
Ruggedizing CS1 Robotics: Tools and Approaches for
Online Teaching

Boyd Anderson
Martin Henz
Hao-Wei Tee

National University of Singapore
Singapore

Abstract

First-year students benefit from robotics-based programming
exercises by learning how to use sensors to gain informa-
tion on the (changing) world surrounding the robot, how
to model this information using data structures, and how
to design algorithms for performing meaningful activities.
Robotics-based exercises are naturally experiential and team-
based and provide among the most memorable teachable
moments of first-year programming courses. We summa-
rize the pedagogical challenges that robotics-based exercises
face, even under ideal circumstances, and how a university
responded to these challenges. We report on the additional
challenges faced in late 2020 at the same university as a result
of the COVID pandemic, and how the course staff addressed
these challenges using programming language implemen-
tation and network tools. The crucial components were (1)
a custom-built web-based development environment with
collaborative features including a built-in compiler, (2) a
portable virtual machine, (3) collaborative editing, (4) open
source protocols, and (5) peer-to-peer teleconferencing soft-
ware. We report on the lessons learnt and how to further
improve the resilience of robotics-based programming exer-
cises.

CCS Concepts: · Social and professional topics → CS1;
· Computer systems organization→ Robotics.

Keywords: educational robotics, teaching CS1 using robot-
ics, online robotics, learning tools

ACM Reference Format:

Boyd Anderson, Martin Henz, and Hao-Wei Tee. 2021. Ruggedizing

CS1 Robotics: Tools and Approaches for Online Teaching. In Pro-

ceedings of the 2021 ACM SIGPLAN International SPLASH-E Sympo-

sium (SPLASH-E ’21), October 20, 2021, Chicago, IL, USA. ACM, New

York, NY, USA, 5 pages. https://doi.org/10.1145/3484272.3484969

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9089-7/21/10.

https://doi.org/10.1145/3484272.3484969

1 Introduction

The epistemological foundation for the use of robotics in
education was laid by Jean Piaget [8], the founder of con-
structivism, who emphasized the importance of the learner’s
active construction of knowledge. Seymour Papert’s con-
structionism highlighted the value ofmaking tangible objects
in the real world in this process of knowledge construction.
Papert’s book łMindstormsž [7] developed the foundation
for the use of robotics in education. The collaboration of
Papert’s MIT Media Lab with the LEGO company led to the
development of LEGOMINDSTORMS [5]. Since the introduc-
tion of this product line in 1998 and other similar products,
the use of robotics in education has proliferated and is widely
reported in the computer science, engineering and education
literature. A recent literature survey [2] lists over 140 studies
on robotics in education from 2000 to 2018. The survey also
provides a more detailed history of robotics in education.
Today, examples of robotics-based CS1 courses include

łMIT: 6.01 Introduction to EECS via Roboticsž [6] and łKAIST:
CS101 Introduction to Programmingž [4]. The CS1 course
discussed in this paper follows the textbook Structure and

Interpretation of Computer Programs, JavaScript Edition [1]
(SICP JS), but is taught using a small JavaScript subset called
Source, which includes only the features necessary for the
textbook. Since 2005, our course has included a robotics
component using LEGO MINDSTORMS. The robotics com-
ponent is introduced right after the students get exposed to
imperative programming, following Chapter 3 of SICP JS.

During the COVID-19 pandemic of 2020, all large lectures
and the majority of labs and tutorials in our university had
to be moved online, using teleconferencing tools in the first
semester of Academic Year 2020/21. Travel restrictions forced
many of our students to take all their classes remotely. 450
students were required or opted to take their laboratory
sessions online. With its aspiration of letting students łmake
tangible objects in the real worldž, the robotics component of
the course was severely endangered by the COVID-induced
restrictions.

Section 2 describes the use of robotics in this course up un-
til 2019 in more detail. Section 3 reports how we responded
to the challenges posed by COVID with a combination of
technological, logistical, and organizational measures. Sec-
tions 4 and 5 describes the robotics setup developed for the

This work is licensed under a Creative Commons Attribution-

ShareAlike 4.0 International License.

