antees on how long an algorithm has had to rectify a situation. This con-
sistency model ensures that if messages are delivered, then eventually some
notion of atomicity is restored.

In an atomic execution, we would define a partial order of the read and
write operations, and then require that if one operation begins after another
one ends, the former does not precede the latter in the partial order. We
will define a weaker guarantee, Delayed-t consistency, that defines a partial
order in a similar manner, but only requires that one operation not precede
another if there was an interval between the operations in which all messages
were delivered.

Definition 3 A timed execution, α, of a read-write object is Delayed-t Con-
sistent if:

1. P is a partial order that orders all write operations, and orders all
read operations with respect to the write operations.

2. The value returned by every read operation is exactly the one written
by the previous write operation in P (or the initial value, if there is
no such previous write in P ).

3. The order in P is consistent with the order of read and write requests
submitted at each node.

4. (Atomicity) If all messages in the execution are delivered, and an oper-
ation θ completes before an operation φ begins, then φ does not precede
θ in the partial order P ,

5. (Weakly Consistent) Assume there exists an interval of time longer
than t in which no messages are lost. Further, assume an operation,
θ, completes before the interval begins, and another operation, φ, begins
after the interval ends. Then φ does not precede θ in the partial order
P .



This guarantee allows for some stale data when messages are lost, but
provides a time limit on how long this inconsistency can continue, once the
partition heals. This is related to the idea of eventually consistent data, as
described in Fekete et al. [3]; here, however, we want an explicit time bound
on how long it will take for the data to become consistent.

A variant of the centralized algorithm described in Section 4.3 is Delayed-
t consistent. Assume node C is the centralized node. The algorithm behaves
as follows:

• read at node A:

1. A sends a request to C for the most recent value.

2. If A receives a response from C, save the value and send it to the
client.

3. If A concludes that a message was lost (i.e. a timeout occurs),
then return the value with the highest sequence number received
from C (see below), or the initial-value (if no value has yet been
received from C).

• write at A:

1. A sends a message to C with the new value.

2. If A receives an acknowledgement from C, then A sends an ac-
knowledgement to the client, and stops.

3. If A concludes a message was lost (i.e. a timeout occurs), then A
sends an acknowledgement to the client.

4. If A has not yet received an acknowledgement from C, then A
sends a message to C with the new value.

5. If A concludes a message was lost (i.e. a timeout occurs), A re-
peats step 4 within t − 4 ∗ ttimeout seconds.

• New value is received at C:

1. C increments its sequence number by 1.

2. C sends out the new value and the sequence number to every
node.

3. If C concludes a message was lost (i.e. a timeout occurs), then
C resends the value and sequence number to the missing node
within time t − 2 ∗ ttimeout seconds.



4. Repeat step 3 until every node has acknowledged the value.

Theorem 4 The modified centralized algorithm is Delayed-t consistent.

Proof: The ordering of write operations is the order in which the centralized
node is notified of the client write operations. The centralized node assigns
each a sequence number, and this determines the total ordering of write op-
erations. Each read operation is sequenced after the write operation whose
value it returns. If all the messages in an execution are delivered, this algo-
rithm is atomic: the centralized node serializes requests, and ensures that
the partial order is correctly respected. If an operation has completed, then
the centralized node has already been notified, and therefore no operation
that begins later will precede the completed operation in the partial order.

If, on the other hand, some messages are lost, the resulting executions
might not be atomic. Assume a write occurs at Aw, after which an interval of
time passes in which all messages are delivered. By the end of the interval,
Aw will have notified the central node of the new value, and the central
node will have notified all other nodes of this new value. Therefore no later
operation after this interval will precede the write operation.

Assume, then, that a read operation occurs at Br, after which an interval
of time passes in which all messages are delivered. Br must have received
its value from the central node, C, or from an earlier write operation at
Br. In the former case, by the end of this interval C will have ensured that
every node has received a value at least as recent as the one returned by
Br. In the latter case, by the end of the interval Br will have sent the value
to C and C will have forwarded it to every other node. Therefore no later
operation after this interval will precede the read operation.

5 Conclusion

In this note, we have shown that it is impossible to reliably provide atomic,
consistent data when there are partitions in the network. It is feasible,
however, to achieve any two of the three properties: consistency, availability,
and partition tolerance. In an asynchronous model, when no clocks are
available, the impossibility result is fairly strong: it is impossible to provide
consistent data, even allowing stale data to be returned when messages are
lost. However in partially synchronous models it is possible to achieve a
practical compromise between consistency and availability. In particular,
most real-world systems today are forced to settle with returning “most of



the data, most of the time.” Formalizing this idea and studying algorithms
for achieving it is an interesting subject for future theoretical research.

References

[1] Attiya, Bar-Noy, Dolev, Koller, Peleg, and Reischuk. Achievable cases
in an asynchronous environment. In 28th Annual Symposium on Foun-
dations of Computer Science, pages 337–346, Los Angeles, California,
October 1987.

[2] Eric A. Brewer. Towards robust distributed systems. (Invited Talk)
Principles of Distributed Computing, Portland, Oregon, July 2000.

[3] Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex
Shvartsman. Eventually-serializable data services. Theoretical Computer
Science, 220(1):113–156, June 1999.

[4] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions on Program-
ming Languages and Systems, 12(3):463–492, July 1990.

[5] Leslie Lamport. On interprocess communication – parts i and ii. Dis-
tributed Computing, 1(2):77–101, April 1986.

[6] Nancy Lynch. Distributed Algorithms, pages 397–350. Morgan Kaufman,
1996.

[7] Nancy Lynch. Distributed Algorithms, pages 199–231. Morgan Kaufman,
1996.

[8] Nancy Lynch. Distributed Algorithms, page 581. Morgan Kaufman, 1996.

[9] Nancy Lynch. Distributed Algorithms, pages 735–770. Morgan Kaufman,
1996.


