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Abstract
We consider the problem of bounding the worst-case resource us-
age of programs, where assertions about valid program executions
may be enforced at selected program points. It is folklore that to
be precise, path-sensitivity (up to loops) is needed. This entails un-
rolling loops in the manner of symbolic simulation. To be tractable,
however, the treatment of the individual loop iterations must be
greedy in the sense once analysis is finished on one iteration, we
cannot backtrack to change it. We show that under these conditions,
enforcing assertions produces unsound results. The fundamental
reason is that complying with assertions requires the analysis to
be fully sensitive (also with loops) wrt. the assertion variables.

We then present an algorithm where the treatment of each loop
is separated in two phases. The first phase uses a greedy strategy
in unrolling the loop. This phase explores what is conceptually a
symbolic execution tree, which is of enormous size, while elimi-
nates infeasible paths and dominated paths that guaranteed not to
contribute to the worst case bound. A compact representation is
produced at the end of this phase. Finally, the second phase at-
tacks the remaining problem, to determine the worst-case path in
the simplified tree, excluding all paths that violate the assertions
from bound calculation. Scalability, in both phases, is achieved via
an adaptation of a dynamic programming algorithm.

1. Introduction
Programs use limited physical resources. Thus determining an up-
per bound on resource usage by a program is often a critical need.
Ideally, it should be possible for an experienced programmer to
extrapolate from the source code of a well-written program to its
asymptotic worst-case behavior.

However, “concrete worst-case bounds are particularly neces-
sary in the development of embedded systems and hard real-time
systems.” [14]. A designer of a system wants hardware that is just
good enough to safely execute a given program, in time. As a re-
sult, precision is the key requirement in resource analysis of the
program. Now embedded programs are often written in favor of
performance over simplicity or maintainability. This makes many
analytical techniques1 [11, 14, 10] less applicable.

Fortunately, there are two important redeeming factors. First,
embedded programs are often of small to medium size (from
dozens to a few thousand lines of code) and symbolically executing
them is guaranteed to terminate. Second, programmers are willing
to spend time and effort to help the analyzer in order to achieve

1 These are more general by the use of parametric bounds, and they discover
a closed worst-case formula. But they are not generally used for concrete
analyses.
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more accurate bounds. In many cases, often such manually given
information, in form of what we shall call assertions, is essential.

The primary target of this paper is Worst-Case Execution Time
(WCET) analysis. The result is directly extendable to analysis of
other cumulative resource such as power. Extension towards anal-
yses of non-cumulative resources, e.g., memory and bandwidth, is
left as our future work. Furthermore, here we only deal with the
high level aspects of the analysis. Architecture modeling, when ap-
plicable, is considered as a separate issue and is out of scope of the
paper. In other words, we only address the path analysis problem.
Though our path analysis is supposed to work at the level the con-
trol flow graphs (CFG), for better comprehension, all the examples
we present are at the source code level.

The Need for Path-Sensitivity

t = i = 0;
while (i < 10) {

if (i mod 3 == 0)
{ j *= j; t += 30; }

else
{ j++; t += 1; }

i++;
}

Figure 1: The Need for Path Sensitivity

Precise path analysis essentially arises from path-sensitivity, and
this in turn essentially arises from the ability to disregard infeasible
paths. But how do we deal with the subsequent explosion in the
search space? In fact, due to loops, fully path-sensitive algorithms
cannot scale. In practice, abstract reasoning with “path-merging” is
used, e.g., [19, 8, 12, 13].

The example in Fig. 1 concerns Worst-Case Execution Time
(WCET) analysis, or simply timing analysis. The special variable t
captures the timing. The program iterates through a loop, using the
counter i. In the iteration such that (i mod 3 == 0), a multipli-
cation is performed, thus requires 30 cycles to finish. Otherwise, an
addition is performed, which takes only 1 cycle to finish. The main
challenge is to discover that multiplications are in fact performed
three times less often than additions. In general, such discoveries
are very hard.

An easy solution is to perform loop unrolling. In Fig. 1, we
start with (t = 0, i = 0). In the first iteration, we detect that
the else branch is infeasible. At the end of this iteration, we have
(t = 30, i = 1) (since j does not affect the control flow, we just
ignore information about j). In the second iteration, as (i = 1) we
detect that the then branch is infeasible; from the other branch, we
then obtain (t = 31, i = 2). This process continues until (i = 10),
when we exit the loop (having discovered that multiplication is
executed exactly 4 times, and the exact WCET of 126).

Clearly a direct implementation of loop unrolling cannot scale.
Recently, [3] developed a fully automated symbolic simulation



algorithm which is fully path sensitive wrt. loop-free program frag-
ments. For loops, the algorithm performs loop unrolling while em-
ploying judicious use of path-merging only at the end of each
loop iteration, thus useful information is systematically propa-
gated across loop iterations and between different loops. As already
pointed out in [3], loop unrolling is almost inevitable in order to
capture precisely infeasible path information and complicated loop
patterns such as: non-rectangular, amortized, down-sampling, and
non-existent of closed form. The main contribution of that work
is an adaptation of a dynamic programming algorithm, which em-
ploys the concept of summarization with interpolant in determining
reuse so that loop unrolling can be performed efficiently.

Importantly, loop unrolling now [3] is observed to have super-
linear behavior for the set of WCET benchmark programs with
complicated loops. Informally, this means that the size of the sym-
bolic execution tree is linear, even for nested loop programs of
polynomial complexity. The key feature that allows scalability of
loop unrolling is not just that a single loop iteration is summarized,
and then subsequent loop iterations are analyzed using this summa-
rization. Rather, a sequence of consecutive loop iterations can be
summarized and reused. This is crucial for when it matters most:
when loops are nested.

The Need for User Assertions
It is generally accepted in the domain of resource analysis that
often programs do not contain enough information for program
path analysis. The reason is that programs typically accept inputs
from the environment, and behave differently for different inputs. It
is just too hard, if not impossible, to automatically extract all such
information for the analyzer to exploit.

t = 0;
for (i = 0; i < 100; i++) {

if (A[i] != 0) {
/* heavy computation */
t += 1000;

} else { t += 1; }
}

Figure 2: Assertions are Essential

See Fig. 2. Each non-zero element of an array A triggers a heavy
computation. From the program code, we can only infer that the
number of such heavy computations performed is bounded by 100.
In designing the program, however, the programmer might have
additional knowledge regarding the sparsity of the array A, e.g.,
no more than 10 percent of A’s elements are non-zero. We refer to
such user knowledge as user assertions2. The ability to make use
of such assertions is crucial for tightening the worst case bound.

In general, a framework — by accommodating assertions —
will allow different path analysis techniques to be combined easily.
As path analysis is an extremely hard problem, we do not expect
to have a technique that outperforms all the others in all realistic
programs. Under a framework which accommodates assertions,
any customized path analysis technique can encode its findings in
the (allowed) form of assertions, and simply let the aggregation
framework exploit them in yielding tighter worst-case bounds. Two
widely used commercial products for timing analysis are [1, 2],
both accommodate assertions, giving evidence to their practical
importance.

We comment here that we do not consider the proof of any
given assertion. Proving the validity of a given assertion is simply
considered as an orthogonal issue.

2 Strictly speaking, they are user assumptions about the program and the
analyzer simply takes them in as asserted knowledge.