82

http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3484272.3484969
https://doi.org/10.1145/3484272.3484969


SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Boyd Anderson, Martin Henz, and Hao-Wei Tee

module. Section 6 describes the learning outcomes that we
achieved, the observed shortcomings, and future steps to fur-
ther increase the resilience of a robotics-based component
in a CS1 course.

2 Pre-2020 Robotics Course Component

From the beginning, a goal in our CS1 course was to enable
all of our students to complete all their assignments in a web-
based development environment called the Source Academy.
This approach removed the need for first-year students to
have to figure out how to set up a local JavaScript develop-
ment environment, install libraries and deal with operating
system or architecture differences. By removing these bar-
riers, the students could focus on learning programming
methodology first, and then learn how to use these powerful
and complex tools in the future.
However, before 2020, the robotics component of our

course was not fully integrated into the Source Academy.
The students could write their programs in JavaScript, but
running these programs required the setting up of an addi-
tional development environment which necessitated the use
of SSH and SCP. This initial setup used only off-the-shelf
components: the LEGO MINDSTORMS EV3 kit flashed with
the ev3dev Linux distribution1 bundled with Node.js and
a small wrapper script that included a customised ev3dev
JavaScript API into the Node.js environment.

Although these were all packaged into a single image that
students could write directly to a microSD card, students
still had to figure out how to connect to the EV3 over SSH to
run their programs. If they wanted to write their programs
in the Source Academy, they had to manually transfer their
programs to the EV3 by copy-and-pasting them from their
browser into a file, and then transfer the file over using
SCP. They would have to do this for every modification they
made to the program. Alternatively, they could write in a text
editor (such as vim) over SSH on the device itself, but then
they lose the functionalities of the web-based development
environment such as code completion. The students also had
to be physically present to be able to program the robot, even
if they were connecting to it over a wireless network.
In addition to these barriers, by far the biggest issue was

the poor performance; the EV3 runs a single low-power
ARM core clocked at 300 MHz, which is not sufficient to
run Node.js at an acceptable speed. Each time students ran a
program, they had to wait about 10 seconds for Node.js to
initialise before their program ran. This on top of the manual
file transfer provided for a rather frustrating development
experience, especially as robotics programming tends to in-
volve a lot of trial-and-error.

Overall, the original setup allowed the students to program
the LEGO MINDSTORMS EV3 in JavaScript and experience

1ev3dev, https://www.ev3dev.org/

robotics in their first year. However, these barriers and limita-
tions needed to be addressed to achieve our goal of allowing
students to concentrate on programming methodology first.
As it happened, these changes would need to occur in the
following year.

3 Going Online

During the second half of 2020, our CS1 module had to be run
online. All lectures and tutorials were taught using telecon-
ferencing tools due to the large class size (625 students) and
social distancing considerations. Our lab sessions however
were split between online and face-to-face groups (see Figure
1) as the government COVID-19 guidelines allowed us to
have classes of up to 8 students. However, approximately
two-thirds of our students attended online sessions.
In addition to this, travel restrictions prevented many of

our students from entering our country at all and therefore
they were required to take all classes remotely. This meant
there could be no physical contact with these students, and
therefore all of our assessments and lab sessions needed to
be teachable virtually.
Despite these constraints, we were determined to con-

tinue to run the robotics component of the module, because
the past years clearly showed the pedagogical benefits of
a robotics-based experiential component in the course. We
were fortunate, in that our efforts to address the limitations
of the robotics component, which are covered in the fol-
lowing sections, had helped us prepare a suite of tools for
teaching robotics remotely.
There were issues of logistics; for example, we had to

make sure that each of our lab groups contained at least
one person who was present on campus. This person would
become the łRobot Custodianž and would collect the LEGO
MINDSTORMS EV3 and printed puzzle sheets, manually
build the robot in consultation with their team mates, and
work with their lab group on the robotics assessments of the
module. Outside of this one student, the rest of the robotics
component of the module was handled remotely. The tools
required to do this are discussed in the next sections.

