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Abstract. Given two simplicial complexes C1 and C2 embedded in Eu-
clidean space IRd, C1 subdivides C2 if (i) C1 and C2 have the same under-
lying space, and (ii) every simplex in C1 is contained in a simplex in C2.
In this paper we present a method to compute a set of weighted points
whose alpha complex subdivides a given simplicial complex.
Following this, we also show a simple method to approximate a given
polygonal object with a set of balls via computing the subdividing alpha
complex of the boundary of the object. The approximation is robust and
is able to achieve a union of balls whose Hausdorff distance to the object
is less than a given positive real number ε.

1 Introduction

The notion of alpha complexes is defined by Edelsbrunner [6, 10] and since then
it has been widely applied in various fields such as computer graphics, solid
modeling, computational biology, computational geometry and topology [7, 8].
In this paper, we propose a simple algorithm to compute the alpha complex that
subdivides a given simplicial complex. This can be considered as representing
the complex with a finite set of weighted points. See Figure 1 as an example.
Moreover, we also present a method to approximate an object with a union of
balls via its subdividing alpha complex.

1.1 Motivation and Related Works

The motivation of this paper can be classified into two categories: the skin ap-
proximation and the conforming Delaunay complex.

Skin approximation. Our eventual goal is to approximate a given simplicial
complex with the skin surface, which is a smooth surface based on a finite set of
balls [7]. Amenta et. al. [1] have actually raised this question and the purpose was
to perform deformation between polygonal objects. As noted in some previous
works [2, 7], deformation can be performed robustly and efficiently with the skin
surface. Our work here can be viewed as a stepping stone to our main goal.

As mentioned by Kruithof and Vegter [13], one of the first steps to approxi-
mate an object with a skin surface is to have a set of balls that approximate the
object. For this purpose, we produce a set of balls whose alpha shape is the same



Fig. 1. An example of a subdividing alpha complex of a link embedded in IR3. The
right hand side of the figure shows a union of balls whose alpha complex resemble the
input link, shown in the left hand side.

as the object. It is well known that such union of balls is homotopy equivalent
to the object [6]. At the same time, we are able to produce a union of balls that
approximate the object.

Approximating an object by a union of balls itself has applications in de-
formation. In such representation, shapes can be interpolated [15]. Some shape
matching algorithms also use the union of balls representation [18]. We believe
such approximation can also be useful for collision detection and coarse approx-
imation [12].

Conforming Delaunay complex(CDC). The work on conforming Delaunay
complex(CDC) are done mainly for the unweighted point set in two and three
dimensional cases [3–5, 11, 14]. As far as our knowledge is concerned, there is no
published work yet on the construction of CDC for any given simplicial complex
in arbitrary dimension. The relation of CDC to our work here should be obvious,
that is, we compute CDC of weighted points in arbitrary dimension.

1.2 Assumptions and Approach

The assumption of our algorithm is a constrained triangulation of a simplicial
complex C is given, that is, a triangulation of the convex hull of C that contains
C itself. An example of this is the constrained Delaunay triangulation of C [19,
20].

Our approach is to construct the subdividing alpha complex of the l-skeleton
of C before its (l+1)-skeleton. For each simplex in the l-skeleton, we add weighted
points until it is subdivided by the alpha complex. In the process, we maintain
the invariant that the alpha shape is a subset of the underlying space of C. This is
done by avoiding two weighted points intersecting each other when their centers
are not in the same simplex. For this purpose, we introduce the protecting cells.



The main issue in this approach is that we do not add infinitely many points,
that is, our algorithm is able to terminate. To establish this, we guarantee that,
for each simplex, there is a positive lower bound for the weight of the added
point. This fact, together with the compactness of each simplex, ensures that
only finitely many points are added into the simplex. We will formalize this fact
in Section 5.

For our object approximation method, our main idea is to compute the subdi-
viding alpha complex of the object by assigning very small weights to the points
inserted in the boundary of the object. In this way, the weighted points in the
interior will have relatively big weights and they make a good approximation for
the object. Further clarification is in Section 6.

1.3 Outline

We start by describing some definitions and notations in Section 2. Then, in
Section 3 we outline some properties which our algorithm aims at. Section 4
introduces the notion of protecting cells. Finally, we present our algorithm and
method of object approximation in Sections 5 and 6, respectively. We conclude
with certain remarks in Section 7.