Path-Sensitivity and Assertions Don’t Mix
We have argued that we need both path sensitivity (up to loops)
and assertions in order to have precision. In this paper, we propose a
framework for path analysis in which precise context propagation is
achieved by loop unrolling. In addition, we instrument the program
with frequency variables, each attached to a basic block. Each
frequency variable is initialized to 0 at the beginning of the program
and is incremented by 1 whenever the corresponding basic block
is executed. Importantly, our framework accommodates the use
of assertions on frequency variables so that user information can
be explicitly exploited. In other words, the framework not only
attempts path-sensitivity via loop unrolling as in [3], but also makes
use of assertions to block more paths, i.e., disregard paths which
violate some assertion. Ultimately, we can tighten the worst-case
bound.

Now because assertions, when they are used, are typically of
high importance, we require our framework to be faithful to asser-
tions. That is, all paths violating some given assertion are guaran-
teed to be excluded from the bound calculation process. This re-
quires the framework to be fully path-sensitive wrt. the given asser-
tions. However, to make loop unrolling scalable, a form of greedy
treatment with path merging is usually employed. In other words,
the analysis of a loop iteration must be finished before we go to the
next iteration. Also, the analysis should produce only one single
continuation context3; this context will be used for analysis of sub-
sequent iterations or subsequent code fragments. It is here that we
have a major conflict: unrolling while ensuring that we recognize
blocked paths that arise because of assertions.

c = 0, i = 0, t = 0;
while (i < 9) {

if (*) {B1: c++; t += 10; }
else {

if (i == 1) {B2: t += 5; }
else {B3: t += 1; }

}
i++;
assert(c <= 4);

}
Figure 3: Complying with Assertions in Loop Unrolling is Hard

See Fig. 3 where the special variable t captures timing, and “*” is a
condition which cannot be automatically reasoned about, e.g., a call
to an external function prime(i). We also instrument the program
with the frequency variable c which is incremented each time B1 is
executed. The assertion assert(c <= 4) constrains that B1 can
be executed at most 4 times.

We now exemplify loop unrolling. In the first iteration, we
consider the first then branch, notice t is incremented by 10 so
that we get (t = 10, c = 1, i = 1) at the end. Considering however
the else branch, we then detect that the then branch of nested if-
statement is infeasible, thus we finally get (t = 1, c = 0, i =
1). Performing path-merging to abstract these two formulas, we
conclude that this iteration consumes up to 10 cycles (t = 10) and
we continue to the next iteration with the context (t = 10, c =
0 ∨ c = 1, i = 1)4 (the longest execution time is kept). Note that
by path-merging, we no longer have the precise information about
c, i.e., we say this merge is destructive [22].

Now let us consider two mechanisms for making use of asser-
tions to block invalid paths. They correspond to must semantics and
may semantics, respectively.

3 We can generalize this to a fixed number of continuation contexts.
4 To be practical, one must employ some abstract domain for such merge.
In our implementation, we use the polyhedral domain.



Now the first option is to block path with context which must
violate the assertion. In other words, a path is blocked when its
context conjoined with the assertion is unsatisfiable. Return to the
example, if we perform merging as above, at the beginning of the
fifth iteration, the context of c is (c = 0 ∨ c = 1 ∨ c = 2 ∨ c =
3 ∨ c = 4). Executing B1 gives us the context (c = 1 ∨ c =
2 ∨ c = 3 ∨ c = 4 ∨ c = 5). Conjoining this context with the
assertion c ≤ 4 is still satisfiable. Therefore, we cannot make use
of the assertion to block any path in the fifth iteration or in any
subsequent iteration. We end up having the worst case timing of 90
cycles: each iteration consumes 10 cycles. Consequently, however,
the analysis is not faithful to the provided assertion.

A naive alternative is to block path with context which may
violate the assertion. In other words, a path is blocked when its
context conjoined with the negation of the assertion is satisfiable.
In the first four iterations, the execution of block B1 is possible.
As before, at the beginning of the fifth iteration, the context of c
is (c = 0 ∨ c = 1 ∨ c = 2 ∨ c = 3 ∨ c = 4). Executing B1
gives us the context (c = 1 ∨ c = 2 ∨ c = 3 ∨ c = 4 ∨ c = 5).
Conjoining this context with the negation of the assertion, namely
c > 4, is obviously satisfiable. As such, this mechanism forbids the
execution of B1 in the fifth iteration and in subsequent iterations.
From the fifth to the ninth iteration, the only possible path is by
following the else branch of if (i == 1) statement. This leads to the
timing of 45 at the end.

At first glance, the second blocking mechanism seems to be
able to make use of the provided assertion in order to block paths
and tighten the bound. However, such analysis is unsound. A
counter-example can be achieved by replacing if (*) with if
(prime(i)), where prime is a function which returns true if the
input is actually a prime number and false otherwise. This counter-
example has the timing of (1+5+10+10+1+10+1+10+1 =
49).

In summary, it is non-trivial for loop unrolling to be both sound
and compliant with assertions. This requires the unrolling frame-
work to be fully path-sensitive wrt. the variables used in the asser-
tions. The greedy treatment of loops, via path merging, currently
prevents us from being so. In other words, the challenge is how to
address what in general is an intractable combinatorial problem.

Main Contribution
This paper proposes the first analysis framework that is path-
sensitive and, at the same time, faithful to assertions. The tradi-
tional widely-used Implicit Path Enumeration Technique (IPET)
[18] naturally supports assertions; it is, however, path-insensitive.
To obtain precise analysis, the user needs to manually provide in-
formation regarding the loop bounds and infeasible paths. On the
other hand, previous work [3] has shown that path-sensitive anal-
ysis with loop unrolling can be performed efficiently. However, as
we have argued, supporting assertions in a loop unrolling frame-
work is non-trivial.

We address the challenge by presenting an algorithm where the
treatment of each loop is separated in two phases. Scalability, in
both phases, is achieved using the concept of summarization with
interpolant [16, 3]. We note here that, as programs usually contain
more than one loop and also nested loops, our two phases are, in
general, intertwined.

The first phase performs a symbolic execution where loops are
unrolled efficiently. In order to control the explosion of possible
paths, a merge of contexts is done at the end of every loop iteration.
While this is an abstraction, it in general produces different contexts
for different loop iterations. Thus this is the basis for being path-
sensitive up to loops while capturing the non-uniform behavior of
different loop iterations.

In this paper, in the first phase, a key addition to the method of
[3] is to “slice” the tree by eliminating two kinds of paths:

1. those that are infeasible (detected from path-sensitivity), and

2. those that are dominated. More specifically, for each collection
of paths that modify the variables used in assertions in the same
way, only one path (in that collection) whose resource usage
dominates the rest will be kept in the summarization.

In practice, therefore, what results from the first phase is a greatly
simplified execution tree. The explored tree is then compactly rep-
resented as a transition system, which now also is a directed acyclic
graph (DAG), each edge is labelled with a resource usage and how
the assertion variables are modified.

In the second phase, we are no longer concerned with path-
sensitivity of the original program, but instead are concerned only
about assertions. More specifically, from the produced transition
system, we need to disregard all paths violating the assertions. The
problem is thus an instance of the classic Resource Constrained
Shortest Path (RCSP) problem [17]. While this problem is NP-hard,
we have demonstrated in [16] that, in general, the use of summa-
rization with interpolant can be very effective. In Section 7, we fur-
ther demonstrate this effectiveness with several WCET benchmark
programs.