4 A Virtual Machine (VM) for Educational
Robots

Our first consideration to improve our robotics component
was to improve the delay for running student programs.
The main culprit is that Node.js is poorly suited to run on
microcontrollers. It uses the V8 runtime2, a heavyweight VM
that has a just-in-time compiler, which causes far too much
overhead for short-running programs on a low-powered
processor such as those on most robot microcontrollers. V8
also has to parse the program on the device itself, which
adds to the startup overhead. It implements almost the entire
JavaScript language which has many features that are not

2V8 JavaScript Engine, https://v8.dev/

83

https://www.ev3dev.org/
https://v8.dev/


Ruggedizing CS1 Robotics: Tools and Approaches for Online Teaching SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

Figure 1. Student in Lab sessions using the EV3 Mindstorm
Robots in a Face-to-Face setting and in an Online setting

included in Source, adding further unnecessary overhead
as the VM has to be designed to support these features; it,
however, does not implement proper tail calls, which is a
feature that we rely on, given our CS1 course’s focus on
functional programming.

Another issue was that Node.js dropped support3 for the
version of the ARM architecture used by the EV3, and so
we were limited to Node 0.10, which, among other things,
lacked support for arrow functions and const declarations,
which are used frequently in Source.

Any replacement for Node.js would have to (1) support
the features of ES6 used in Source, namely arrow functions
and let and const declarations; (2) be usable from a purely
web-based environment, if any compilers or other tools were
required; and (3) be small enough to run on microcontrollers.
We considered JavaScript runtimes designed for use on

embedded devices. Duktape4 and Espruino5 were not suitable
as they supported only ES5.1, and we were not keen on
adding significant functionality to an unfamiliar codebaseÐ
we would have had to modify both the parser and interpreter

3V8 dropped support for architectures without hardware support for

floating-point numbers in version 3.18, which Node.js started using from

version 0.11
4Duktape, https://duktape.org/
5Espruino, https://www.espruino.com/

of the chosen runtime. Moddable’s XS6 was promising, but
their toolchain relies on a C compiler, which we cannot
provide in a web environment. We therefore decided to write
our own runtime. Because Source excludes much of the more
complex features of JavaScript, like prototypal inheritance
and objects, this was much simpler than implementing a full
JavaScript runtime.

We developed SVML (Source virtual machine language),
a stack-based virtual machine designed specifically for our
use case: as a compilation target for Source that is efficient
to run on low-power devices such as microcontrollers. We
also wrote a simple interpreter for SVML in C, called Sinter
(Source interpreter), and a compiler from Source to SVML,
which was written in TypeScript so that it could be used
from aweb environment. SVML and Sinter together solve the
performance issue; programs start running almost instantly,
improving the development experience. However, we still
wanted to address the barrier of having to copy programs
directly to the robot every time a change was made.

5 Web-Based Robot Interactivity

Such a VM setup by itself would not haveworked at all during
a pandemic as some students were not allowed or able to
meet; fortunately, our web-based development environment
has a collaborative editing feature that allows students to
work on the same program in a manner akin to Google Docs.
Our collaborative editor uses ShareDB, a realtime database
built on operational transformation [3] of JSON documents.

Had we gone into the pandemic with the pre-2020 robotics
setup, students could have used the collaborative editor to
work on their programs together, but the student who physi-
cally had the robot would have had to manually transfer the
program to the EV3 and run it each time anyone wanted to
try a program; it likely would have worked, but it would not
have been a good experience.
To make the development experience truly seamless, we

wanted to allow programs to be run directly from the Source
Academy, without students having to exit the development
environment at all.

We developed Sling, anMQTT7-based protocol that allows
programs to be sent from a client to a device, and the output
to be sent back from the device to the client. By virtue of
MQTT being a publish-subscribe protocol, multiple clients
can be connected to a device at a time; they will all see the
device’s status (whether it is running a program) and output
from the program. Any connected client can send a program
to the device to be run.