2 Definitions and Notations

We briefly review some definitions and notations on simplicial and alpha com-
plexes that we use in this paper.

Simplicial complexes. The convex hull of a set of points, S ⊆ IRd, is denoted
by conv(S). It is a k-simplex if |S| = k + 1 and S is affinely independent. Let
σ = conv(S) be a k-simplex, its dimension is denoted as dim(σ) = k. For any
T ⊂ S, τ = conv(T ) is also a simplex and it is called a face of σ, denoted by
τ ≺ σ. We consider σ is not a face of itself. If dim(τ) = l, then τ is called an
l-face of σ. Note that the faces of a simplex σ constitutes the boundary of σ,
whereas, the interior of σ is σ minus all its faces. A simplicial complex, C, is a
set of simplices with the following properties.

1. If σ ∈ C and τ ≺ σ then τ ∈ C, and,
2. If σ1, σ2 ∈ C then σ1 ∩ σ2 is a face of both σ1, σ2.

The underlying space of C is the space occupied by C, namely, |C| =
⋃

σ∈C
σ. We

denote vert(C) to be the set of vertices in C.
For a set of simplices J ⊆ C, the closure of J , denoted by cl(J ), is the

minimal simplicial complex that contains J . For σ ∈ C, the star of σ, denoted
by star(σ), is the set of simplices in C that contains σ.

A constrained triangulation TC of a simplicial complex C is a triangulation of
the convex hull of |C| in which C ⊆ TC. Note that not all simplicial complexes can
be triangulated without additional vertices, e.g. the Schönhardt polyhedron [16].



Alpha complexes. A ball b = (z, w) ∈ Rd × R, is the set of points whose
distance to z is less than or equal to

√
w. We also call this a weighted point

with center z and weight w. The weighted distance of a point p ∈ Rd to a ball
b = (z, w) is defined as πb(p) = ‖pz‖2 − w.

⋃
X is to denote the union of a set

of balls X and
⋂
X is to denote the common intersection of X.

Let B be a finite set of balls in Rd. The Voronoi cell of a ball b ∈ B, νb, is
the set of points in Rd whose weighted distance to b is less than or equal to any
other ball in B. For X ⊆ B, the Voronoi cell of X is νX =

⋂
b∈X νb. The Voronoi

complex of B is VB = {νX | X ⊆ B and νX 6= ∅}.
For a ball b and a set of balls X, we denote z(b) to be the center of b and

z(X) to be the ball centers of X. The Delaunay complex of B is the collection
of simplices,

DB = {δX = conv(z(X)) | νX ∈ VB}.

The alpha complex of B is a subset of the Delaunay complex DB which is defined
as follow [6],

KB = {δX |
⋃
X ∩ νX 6= ∅, νX ∈ VB}.

The alpha shape of B is the underlying space of KB , namely, |KB |. Remark that
if δX ∈ KB then

⋂
X 6= ∅.

3 Conditions for Subdividing Alpha Complex

The alpha complex of a set of balls, B, is said to subdivide a simplicial complex,
C, if (i) |KB | = |C|, and (ii) every simplex in KB is contained in a simplex in C.
We have the following main theorem that is used to construct the subdividing
alpha complex.

Theorem 1. Let B be a set of balls and C be a simplicial complex. If B satisfies

the following Conditions C1 and C2:

C1. for a subset X ⊆ B, if
⋂
X 6= ∅ then z(X) ⊆ σ for some σ ∈ C, and,

C2. for each σ ∈ C, define B(σ) = {b ∈ B | b ∩ σ 6= ∅}.
Then we have: z(B(σ)) ⊆ σ ⊆ ⋃

B(σ),

then KB subdivides C.

The proof is fairly tedious and it is presented in the next subsection.
Condition C1 states that for a set of balls whose common intersection is not

empty, their centers must be in the same simplex in C. This also implies that
the center of each ball must be in C. In Condition C2, we require that if a ball
intersects with a simplex then its center must be in the simplex. Furthermore,
the simplex is covered by a set of balls whose centers are in the simplex.

To construct a set of balls that satisfies Condition C1, we introduce the notion
of protecting cell for each simplex in C, which is defined by the barycentric



subdivision. We use the protecting cell in order to control the weight of each
point. This will be discussed in Section 4. We show how to achieve Condition C2
in Section 5. Figure 1 on the front page illustrates an example of a subdividing
alpha complex satisfying Conditions C1 and C2.