2. Related Work
The State-of-the-Art: Implicit Path Enumeration
Implicit Path Enumeration Technique (IPET) [18] is the state-of-
the-art for path analysis in the domain of Worst Case Execution
Time (WCET) analysis. IPET formulates the path analysis problem
as an optimization problem over a set of frequency variables each
associated with a basic block. More precisely, it starts with the
control flow graph (CFG) of a program, where each node is a basic
block. Program flow is then modeled as an assignment of values to
execution count variables, each centity of them associated with a
basic block of the program. The values reflect the total number of
executions of each node for an execution of the program.

Each basic block entity with a count variable (centity) also has a
timing variable (tentity) giving the timing contribution of that part
of the program to the total execution (for each time it is executed).
Generally, tentity is derived by some low-level analysis tool in
which micro-architecture is modeled properly.

The possible program flows given by the structure of the pro-
gram are modeled by using structural constraints over the frequency
variables. Structural constraints can be automatically constructed
using Kirchhoff’s law. Because these constraints are quite simple,
IPET has to rely on additional constraints, i.e., user assertions, to
differentiate feasible from infeasible program flows. Some con-
straints are mandatory, like upper bounds on loops; while others
will help tighten the final WCET estimate, like information on in-
feasible paths throughout the program. Some examples on discov-
ering complex program flows and then feed them into IPET frame-
work are [7, 9].

In the end, the WCET estimate is generated by maximizing,
subject to flow constraints, the sum of the products of the execution
counts and execution times:

WCET = maximize(
∑

∀entity

centity · tentity)

This optimization problem is handled using Integer Linear Pro-
gramming (ILP) technique. Note that IPET does not find the worst-
case execution path but just gives the worst-case count on each
node. There is no information about the precise execution order.

In comparison with our work in this paper, aside from accuracy,
we have two additional important advantages:



• IPET supports only global assertions, whereas we support both
global and local assertions. IPET relies on the intuition that it is
relatively easy for programmers to provide assertions in order
to disregard certain paths from bound calculation, probably be-
cause they are the developers. We partly agree with this. There
is flow information, which is hard to discover, while the pro-
grammers can be well aware of, a calculation framework should
take into account such information to tighten the bounds. Never-
theless, we cannot expect the programmers to know everything
about the program. For example, it is unreasonable to expect
any programmer to state about a path which is infeasible due
to a combination of guards scattered throughout the program.
Such global knowledge is hard to deduce and could be as hard
as the original path analysis problem. In short, it is reasonable to
only assume the programmers to know some local behavior of
a code fragment, but not all the global behaviors of the program
paths. We elaborate on this when discussing Fig. 7 below.

• IPET cannot be extended to work for non-cumulative resource
analysis such as memory high watermark analysis. The reason
is that such analysis, even for a single path, depends on the order
in which statements are executed; while in IPET formulation,
such information is abstracted away. On the other hand, since
our framework is path-based, adapting it for non-cumulative
resource analysis is possible. This, however, is not the focus
of our paper.

Symbolic Simulation with Loop Unrolling
In the domain of resource analysis, precision is of paramount im-
portance. Originally, precision was addressed by symbolic execu-
tion with loop unrolling [19, 8, 12, 13]. A loop-unrolling approach
which symbolically executes the program over all permitted inputs
is clearly the most accurate. The obvious challenge is that this is
generally not scalable. Thus path-merging, a form of abstract in-
terpretation [4], is introduced to remedy this fact. It, in one hand,
improves scalability; on the other hand, it seriously hampers the
precision criterion.

The most recent related work is [3], which is a basis of the
work in this paper. Its main technique to reduce both the depth
and the breadth of the symbolic execution tree is by making use
of compounded summarizations. This gives rise to the superlinear
behavior of program with nested loops. That is, the number of
states visited in the symbolic execution tree can be asymptotically
smaller than the number of states in a concrete run. As a result,
path-merging is still performed, but now sparsely only at the end of
each loop iteration.

Parametric Bounds
Static resource analysis concerns with either parametric or con-
crete bounds. Parametric methods, e.g., [11, 14, 10], study the
loops, recursions, and data structures, in order to come up with a
closed, easy to understand worst-case formula. These methods are
ideal to algorithmically explain the worst-case complexity of the
resource usage.

But these methods, when being used to produce concrete
bounds, in general, do not give precise enough answers (they con-
cern with asymptotical precision only). Also, they are applicable
to a smaller class of programs5. Furthermore, they usually focus
on an individual loop or loop nest, rather than the whole program.
Consequently, such techniques alone are mainly used for proving
program termination.

We believe, however, that the advance in producing parametric
bounds for complicated loops can indeed support concrete resource

5 Most parametric methods are restricted to linear constraints and it is
generally hard to adapt them to work on the level of the control flow graphs.

analysis, provided that an aggregation framework can make use of
assertions.

3. Motivating Examples
EXAMPLE 1 : Refer to the program in Fig. 1. Previously we have
shown that loop unrolling produces exact timing analysis for this
program. Here we show how IPET could exploit user assertions
in order to achieve the same. Before proceeding, we mention that
this example was highlighted in [18] to demonstrate the use of
assertions in the IPET framework.

t = i = c = c1 = c2 = 0;
while (i < 10) {

c++;
if (i mod 3 == 0)
{ c1++; j *= j; t += 30; }

else { c2++; j++; t += 1; }
i++;

}
Figure 4: Assertions in IPET

Now see Fig. 4 where frequency variables c, c1, and c2 are instru-
mented. The structural constraint prescribed by the IPET method is
c = c1 + c2. (In general, structural constraints can be easily ex-
tracted from the CFG.) The objective function to be maximized in
the IPET formulation for this example is (c1 ∗30+c2 ∗1). In order
to be exact, one could use the assertion c ≤ 10 and c1 ≤ 4. Note
that bounding c (i.e., the assertion c ≤ 10) is mandatory because a
bound on the objective function depends on this. On the other hand,
the assertion c1 ≤ 4 is optional. Computing the optimal now will
produce the exact timing.

This example also exemplifies the fact that IPET is perfectly
suited to assertions simply because one just needs to conjoin the
assertions to the structural constraints before performing the opti-
mization.

It is certainly not the case that assertions alone are sufficient
in general. Let us now slightly modify the example by replacing
j *= j with i *= i. The new program is shown in Fig. 5.

t = i = c = c1 = c2 = 0;
while (i < 10) {

c++;
if (i mod 3 == 0)
{ c1++; i *= i; t += 30; }

else { c2++; j++; t += 1; }
i++;

}
Figure 5: Assertions Alone Are Not Enough

Following the unrolling technique, exact bound is still achieved.
The reason is that context propagation is performed precisely. How-
ever, it is now hard for the user of IPET framework to come up with
assertions on frequency variables in order to achieve some good
bound. This scenario also poses a big challenge for many analyti-
cal methods [11, 14, 10], due to the non-linear operation on i, i.e.,
the statement i *= i;.