6Moddable, https://www.moddable.com/
7MQTT is a lightweight publish-subscribe network protocol commonly

used in embedded and IoT applications

84

https://duktape.org/
https://www.espruino.com/
https://www.moddable.com/


SPLASH-E ’21, October 20, 2021, Chicago, IL, USA Boyd Anderson, Martin Henz, and Hao-Wei Tee

Robot

AWS IoT
(MQTT broker)

Web backend
(authentication with AWS)

Web
frontend

program

output output

program

exchange device secret
for AWS access token

exchange user credentials
for AWS access token

Figure 2. Remote execution flow

Figure 3. Page showing device UUID

Our implementation of Sling involves four parts: the re-
mote execution host on the device, which receives programsÐ
in our case, compiled SVML programsÐand invokes the in-
terpreter, and then relays output back; the client library in
our web environment; AWS IoT Core, which we use as our
MQTT broker; and a web backend, which handles authen-
tication to the MQTT broker for both clients and devices.
Figure 2 depicts the overall flow of the setup.
With SVML, Sinter, and Sling, our students now have

a much smoother experience. As in the original pre-2020
robot setup, the students download and flash a preconfigured
ev3dev image, which now contains Sinter and Sling instead
of Node.js. Upon powering on the device and connecting
it to their computer, instead of SSHing onto the device to
transfer programs, they can simply open a web page on the
device that displays a UUID (Figure 3). They register this
UUID to their accounts in the Source Academy (Figure 4),
which authorises the device to connect to the MQTT broker,
and authorizes them to connect to the device. They can then
simply select the device as an execution target (Figure 5),
and then program in the Source Academy as per normal.
Each time, any team member hits the łRunž button in the
web-based programming environment, their program runs
on the robot.
If students are not able to meet in person, they can sepa-

rately connect to the same device and collaborate over our
web-based development environment. In practice, the stu-
dent who physically has the robot would simply point a
camera at the robot over a video call with their lab mates.
That student no longer has to repeatedly manually transfer
programs to the device, and the students can instead concen-
trate on the course content. Combined with the collaborative
editor, students can work on the same program and see the

Figure 4. Registering a device

Figure 5. Selecting a device

same output from each execution in their own browser. This
combination of tools allowed students to collaborate on the
robotics component of the module when working side by
side, remotely, and even across borders.

6 Lessons Learned

When everything is "business as usual", it is easy to make as-
sumptions about the state and suitability of our pedagogical
tools. A setup might be "good enough" when the majority
of students don’t have trouble with getting started with the
robot, or when other students or teaching assistants can help.
Collectively a cohort can reach the desired outcome with-
out too much overhead. An instructor can also intervene to
course-correct if there are some impediments to learning.
However, disasters such as COVID-19 change this picture;
these small nuisances can become show-stoppers. One extra

85



Ruggedizing CS1 Robotics: Tools and Approaches for Online Teaching SPLASH-E ’21, October 20, 2021, Chicago, IL, USA

Figure 6. Post-course Feedback on Robot Component

step can become a step too many and the teaching process
breaks down.

We were worried that the robotics component of our CS1
module was especially at risk for these sort of setbacks and
barriers. Our original setup required too many additional
components and steps. Therefore, our goal was to eliminate
these unnecessary steps and let the students focus on their
learning, regardless of the device they are using or their loca-
tion. We believe we were successful in this goal, and during
our 2020 online semester, we were able to run our robotics
component with positive student feedback (see Figure 6).
We were fortunate to have some crucial pieces of our

setup in place before disaster hit. Our open-source, web-
based environment, developed andmaintained by a team that
knew it well, allowed us to adapt our setup quickly. We also
already had an existing language implementation setup with
parsers and programming environment. In addition, as we
only had to support a minimalistic programming language
(Source, our JavaScript subset), we were able to build a small
and portable virtual machine and interpreter. This would not
have been possible if we had to support all of JavaScript’s
functionality. Another important aspect was the robot kits
we had access to: the LEGO MINDSTORMS EV3 kit permits
open-source development (ev3dev) allowing us to run our
virtual machine on the device.

We were able to focus on the deployment of student pro-
grams from the browser to the EV3 platform. We decided
for a VM-based approach as a good compromise. It allowed
a fairly straightforward robot programming workflow. The
student program is compiled in the browser to our virtual
machine language, and then is sent to the device over the in-
ternet, and then run on a dedicated virtual machine running
on the EV3. The focus on this limited subset of JavaScript
ultimately made it possible to use this VM approach and
therefore ruggedize the course.
We see this setup as a framework to grow and improve

the robotics component of the course. The development on
the virtual machine interpreter has not stopped. Since the
2020 semester, it has been ported to the ESP32 and Arduino
platforms. This opens up new possibilities for programming
more than just the EV3 robots. Indeed, we are in the pro-
cess of prototyping an ESP32-based robot and investigating
controlling drones with our setup. We see many exciting pos-
sibilities for teaching with robots, from letting students expe-
rience distributed programmingwithmultiple connected and

programmable devices to allowing students to coordinate
multiple robots together.