3.1 Proof of Theorem 1

It is obvious that the following two properties are equivalent to the criteria for
subdividing alpha complex:

P1. Every simplex in KB is contained in a simplex in C.
P2. Every simplex in C is a union of some simplices in KB .

We divide the theorem into two lemmas. Lemma 1 states that Condition C1
implies property P1, while Lemma 2 states that Condition C2 implies property
P2.

Lemma 1. If B satisfies Condition C1, then every simplex in KB is contained

in a simplex in C, that is, property P1.

Proof. It is immediate that every vertex in KB is inside a simplex in C. Let δX

be a simplex in KB . By the remark in the definition of alpha complex,
⋂
X 6= ∅.

Then, by Condition C1, all their centers are in the same simplex σ ∈ C. Therefore,
δX = conv(z(X)) ⊆ σ. ut

Lemma 2. If B satisfies Condition C2, then every simplex in C is a union of

some simplices in KB, that is, property P2.

Proof. Let σ ∈ C, recall that B(σ) ⊆ B is the set of balls which intersect with σ
and each of their centers are inside σ. We consider DB(σ), the Delaunay complex
of the balls B(σ). To prove σ is a union of simplices in KB , we prove the following
claims:

A. σ is a union of simplices in DB(σ), and,
B. every simplex in DB(σ) is a simplex in KB .

These two claims establish Lemma 2.
The proof of Claim A is as follow. For any vertex of σ, there exists a ball

b ∈ B(σ) centered on σ. Furthermore, the centers of balls of B(σ) are inside σ.
Thus, σ is the convex hull of z(B(σ)). It is a fact that the convex hull of a set of
points is the union of its Delaunay simplices. Therefore, σ is a union of simplices
in DB(σ).

For Claim B, we first show that if δX ∈ DB(σ) then νX ∩ σ 6= ∅, where
νX ∈ VB(σ). The intuitive meaning is that every Voronoi cell in VB(σ) always
intersects σ. We prove it by induction on dim(σ).

The base case is dim(σ) = 0. It is true by Condition C2. Assume the state-
ment is true for every k − 1-simplex in C.

Let dim(σ) = k and δX be a simplex in DB(σ). There are two cases:



1. X ⊆ B(τ), where τ ≺ σ.
Consider the Voronoi cell ν ′

X
∈ VB(τ) and the Voronoi cell νX ∈ VB(σ).

Under Condition C2, each point in τ has negative distance to some ball in
B(τ) and positive distance to every ball in B(σ) − B(τ). This means the
Voronoi cell ν ′

X
is not effected by the additional balls B(σ) − B(τ), that is,

νX ∩ τ = ν ′
X
∩ τ . Applying the induction hypothesis, νX ∩ τ = ν ′

X
∩ τ 6= ∅. In

particular, since τ ≺ σ, we have νX ∩ σ 6= ∅.
2. X * B(τ), for any τ ≺ σ.

This means X contain some balls which do not belong to B(τ), for any
τ ≺ σ. Let b be such a ball, that is, b ∈ X − {b′ | b′ ∈ B(τ), τ ≺ σ}.
By Condition C2, each point in τ has negative distance to some balls in
B(τ) and positive distance to b. Since Voronoi cell νb is convex and νb 6= ∅,
we have the Voronoi cell of a ball b ∈ B(σ) lies entirely in the interior of
σ. In particular, the Voronoi cell νX is inside the interior of σ. Therefore,
νX ∩ σ 6= ∅.

Thus, this proves that for every δX ∈ DB(σ), νX ∩ σ 6= ∅ where νX ∈ VB(σ).
Back to Claim B, we prove that if a simplex δX belongs to DB(σ), then

δX ∈ KB . Note that by result above, if δX ∈ DB(σ) then νX ∩ σ 6= ∅ where
νX ∈ VB(σ). Under Condition C2, σ is covered

⋃
B(σ). Thus, for every point

p ∈ νX ∩ σ, p has negative distance to some balls in B(σ), in particular, p has
negative distance to all balls in X. Therefore,

⋃
X ∩ νX 6= ∅. Moreover, by

Condition C2, p has positive distance to every ball which does not belong to
B(σ). This implies that p still belongs to the Voronoi cell of X in VB , thus, δX

is also a simplex in DB . This proves that δX ∈ KB . ut

4 Achieving Condition C1

We divide this section into two subsections. In Subsection 4.1 we give a for-
mal but brief construction of barycentric subdivision of a simplicial complex. In
Subsection 4.2 we define our notion of protecting cells. For some discussions of
barycentric subdivision, we refer the reader to [17].