With this example, our purpose is not to refute the usefulness of
assertions. Instead, we want to further emphasize the ability of an
analyzer in propagating flow information precisely and automati-
cally, i.e., the ability of being path-sensitive.

EXAMPLE 2 : Let us refer back to the example in Fig. 2. Now
our focus is on how frequency variables and assertions should be
instrumented.

First, note that our frequency variables are similar to frequency
variables in IPET framework. One frequency variable is attached to
a distinct basic block. Each is initialized to 0 at the beginning of the



t = c = c1 = 0;
for (i = 0; i < 100; i++) {

c++;
if (A[i] != 0) {

c1++;
t += 1000;

} else { t += 1; }
}
assert(c1 <= c / 10);

Figure 6: Assertions Are Essential

program, and incremented by 1 whenever the corresponding basic
block is executed. An important difference from IPET is that our
frequency variables can be reset. This gives rise to the use of local
assertions, and we elaborate on this below.

Our assertions are predicates over frequency variables and for
simplicity, will only be provided at the end of some loop body or at
the end of the program (otherwise a preprocessing phase is needed).

In Fig. 6, the assertion captures the fact that the input array A is
a sparse one: no more 10 percent of its elements are non-zero.

for (i = N-1; i >= 1; i--) {
c = 0;
for (j = 0; j <= i-1; j++)

if (a[j] > a[j+1]) {
c++; t += 100; tp = a[j];
a[j] = a[j+1]; a[j+1] = tp;

} else { t += 1; }
assert(c <= N-M);

}}
Figure 7: Local Assertions

EXAMPLE 3 : Consider the following “bubblesort” example in Fig. 7
where we have placed a frequency variable c. An integer array a[]
of size N > 0 is the input. Every element of a[] belongs to the
integer interval [min,max]. Now, assume that we know that there
are M elements which are equal to max. Consider: how many
times are a pair of elements swapped? We believe this is currently
beyond any systematic approach.

However, it is relatively easy to derive the assertion shown in
the inner loop, representing local reasoning: each swap involves an
element which is not equal to max on the right, therefore after the
swap such element would not be visited again in the subsequent
iterations of the inner loop. Consequently, for each invocation of
the inner loop, the number of swaps is no more than the number of
elements which are not equal to max.

Note that the frequency variable c is reset right before each
invocation of the inner loop. If this were not done, then, to find
an alternative assertion to (c <= N-M) may not be feasible. That
is, a global assertion (in this case, to assert that the total number of
increments to c) is in general much harder to discover than a local
one.

4. Preliminaries
We model a program by a transition system. A transition system
P is a triple 〈L, l0,−→〉 where L is the set of program points and
l0 ∈ L is the unique initial program point. Let −→⊆ L × L ×
Ops, where Ops is the set of operations, be the transition relation
that relates a state to its (possible) successors by executing the
operations. This transition relation models the operations that are
executed when control flows from one program point to another.
We restrict all (basic) operations to be either assignments or assume
operations. The set of all program variables is denoted by Vars.
An assignment x := e corresponds to assign the evaluation of the
expression e to the variable x. In the assume operator, assume(c),
if the conditional expression c evaluates to true, then the program

continues, otherwise it halts. We shall use `
op−−→ `′ to denote a

transition relation from ` ∈ L to `′ ∈ L executing the operation
op ∈ Ops.

A transition system naturally constitutes a directed graph, where
each node represents a program point and edges are defined by the
relation −→. This graph is similar to (but not exactly the same as)
the control flow graph of a program.

One advantage of representing a program using transition sys-
tems is that the program can be executed symbolically in a simple
manner. Moreover, as this representation is general enough, retar-
geting (e.g., to different types of applications) is just the matter of
compilation to the designated transition systems.

DEFINITION 1 (Symbolic State). A symbolic state s is a triple
〈`, σ,Π〉, where ` ∈ L corresponds to the concrete current pro-
gram point, the symbolic store σ is a function from program vari-
ables to terms over input symbolic variables, and the path con-
dition Π is a first-order logic formula over the symbolic inputs
which accumulates constraints the inputs must satisfy in order for
an execution to follow the corresponding path.

Let s0 ≡ 〈`0, σ0,Π0〉 denote the unique initial symbolic state.
At s0 each program variable is initialized to a fresh input symbolic
variable. For every state s ≡ 〈`, σ,Π〉, the evaluation JeKσ of an
arithmetic expression e in a store σ is defined as usual: JvKσ =
σ(v), JnKσ = n, Je+ e′Kσ = JeKσ + Je′Kσ , Je− e′Kσ =
JeKσ − Je′Kσ , etc. The evaluation of conditional expression JcKσ
can be defined analogously. The set of first-order logic formulas
and symbolic states are denoted by FO and SymStates, respectively.

DEFINITION 2 (Transition Step). Given 〈L, `0,−→〉, a transition
system, and a state s ≡ 〈`, σ,Π〉 ∈ SymStates, the symbolic
execution of transition t : `

op−−→ `′ returns another symbolic
state s′ defined as:

s′ ,

{
〈`′, σ,Π ∧ c〉 if op ≡ assume(c)
〈`′, σ[x 7→ JeKσ ],Π〉 if op ≡ x := e

(1)

Abusing notation, the execution step from s to s′ is denoted
as s t−−→ s′. Given a symbolic state s ≡ 〈`, σ,Π〉 we also
define JsK : SymStates → FO as the projection of the formula
(
∧

v ∈ Vars v = JvKσ) ∧ JΠKσ onto the set of program variables
Vars. The projection is performed by the elimination of existentially
quantified variables.

For convenience, when there is no ambiguity, we just refer
to the symbolic state s using the pair 〈`, JsK〉, where JsK is the
constraint component of the symbolic state s. A path π ≡ s0 →
s1 → · · · → sm is feasible if sm ≡ 〈`, JsmK〉 and JsmK is
satisfiable. Otherwise, the path is called infeasible and sm is called
an infeasible state. Here we query a theorem prover for satisfiability
checking on the path condition. We assume the theorem prover is
sound but not complete. If ` ∈ L and there is no transition from
` to another program point, then ` is called the ending point of
the program. Under that circumstance, if sm is feasible then sm is
called terminal state.

The set of program variables Vars also include the resource vari-
able r. Our formulation targets cumulative resource usage such as
time, power. Thus the purpose of our path analysis is to compute a
sound and accurate bound for r in the end, across all feasible paths
of the program. Note that r is always initialized to 0 and the only op-
erations allowed upon it are concrete increments. We assume these
concrete numbers are given at the beginning of our path analysis.
For instance, in WCET analysis, the amount of increment at each
point will be given by some low-level analysis module (e.g., [23]).
The resource variable r is not used in any other way.

EXAMPLE 4 : Consider the program fragment in Fig. 8(a). The
program points are enclosed in angle brackets. Some of the



〈1〉d = 0;
〈2〉if (a > 0) 〈3〉 r += 1;
〈4〉if (b > 0) 〈5〉 r += 2;
〈6〉if (d > 0) 〈7〉 r += 3;
〈8〉

(a) A Program Fragment

〈〈1〉, d := 0, 〈2〉〉
〈〈2〉, assume(a > 0), 〈3〉〉
〈〈3〉, r := r + 1, 〈4〉〉
〈〈2〉, assume(a <= 0), 〈4〉〉

...
(b) The Transition System

Figure 8: From a C Program to its Transition System

transitions are shown in Fig. 8(b). For instance, the transition
〈〈1〉, d := 0, 〈2〉〉 represents that the system state switches from
program point 〈1〉 to 〈2〉 executing the operation d := 0.