7 Using Sinter and Sling

The Source Academy8, our Source language implementations
and SVML compiler9, Sinter10 and Sling11 are all open-source
projects under the Apache license, and are available for any
educators to experiment with and adopt in their own courses.

Sinter is written with portability and extensibility in mind:
it is easy to port Sinter to any platform with a C11 compiler
and extend the VM so that programs run in the VM can
interact with features of the platform, including doing I/O
and controlling peripherals like sensors and motors.
Our Sling implementation will run on any Linux-based

platform. As network programming interfaces differ from
platform to platform, using Sling on a new platform will
likely require a new implementation of Sling.

References
[1] Harold Abelson and Gerald Jay Sussman. 2022. Structure and Interpre-

tation of Computer Programs (JavaScript ed.). MIT Press, Cambridge,

MA. Adapted to JavaScript by Martin Henz and Tobias Wrigstad, ISBN:

978-0262543231.

[2] S. Anwar, Bascou N. A., M. Menekse, and A. Kardgar. 2019. A Systematic

Review of Studies on Educational Robotics. Journal of Pre-College

Engineering Education Research 9, 2 (2019), 19ś42. https://doi.org/10.

7771/2157-9288.1223

[3] C.A. Ellis and S.J. Gibbs. 1989. Concurrency control in groupware

systems. ACM SIGMOD Record 18, 2 (1989), 399Ð-407. https://doi.org/

10.1145/67544.66963

[4] Korea Advanced Institute of Science and Technology. 2021. CS101:

Introduction to Programming. (April 2021). http://web.archive.org/web/

20210412213143/https://cs101.kaist.ac.kr/.

[5] LEGO System A/S. 2021. LEGO MINDSTORMS. (September

2021). http://web.archive.org/web/20210910151954/https://www.lego.

com/en-us/themes/mindstorms.

[6] Massachusetts Institute of Technology, Electrical Engineering and Com-

puter Science. 2021. 6.01 Introduction to EECS via Robotics, Spring

2021. (February 2021). http://web.archive.org/web/20210203200039/http:

//student.mit.edu/catalog/m6a.html.

[7] S. Papert. 1980. Mindstorms: Children, computers, and powerful ideas.

Basic Books, Inc., New York. ISBN: 978-0465046270.

[8] J. Piaget. 1970. Genetic epistemology. W.W. Norton & Company, New

York. ISBN: 978-0231033862.

8Source Academy, https://github.com/source-academy
9js-slang, https://github.com/source-academy/js-slang
10Sinter, https://github.com/source-academy/sinter
11Sling, https://github.com/source-academy/sling

86

https://doi.org/10.7771/2157-9288.1223
https://doi.org/10.7771/2157-9288.1223
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/67544.66963
http://web.archive.org/web/20210412213143/https://cs101.kaist.ac.kr/
http://web.archive.org/web/20210412213143/https://cs101.kaist.ac.kr/
http://web.archive.org/web/20210910151954/https://www.lego.com/en-us/themes/mindstorms
http://web.archive.org/web/20210910151954/https://www.lego.com/en-us/themes/mindstorms
http://web.archive.org/web/20210203200039/http://student.mit.edu/catalog/m6a.html
http://web.archive.org/web/20210203200039/http://student.mit.edu/catalog/m6a.html
https://github.com/source-academy
https://github.com/source-academy/js-slang
https://github.com/source-academy/sinter
https://github.com/source-academy/sling

	Abstract
	1 Introduction
	2 Pre-2020 Robotics Course Component
	3 Going Online
	4 A Virtual Machine (VM) for Educational Robots
	5 Web-Based Robot Interactivity
	6 Lessons Learned
	7 Using Sinter and Sling
	References