4.1 Barycentric Subdivision

Let σ be a k-simplex with vertices S = {s1, . . . , sk+1}. The barycenter of σ is

denoted by σ, or S = 1
k+1

∑k+1
i=1 si.

Definition 1. Let σ = conv(S) be a simplex and T ⊆ S. For any t ∈ T , denote

σT (t) = conv(S ∪ {T} − {t}). The subdivision of σ by the barycenter of conv(T )
is the set of simplices: subdiv(σ, T ) = {σT (t) | t ∈ T}.

Let C be a simplicial complex embedded in Rd. We have a sequence of com-
plexes C0, C1, . . . , Cd which is defined inductively as follows:

Definition 2. Let C0 be a constrained triangulation of C. The simplicial complex

Cj = cl({subdiv(σ, T ) | σ ∈ Cj−1}) where



1. σ = conv(S) is of dimension d, and,
2. T = S ∩ vert(C0).

The simplicial complex Cd is called the barycentric subdivision of C0. We have
the following fact concerning C0 and Cd.

Fact 1. There is a 1-1 correspondence between simplices in C0 and vertices in

Cd. More precisely, each simplex in C0 corresponds to its barycenter in Cd.

4.2 Protecting Cells

Given a simplicial complex C in IRd, let Cd be the barycentric subdivision of TC,
a constrained triangulation of C. We use Fact 1 to define the protecting cells of
simplices in C.

Definition 3. Let σ ∈ C. The protecting cell of σ, denoted by ψσ, is defined as

the closure of the star of the barycenter of σ in Cd, namely,

ψσ = cl(star(σ)),

where σ is a vertex in Cd.

Figure 2 illustrates parts of protecting cells of various simplices in IR2.

R

S

T
U

V

B D

C

A E

N

P

Q

R

S

T
U

VW

MK

W

L

M

L

K P

B D

C

A E

N

Fig. 2. Suppose we have the polygon ABCDE as simplicial complex C embed-
ded in IR2. The left figure illustrates the barycentric subdivision of TC. Vertices
P,Q,R, S, T,U, V,W are barycenters of the edges in TC. Vertices K,L,M,N are
barycenters of the triangles in TC. The right figure shows the protecting cells of the
vertex C and the edge AE, respectively. ψC is the polygon KTLUMVNW , while ψAE

is the triangle AEN .

Let p be a point in the interior of σ. Consider the link of the centroid of σ, σ,
in Cd, that is, cl(star(σ)) − star(σ). This link uniquely defines the maximal ball
with the center on p and not intersecting any simplex which is not in ψσ. We
denote the weight of such maximal ball by MaxWeight(p). We call MaxWeight(p)
the maximum weight of p. The value MaxWeight(p) can be computed by finding
the distance from p to the nearest bounding (d− 1)-simplices.



Proposition 1. Let p1, p2 ∈ |C|. Suppose p1 is in the interior of σ1 ∈ C and p2

is in the interior of σ2 ∈ C. If σ1 and σ2 are not faces of each other then the

two balls (p1, γ · MaxWeight(p1)) and (p2, γ · MaxWeight(p2)) do not intersect

for any γ < 1.

Proof. We observe that if σ1 and σ2 are not faces of each other then their pro-
tecting cells can only intersect in their boundary. Thus, the proposition follows.

Therefore, Condition C1 can be achieved if all balls in B have their weight
strictly less than the maximum weight of their centers.

5 Algorithm

The input is a simplicial complex C embedded in Rd, together with its triangula-
tion TC. As stated in Subsection 1.2, our algorithm will subdivide the l-skeleton
of C, starting from l = 0 up to l = d. For each simplex σ in C, we will construct
the set of balls B(σ) by executing the procedure ConstructBalls(σ). (Recall
the definition of B(σ) as stated in Theorem 1.)

Before we proceed to describe the details of ConstructBalls(σ) in the next
subsection, we need the following concept of restricted Voronoi complex.