Recall that our transition system is a directed graph. We now
introduce concepts which are required in our loop unrolling frame-
work.

DEFINITION 3. [Loop]. Given a directed graph G = (V,E) (our
transition system), we call a strongly connected component S =
(VS , ES) in G with |ES | > 0, a loop of G.

DEFINITION 4. [Loop Head]. Given a directed graph G = (V,E)
and a loop L = (VL, EL) of G, we call E ∈ VL a loop head of L,
also denoted by E(L), if no node in VL, other than E has a direct
successor outside L.

DEFINITION 5. [Ending Point of Loop Body]. Given a directed
graph G = (V,E), a loop L = (VL, EL) of G and its loop head
E . We say that a node u ∈ VL is an ending point of L’s body if
there exists an edge (u, E) ∈ EL.

We assume that each loop has only one loop head and one
unique ending point. For each loop, following the back edge from
the ending point to the loop head, we do not execute any operation.
This can be achieved by a preprocessing phase.

DEFINITION 6. [Same Nesting Level]. Given a directed graph
G = (V,E) and a loop L = (VL, EL), we say two nodes u
and v are in the same nesting level if for each loop L = (VL, EL)
of G, u ∈ VL ⇐⇒ v ∈ VL.

DEFINITION 7. [Assertion]. An assertion is a tuple 〈`, φ(c̃)〉,
where ` is a program point and φ(c̃) is a set of constraints over
the frequency variables c̃.

DEFINITION 8. [Blocked State]. Given a feasible state s ≡ 〈`, JsK〉
and an assertionA= 〈`, φ(c̃)〉, we say state s is blocked by asser-
tion A if JsK ∧ φ(c̃) is unsatisfiable.

The construction of correct summarizations requires the con-
cept of Craig interpolant [5]. Examples to illustrate the following
concepts will be presented in the next Section.

DEFINITION 9. [Interpolant]. Given two first-order logic formulas
F and G such that F |= G, then there exists a Craig interpolant
H denoted as Intp(F,G), which is a first-order logic formula such
that F |= H and H |= G, and each variable of H is a variable of
both F and G.

DEFINITION 10. [Summarization of a Subtree]. Given two pro-
gram points `1 and `2 such that `2 post-dominates `1 and assume
we analyze all the paths from entry point `1 to exit point `2 wrt.
an incoming context JsK. The summarization of this subtree is de-
fined as the tuple [`1, `2,Γ,∆,Ψ], where Γ is a set of represen-
tative paths, ∆ is an abstract transformer capturing the abstract
input-output relation between variables at `1 and `2, and finally, Ψ
is an interpolant, i.e., a condition under which this summarization
can be safely reused.

Let Θ be the weakest condition such that if we examine the
subtree with Θ as the incoming context, all infeasible and blocked
states discovered by the previous analysis (using context JsK) are

preserved. As is well known, computing the weakest precondi-
tion [6] in general is expensive. The interpolant Ψ is indeed an
efficiently computable approximation of Θ. Specifically, we can
define Ψ as Intp(Θ, JsK).

By definition, the abstract transformer ∆ [3] will be the abstrac-
tion of all feasible paths (wrt. the incoming context JsK) from `1
to `2. In our implementation, we compute the abstract transformer
using the polyhedral domain. Note here that, in general, abstract
transformer is not a functional relation.

All the feasible paths of the subtree at hand are divided into
a number of classes, each modifying the frequency variables in a
distinct way. We are interested in only frequency variables which
are live at the exit point `2 and will be used later in some assertion.
We call those frequency variables the relevant ones.

Now for each class, only the dominating path — the one with
highest resource consumption — will be kept in Γ. Specifically,
each representative path γ ∈ Γ is of the form 〈r0, δ0(c̃, c̃′)〉, where
r0 is the amount of resource consumed in that path and δ0(c̃, c̃′)
captures how frequency variables are modified in that path.

The fact that two representative paths γ1 = 〈r1, δ1(c̃, c̃′)〉 and
γ2 = 〈r2, δ2(c̃, c̃′)〉modify the set of (relevant) frequency variables

in the same way is denoted by δ1(c̃, c̃′)
A≡ δ2(c̃, c̃′) .

DEFINITION 11. [Summarization of a Program Point]. A summa-
rization of a program point ` is the summarization of all paths from
` to `′ (wrt. the same context), where `′ is the nearest program point
that post-dominates ` s.t. `′ is of the same nesting level as ` and ei-
ther is (1) an ending point of the program, or (2) an ending point
of some loop body.

As `′ can always be deduced from `, in the summarization of
program `, we usually omit the component about `′.

5. The Algorithm: Overview of the Two Phases
Phase 1: The first phase uses a greedy strategy in the unrolling of
a loop. This unrolling explores a conceptually symbolic execution
tree, which is of enormous size. One main purpose of this phase is
to precisely propagate the context across loop iterations, and there-
fore disregard as many infeasible paths as possible from consider-
ation in the second phase.

For each iteration, for all feasible paths discovered, we divide
them into a number of classes. Paths belong to a class modify the
frequency variables in the same way. Paths from different classes
modify the frequency variables in different ways. As an optimiza-
tion, we are only interested in frequency variables which will later
be used in some assertion. For each class, only the path with high-
est resource consumption is kept, we say that path is the dominating
path of the corresponding class. Thus another purpose of the first
phase is to disregard dominated paths from consideration in the
second phase.

From the dominating paths discovered, we now represent com-
pactly this iteration as a set of transitions. This representation is
manageable because we can restrict attention only to the frequency
variables used later in some assertion. We continue this process it-
eration by iteration. For two different iterations, the infeasible paths
detected in each iteration can be quite different. As a result, their
representations will be different too. At the end of phase 1, we rep-
resent the unrolled loop in the form of a transition system in order
to avoid an upfront consideration of the search space for the whole
loop, which can potentially still be exponential.

EXAMPLE 5 : Consider the program fragment in Fig. 9, which is
slightly modified from the example shown in Fig. 3 (and now with
instrumented program points). Note that at phase 1, we ignore
the assertion at program point 〈11〉, but pay attention only to its
frequency variable c.



〈1〉 c = 0, i = 0, t = 0;
〈2〉 while (i < 9) {
〈3〉 if (*) {
〈4〉 if (*) {
〈5〉 c++; t += 10;

} else {
〈6〉 t += 1;

}
} else {

〈7〉 if (i == 1) {
〈8〉 t += 5;

} else {
〈9〉 t += 1;

}
}

〈10〉 i++;
〈11〉 assert(c <= 4);
〈12〉 }
〈13〉

Figure 9: Complying with Assertions in Loop Unrolling

We enter the first iteration of the loop. Inside the loop body, we
follow the first feasible path (〈3〉 〈4〉 〈5〉 〈10〉 〈12〉). The value of i
at 〈12〉 is 1. When backtracking, a summarization of program point
〈10〉 is computed as:

[〈10〉, {〈0, c := c〉}, i′ = i+ 1, true]

In other words, the subtree from 〈10〉 to 〈12〉 is summarized by:
(1) a representative path which does not consume any resource
and does not modify the assertion variable c either; (2) an abstract
transformer which says that the output value of i is equal to the
input value of i plus 1, (3) an interpolant true which means that
any state at program point 〈10〉 can safely reuse this summarization.
Similarly, we derive a summarization for program point 〈5〉 as:

[〈5〉, {〈10, c := c+1〉}, i′ = i+ 1, true]

The main difference here is that the representative path from 〈5〉
to 〈12〉 consumes 10 units of time and increments the assertion
variable c by 1. From 〈4〉, we now follow the else branch of the
second if-statement to reach 〈6〉 and then 〈10〉. At 〈10〉 we reuse
the computed summarization for 〈10〉. The abstract transformer
i′ = i + 1 is used to produce the continuation context for i at
〈12〉 (i = 1). We then backtrack and a summarization for 〈6〉 is
computed as:

[〈6〉, {〈1, c := c+1〉}, i′ = i+ 1, true]

Thus the combined summarization for 〈4〉 (from 〈5〉, 〈6〉) is:
[〈4〉, {〈10, c := c+1〉, 〈1, c := c〉}, i′ = i+ 1, true]

Note that this summarization of 〈4〉 contains two representative
paths, since there are two distinct ways in modifying the assertion
variable c. From 〈3〉 we now follow the else branch of the first
if-statement. Since i is currently 0, going from 〈7〉 to 〈8〉 (the
then branch of the third if-statement) is infeasible. This fact is
summarized as:

[〈8〉, ∅, false, false]

Following the else branch we reach 〈9〉 and then 〈10〉. At 〈10〉 we
reuse and backtrack. The summarization of 〈9〉 is:

[〈9〉, {〈1, c := c〉}, i′ = i+ 1, true]

Thus the combined summarization for 〈7〉 (from 〈8〉, 〈9〉) is:
[〈7〉, {〈1, c := c〉}, i′ = i+ 1, i 6= 1]

Note how the infeasible paths from 〈7〉 to 〈8〉 affects the interpolant
for the summarization at 〈7〉. Now we need to combine the summa-
rizations of 〈4〉 and 〈7〉 to get a summarization for 〈3〉. We can see
that the second representative path in the summarization of 〈4〉 and
the only representative path in the summarization of 〈7〉 both do

not modify the frequency variable c and consume 1 unit of time. In
other words, each of them dominates the other. Consequently, we
only keep one of them in the summarization of 〈3〉. The interpolants
for 〈4〉 and 〈7〉 are propagated back (we use precondition compu-
tation) and conjoined to give the interpolant for 〈3〉. The summa-
rization of 〈3〉 wrt. the context of the first iteration of the loop is
then:

[〈3〉, {〈10, c := c+1〉, 〈1, c := c〉}, i′ = i+ 1, i 6= 1]

For the first iteration, we add into our new transition system (we
omit c := c in the second transition):
〈〈〈2〉-0〉, c := c+1 ∧ t := t+10, 〈〈2〉-1〉〉
〈〈〈2〉-0〉, t := t+1, 〈〈2〉-1〉〉

The second iteration begins with the context i = 1. At program
point 〈3〉, as the current context does not imply the interpolant
i 6= 1 of the existing summarization for 〈3〉, reuse does not hap-
pen. Follow the then branch, we reach program point 〈4〉 and we
can reuse the existing summarization of 〈4〉, also produce a con-
tinuation context i = 2 using the abstract transformer i′ = i + 1.
We then visit program point 〈7〉 where we cannot reuse previous
analysis. Different from the first iteration, going from 〈7〉 to 〈8〉 is
now feasible while going from 〈7〉 to 〈9〉 is infeasible. As a result,
a new summarization for 〈7〉 is computed as:

[〈7〉, {〈5, c := c}〉, i′ = i+ 1, i = 1]

Subsequently, a summarization of 〈3〉wrt. the context of the second
iteration is computed as:

[〈3〉, {〈10, c := c+1〉, 〈5, c := c}〉, i′ = i+ 1, i = 1]

For the second iteration, we add in the following transitions:
〈〈〈2〉-1〉, c := c+1 ∧ t := t+10, 〈〈2〉-2〉〉
〈〈〈2〉-1〉, t := t+5, 〈〈2〉-2〉〉

Analyses of subsequent iterations reuse the analysis of the first
iteration (since the contexts imply the interpolant i 6= 1). The
following transitions — from iteration j to iteration j + 1, where
j = 2..8 — will be added into the new transition system. Note that
we also add the last transition which corresponds to the loop exit.
〈〈〈2〉-2〉, c := c+1 ∧ t := t+10, 〈〈2〉-3〉〉
〈〈〈2〉-2〉, t := t+1, 〈〈2〉-3〉〉
· · ·

〈〈〈2〉-8〉, c := c+1 ∧ t := t+10, 〈〈2〉-9〉〉
〈〈〈2〉-8〉, t := t+1, 〈〈2〉-9〉〉
〈〈〈2〉-9〉, , 〈13〉〉

We note here that the representation of the second iteration is
different from the representations of all other iterations. This arises
from the fact that the iterations of the loop do not behave uniformly.
This can only be captured by loop unrolling while being path-
sensitive.

Before proceeding, we first comment that the simplification that
phase 1 performs is often very significant. This is essentially be-
cause each iteration can exploit the path-sensitivity that survives
through the merges of previous iterations. In general, this leads to
an exponential decline in the total number of paths in the result-
ing transition system. Importantly, now phase 2 (in which no path-
merging is performed) only needs to track the assertion variables in
order to disregard paths violating the provided assertions from con-
sideration. Without phase 1, phase 2 would have to consider also
all program variables. This would make the usage of summariza-
tion with interpolant much less effective.

Return to the above example, for each iteration, we have re-
duced the number of paths to be considered in the second phase
from 4 to 2. Also, phase 2 now only needs to track the assertion
variable c in order to block invalid paths from consideration.



Phase 2: In the second phase, we attack the remaining problem,
to determine the longest path in this new transition system, also
using the concept of summarization with interpolant. The key point
to note is that only at this second phase, assertions are taken into
consideration to block paths. Consequently, paths violating the
assertions will be considered as infeasible, i.e., they are disregarded
from bound calculation.

Let us continue with Ex. 5. Consider the transition system from
phase 1. We now need to solve the longest path problem using
the initial context (c = 0, t = 0). The original assertion will be
checked at every program point 〈〈2〉-j〉 for j = 1..9. To be faithful
to the given assertion, we must disregard all paths which increment
c more than 4 times from consideration.

In phase 2, our analysis using summarization with interpolant is
now performed on a new transition system which contains no loops.
Given the transition system produced by phase 1, a naive method
would require to explore 894 states from 29 paths. By employing
summarizations with interpolants the number of explored states is
reduced to 56, of which 24 states are reuse states. The effectiveness
of summarization with interpolant for such problem instances has
already been demonstrated in [16].
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Figure 10: The Search Tree Explored in Phase 2

Instead of walking through (again) the application of summariza-
tion with interpolant, we offer some insights as to why phase 2 is
often tractable (though the expanded tree is still quite deep). See
Fig. 10, where circles denote “reuse” states and require no fur-
ther expansion. Note that although the DAG contains exponentially
many paths, there are only a few contexts of interest, namely c = α
where 0 ≤ α ≤ 9. Therefore, for each node in the DAG there
needs only 10 considerations of paths starting from the node. Thus
a straightforward dynamic programming approach would suffice.
However, it is important to note that in general (for example, more
than one frequency variable), the number of different contexts of
each node is exponential. The algorithm we use has the special ad-
vantage of using interpolation so that the dynamic programming
effect can be enjoyed by considering not just the context, but some
sophisticated generalization of the context. Essentially, two con-
texts can in fact be considered equal if they exhibit the same infea-
sible/blocked paths.