For a set of balls B ⊂ Rd × R, consider the restriction of VB on a k-simplex
σ ∈ C. The restricted Voronoi cell of X ⊆ B is νX(σ) = νX ∩ σ. Similarly, the
restricted Voronoi complex VB(σ) is the collection of the restricted Voronoi cells.
For convenience, we also include the intersection of νX(σ) with faces of σ into
VB(σ). That is, VB(σ) = {νX(τ) | τ ∈ cl(σ)}.

Let σ ∈ C be an k-simplex. For a set of balls X, consider its restricted Voronoi
complex on σ, VX(σ). We define the following terms that will be used in this
subsection. A Voronoi vertex v in VX(σ) is called a negative, zero or positive

vertex, if πb(v) < 0, πb(v) = 0, or πb(v) > 0, respectively, where v is the Voronoi
vertex in the Voronoi cell of b ∈ X, i.e. v ∈ νb(σ). Note that if a vertex is positive
then it is outside every ball in X.

5.1 Procedure ConstructBalls(σ)

Procedure 1 describes the details of ConstructBalls() . In the procedure, we
denote γ by a real constant where 0 < γ < 1. Recall also that a ball centered at
a point u with weight w is written as (u,w).

It is obvious that the whole algorithm produces a correct set of balls B
provided that the procedure ConstructBalls(σ) produces the correct balls B(σ)
for each σ ∈ C. Since the weights of constructed balls are all strictly less than the
maximum weights of the centers, Condition C1 is achieved by Proposition 1. The
following Proposition 2 ensures that Condition C2 is achieved provided that the
procedure ConstructBalls() terminates. We establish the termination of our
algorithm in Theorem 2.

Proposition 2. Let X be a set of balls. Suppose z(X) ⊆ σ. Then σ ⊆ ⋃
X if

and only if there is no positive vertex in VX(σ).



Procedure 1 ConstructBalls(σ)

1: if dim σ = 0 then

2: B(σ) := (σ, γ · MaxWeight(σ))
3: else

4: Let l := dim σ

5: Let τ1, . . . , τl+1 be the (l − 1)-faces of σ.
6: X := B(τ1) ∪ · · · ∪B(τl+1)
7: while ∃ a positive vertex u in VX(σ) do

8: w := γ · MaxWeight(u)
9: X := X ∪ {(u,w)}

10: end while

11: B(σ) := X

12: end if

Proof. (⇒) Suppose X covers σ. Let v be an arbitrary Voronoi vertex of νb(σ)
for some ball b ∈ X. If πb(v) > 0 then for any b′ ∈ X, πb′(v) ≥ πb(v) > 0, thus,
contradicts our assumption that σ ⊆ ⋃

X. Therefore, every voronoi vertex is not
a positive vertex.

(⇐) Suppose there is no positive Voronoi vertex in VX(σ). We claim that
νb(σ) ⊆ b for all b ∈ X. This claim follows from the fact that νb(σ) is bounded
and is indeed the convex hull of its Voronoi vertices. So, by our assumption that
the Voronoi vertices are not positive, it is immediate that νb(σ) ⊆ b for any
b ∈ X. Since σ is partitioned into νb(σ) for all b ∈ X, it follows that σ ⊆ ⋃

X.

Theorem 2. The procedure ConstructBalls(σ) terminates for any σ ∈ C and

each weighted point in B(σ) has positive weight.

5.2 Proof of Theorem 2

The proof of Theorem 2 is based on the following proposition and the fact that
each simplex is compact.

Proposition 3. Let Λ be a subset of σ whose boundary lies entirely in the

interior of σ. Then there exists a constant c > 0 such that for all p ∈ Λ,

MaxWeight(p) > c.

Proof. For a point p in the interior of a simplex σ ∈ C, MaxWeight(p) > 0, since
it has nonzero distance to all other faces of d-simplex in ψσ. Let p1, p2, . . . be a
convergent sequence of points in σ. Suppose {pi} converges to p. MaxWeight(·) is
a continuous function. So, limi→∞ MaxWeight(pi) = MaxWeight(limi→∞ pi) =
MaxWeight(p) = 0 if and only if p is in the boundary of σ. Since the boundary of
Λ lies entirely inside the interior of σ, the infimum of the set MaxWeight(Λ) > 0.
Thus, our proposition follows.