6. The Algorithm: Technical Description
We proceed to phase 2 with this new transition system, G, as in
line 4. The worst case bound is then achieved by looking for the
maximum value in all returned solution paths Γ (line 5).

function Analyze(s0,P)
〈1〉 [·,Γ0, ·, ·] := Summarize(s0,P, 1)
〈2〉 G := ∅
〈3〉 G := Build(Γ0,P,G)
〈4〉 [·,Γ, ·, ·] := Summarize(s0,G, 2)
〈5〉 return FindMax(Γ)

function Summarize(s,P, phase)
Let s be 〈`, JsK〉

〈6〉 if (JsK ≡ false) return [`, ∅, false, false]
〈7〉 if (outgoing(`,P) ≡ ∅) return [`, {〈0, Id(c̃)〉}, Id(Vars), true]
〈8〉 if (loop end(`,P)) return [`, {〈0, Id(c̃)〉}, Id(Vars), true]
〈9〉 S := memoed(s)
〈10〉 if (S 6≡ false) return S
〈11〉 if (phase ≡ 2) /* Consider assertions at phase 2 */
〈12〉 if (∃ A ≡ 〈`, φ〉 and JsK ∧ φ ≡ false) return [`, ∅, false,¬φ]
〈13〉 if (phase ≡ 1 ∧ loop head(`,P))
〈14〉 si := s
〈15〉 G := ∅
〈16〉 [·,Γ1,∆1, ·] := TransStep(si,P, entry(`,P), 1)
〈17〉 while (Γ1 6≡ ∅)
〈18〉 G := Build(Γ1,P,G)
〈19〉 [·,Γ2, ·, ·] := TransStep(si,P, exit(`,P), 1)
〈20〉 if (Γ2 6≡ ∅) G := Build(Γ2,P,G)

〈21〉 si
∆1−−−→ s′i /* Execute abstract transition ∆1 */

〈22〉 si := s′i
〈23〉 [·,Γ1,∆1, ·] := TransStep(si,P, entry(`,P), 1)

endwhile
〈24〉 [·,Γ2, ·, ·] := TransStep(si,P, exit(`,P), 1)
〈25〉 G := Build(Γ2,P,G)
〈26〉 S := Summarize(s,G, 2) /* Phase 2 */
〈27〉 else S := TransStep(s,P, outgoing(`,P), phase)
〈28〉 if (phase ≡ 2) S := Modification of S

taking into account the information computed in phase 1
〈29〉 else S := S
〈30〉 memo and return S

Figure 11: Two-phase Symbolic Simulation Algorithm

Our key function, Summarize, takes as inputs a symbolic state
s ≡ 〈`, JsK〉, a transition system, and a flag indicating which phase
it is in. It then performs the analysis using the context JsK and
returns the summarization for the program point ` as in Def. 11
in Section 4.
Base Cases: Summarize handles 4 base cases. First, when the sym-
bolic state s is infeasible (line 6), no execution needs to be consid-
ered. Note that here path-sensitivity plays a role since only prov-
ably executable paths will be considered. Second, s is a terminal
state (line 7). Here Id refers to the identity function, which keep
the values of variables unchanged. Ending point of a loop is treated
similarly in the third base case (line 8). The last base case, lines 9-
10, is the case that a summarization can be reused. We have demon-
strated this step, with examples, in Section 5.
Expanding to next Program Points: Line 27 depicts the case
when transitions can be taken from current program point `, and `
is not a loop starting point. Here we call TransStep to move recur-
sively to next program points. TransStep implements the traversal
of transition steps emanating from `, denoted by outgoing(`,P),
by calling Summarize recursively and then compounds the re-
turned summarizations into a summarization of `. The inputs of
TransStep are symbolic state s, the transition system P , a set of
outgoing transitions TransSet to be explored, and the current phase
the algorithm is in.
For each t in TransSet, TransStep extends the current state with
the transition. Resulting child state is then given as an argument in a
recursive call to Summarize (line 34). From each summarization of
a child returned by the call to Summarize, the algorithm computes
a component summarization, contributed by that particular child
to the parent as in lines 35-39. All of such components will be
compounded using the JoinHorizontal function (line 40).



Note that the interpolant for the child state is propagated back
to its parent using the precondition operation pre, where pre(t,Ψ)
denotes the precondition of the postcondition Ψ wrt. the transition
t. In an ideal case, we would want this operation to return the
weakest precondition. But in general that could be too expensive.
Discussions on possible implementations of this operator can be
found at [21, 3]. In our implementation using CLP(R) [15], the
combine function simply conjoins the corresponding constraints
and performs projections to reduce the size of the formula.
Loop Handling: Lines 13-26 handle the case when the current
program point ` is a loop head. Let entry(`,P) denote the set of
transitions going into the body of the loop, and exit(`,P) denote
the set of transitions exiting the loop.

Upon encountering a loop, our algorithm attempts to unroll
it once by calling the function TransStep to explore the entry
transitions (line 16). When the returned set of representative paths
is empty, it means that we cannot go into the loop body anymore,
we thus proceed to the exit transitions (lines 24-25). Otherwise,
if some feasible paths are found by going into the loop body, we
first use the returned set of representative paths Γ1 to add new
transitions into our transition system G (line 18). Next we use the
returned abstract transformer to produce a new continuation context
(lines 21-22), so that we can continue the analysis with the next
iteration. Here we assume that this unrolling process will eventually
terminate. However, since we are performing symbolic execution,
it is possible that at some iterations both the entry transitions and
exit transitions are feasible. Lines 19-20 accommodate this fact.
Phase 2: In phase 2, we now make use of assertions, to block
paths. This is achieved at lines 11-12. Note that the negation of
the assertion will be the interpolant for the current state and this
interpolant will be propagated backward.

The summarization of a program point ` at phase 2 will be mod-
ified, as in line 28. The abstract transformer of this summarization
is the one computed in phase 1. However, the interpolant is com-
bined by conjoining the interpolant of that program point already
computed in phase 1 to the current interpolant in phase 2. This is
because an interpolant of a node comes from two sources. The first
is due the infeasible paths detected in phase 1, while the second is
due to the blocked paths detected in phase 2. We note here that, for
simplicity, we purposely omit the details in phase 1 on how summa-
rizations are vertically combined, so as to produce a serialization of
summarizations for the loop head. For details, see [3].
Combining Summarizations: Function Merge Paths simply
merges two sets of paths into one. As mentioned before, for each
distinct way of changing the frequency variables which are relevant
to some assertions used later, we only keep the dominating path and
ignore all the dominated paths.