The fact that each simplex σ ∈ C is compact can be rephrased as follow:
For every sequence of points p1, p2, . . . , pn, . . ., where each pi ∈ σ, there exists a



Cauchy subsequence that converges to a point p ∈ σ. For the detail discussion
we refer the reader to [17].

We prove Theorem 2 by induction on dim(σ). The base case is dim(σ) = 0. It
is immediate that the procedure terminates and its weight is greater than zero.
Assume that for any simplex of dimension k − 1 Theorem 2 holds.

Let dim(σ) = k. We apply the induction hypothesis on the (k − 1)-faces of
σ. Let {τ1, . . . , τk+1} be the (k − 1)-faces of σ. By induction hypothesis, the
procedure ConstructBalls(τi) terminates for each τi and balls in B(τi) have
weights greater than zero. Consider the space Λ = σ − ⋃

1≤i≤k+1B(τi). Since
all balls in each B(τi) have weights greater than zero, the boundary of Λ lies
entirely inside interior of σ. By Proposition 3, there exists a constant c > 0 such
that MaxWeight of each point in this space is greater than c.

Assume the contrary that ConstructBalls(σ) does not terminate. Thus,
it inserts infinitely many balls into X, (ui, wi) for i = 0, 1, 2, . . . with (ui, wi)
is inserted first before (ui−1, wi−1). According to the procedure, the balls are
inserted at a positive vertex, thus, each ui is not inside the ball (uj , wj) with
i > j.

Since σ is compact there exists a Cauchy subsequence of centers of the balls
uk1

, . . . , ukn
, . . . with ki ≥ i. We apply the Cauchy sequence criteria with some

ε < γ ·c. Thus, there exists N such that |uki
ukj

| < ε < c for any i, j > N . Assume
ki < kj , this means ukj

is inside the ball (ukj
, wkj

) since wkj
> c. This contra-

dicts that ukj
is a positive vertex. Therefore, the procedure ConstructBalls(σ)

terminates.

6 Object Approximation

Let O be a simplicial complex representing an object in R3 and C be its boundary
such that |C| is a piecewise linear 2-manifold. For a given real positive number ε,
we can construct a subdividing alpha complex of C such that the weighted points
produced have weights less than ε. We achieve this by the following modification.
Replace line 8 in procedure ConstructBalls(σ) with the instruction below:

if (γ · MaxWeight(u) > ε) then w := ε else w := γ · MaxWeight(u)

It should be obvious that our algorithm is still correct and able to terminate.
Let ∆ = {δX ∈ DB | DX ⊆ |O|}, that is, all the Delaunay tetrahedra that are

inside O. Each Delaunay tetrahedron determines a sphere which is orthogonal
to all the four weighted points. We consider the collection of all such balls B ′

and observe that
⋃
B′ makes a good approximation of O. We make the following

observations:

1. All balls in B′ have positive weights and does not intersect with C.
2. The space O − ⋃

B is fully covered by the balls in B′.
3. The boundary of

⋃
B′ is homeomorphic to |C|.

4. The Hausdorff distance from O to
⋃

b∈B′ b′ is less than ε.



7 Concluding Remarks

In this paper we propose an algorithm to compute an alpha complex that sub-
divides a simplicial complex. We also show how via subdividing alpha complex
we can approximate a closed polygonal object. It should be obvious that the
approximation method can be generalized fairly easily to arbitrary dimension.

Discussion. The subdividing alpha complex discussed here is the weighted
alpha complex. Figure 3 shows that a simple example where unweighted subdi-
viding alpha complex is not always possible.

α α

P

Q

Α C

Β

Fig. 3. The unweighted subdividing alpha cannot exist when ∠A < 2 arcsin( 1

4
). There

must exist a ball centered on A. Also, there must be some balls centered on the segments
AP and AQ. Those balls will inevitably intersect and create an extra edge in the alpha
complex.

One point worth mentioning here is that the number of balls needed for
subdividing alpha complex does not depend on the combinatorial properties of
the given C. Figure 4 illustrates a relatively simple simplicial complex which
requires huge number of balls for its subdividing alpha complex.

w

l

Fig. 4. The simplicial complex consists of only four vertices and two parallel edges.
The number of weighted points needed for subdividing alpha complex will be greater
than 2×l

w
. So if l is much bigger than w then the number of weighted points needed

can be huge too.
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