Given two subtrees T1 and T2 which are siblings and the inputs
S1 and S2 summarize T1 and T2 respectively. JoinHorizontal is

function TransStep(s,P, TransSet, phase)
Let s be 〈`, JsK〉

〈31〉 S := [`, ∅, false, true]
〈32〉 foreach (t ∈ TransSet ∧ t contains r := r+α) do
〈33〉 s

t−−→ s′

〈34〉 [`′,Γ,∆,Ψ] := Summarize(s′,P, phase)
〈35〉 Γ′ := ∅
〈36〉 foreach (〈r1, δ1〉 ∈ Γ) do
〈37〉 one := {〈r1 + α, combine(t, δ1)〉}
〈38〉 Γ′ := Merge Paths(Γ′, one)

endfor
〈39〉 S := [`,Γ′, combine(t,∆), pre(t,Ψ)]
〈40〉 S := JoinHorizontal(S, S)

endfor
〈41〉 return S

function Merge Paths(Γ1,Γ2)
〈42〉 Γ := Γ1

〈43〉 foreach (γ2 :=〈r2, δ2(c̃, c̃′)〉 ∈ Γ2) do
〈44〉 status := true
〈45〉 foreach ( γ1 :=〈r1, δ1(c̃, c̃′)〉 ∈ Γ) do

〈46〉 if ( δ1(c̃, c̃′)
A
≡ δ2(c̃, c̃′))

〈47〉 status := false
〈48〉 if (r2 > r1) replace γ1 in Γ by γ2
〈49〉 break /* Out of the inner loop */

endfor
〈50〉 if (status) add γ2 into Γ

endfor
〈51〉 return Γ

function JoinHorizontal(S1, S2)
Let S1 be [`,Γ1,∆1,Ψ1]
Let S2 be [`,Γ2,∆2,Ψ2]

〈52〉 Γ := Merge Paths(Γ1,Γ2)
〈53〉 ∆ := ∆1 ∨ ∆2 /* Merge two abstract transformers */
〈54〉 Ψ := Ψ1 ∧ Ψ2 /* Conjoin two interpolants */
〈55〉 return [`,Γ,∆,Ψ]

then used to produce the summarization of the compounded subtree
T of both T1 and T2. Here the representative paths are merged
(line 52). Preserving all infeasible/blocked paths in T requires
preserving infeasible/blocked paths in both T1 and T2 (line 54). The
input-output relationship of T is safely abstracted as the disjunction
of the input-output relationships of T1 and T2 respectively (line 53).
In our implementation, this corresponds to the convex hull operator
of the polyhedral domain.

7. Experimental Evaluation
We used a 2.93Gz Intel processor and 2GB RAM. Our prototype
is implemented in C, while making use of the arithmetic solver of
CLP(R)[15]. Our polyhedral library is the same as in [3], interested
readers might refer to [3] for more details.

Benchmark LOC Path-Sensitive Path-Insensitive
(IPET)

w.o. Assertions w. Assertions w.o. As w. As
Bound T(s) Bound T(s)

Ex-2 <100 110404 1.50 10404 3.48 110404 10404
Ex-3 <100 515398 5.52 49798 11.45 1019902 1019902
Ex-5 <100 1504 3.47 759 9.22 1504 1129
insertsort100 <100 515794 4.91 30802 7.78 1020804 1020804
crc 128 1404 7.73 1084 8.61 1404 1084
expint 157 15709 4.40 859 4.56 - -
matmult100 163 3080505 4.55 131705 5.54 3080505 131705
fir 276 1129 2.35 793 2.39 - -
fft64 219 7933 5.52 1733 6.04 - -
tcas 400 159 3.84 81 3.9 172 94
statemate 1276 2103 9.65 1103 9.73 2271 1271
nsichneu s 2334 483 9.43 383 9.51 2559 2459

Table 1. Experiments with and without Assertions

We evaluate our framework on the problem of WCET analysis. The
programs used for evaluation are: (1) academic examples presented
in this paper; (2) benchmarks from Mälardalen WCET group [20],
which are often used for evaluations of WCET path analysis tech-
niques; and (3) a real traffic collision avoidance system tcas. Their
corresponding sizes (LOC) are given in the second column of Ta-
ble 1.

We have thoroughly argued the benefits of being path-sensitive
while compliant with user assertions. The aim of this Section is
to demonstrate the scalability of our two-phase algorithm. Table 1
shows the experimental results. For each benchmark, the worst case
(low-level) timing for each basic block is randomly generated. As-
sertions are simply to bound the frequencies of some basic blocks
having (relatively) substantial worst case timings (so that the effects



can be shown). Being path-sensitive does not help automatically in-
fer such bounds, i.e., such manually given assertions are necessary.

We evaluate the effects of assertions in our path-sensitive frame-
work as well as in IPET, a path-insensitive framework. We remark
that IPET is the current state-of-the-art in WCET path analysis and
is used in most available WCET tools (e.g., aiT [1]).

The last two columns are about IPET. Recall that IPET always
requires assertions on loop bounds in order to produce an answer.
For programs where such information can be easily extracted from
the code, we provide IPET such loop bounds. Loop bounds which
must be dynamically computed (e.g., from unrolling) are not pro-
vided to IPET. As a result, IPET cannot produce bounds for some
programs, indicated as ‘-’. For programs where IPET can success-
fully bound, IPET running time is always less than 1 second, so we
do not tabulate those timings individually.

The third and fourth columns show the bounds and the running
time using our unrolling framework without employing assertions.
These results correspond to the results produced by [3], which is
representative for the state-of-the-arts in loop unrolling. On the
other hand, the fifth and sixth columns report the performance of
the algorithm proposed in this paper, possessing path-sensitivity as
well as being compliant with assertions. As expected, our algorithm
produces the best bounds for all instances. Importantly, for most
programs, it achieves more precise bounds which neither path-
sensitivity alone nor user assertions alone can achieve.

Our algorithm scales well, even for programs with (nested)
loops and of practical sizes. This is due to the use of compounded
summarizations. From a close investigation, we see that our algo-
rithm preserves the superlinear behavior observed in [3]. Also, the
cost of complying with assertions, i.e., the cost of phase 2, depends
mainly on the assertions and the maximum number of iterations for
the loops where the assertions are used. Such cost does not depend
on the size of the input program, nor the size of the overall symbolic
execution tree.

In summary, we have repeated on earlier experiments [3] to
demonstrate the superiority of having path-sensitivity, not consid-
ering assertions. Then we considered assertions, and demonstrated
two things. Foremost is that our two-phase algorithm, which is new,
can scale to practical sized programs. We also demonstrated along
the way that assertions can influence the resource analysis in a sig-
nificant way.

8. Concluding Remarks
We considered the problem of symbolic simulation of programs,
where loops are unrolled, in the pursuit of resource analysis. A
main requirement is that assertions may be used to limit possible
execution traces. The first phase of the algorithm performed sym-
bolic simulation without consideration of assertions. From this, a
skeletal transition system — which now only concerns the asser-
tions, and is much simpler than the system corresponding to the
original program — is produced. The second phase now determines
the worst-case path in this simplified transition system. While this
problem is an instance of an NP-hard problem (RCSP), we argue
that the instances arising from assertions in program analysis lends
itself to efficient solution using a dynamic programming plus inter-

polation approach. Finally, benchmarks clearly show that the algo-
rithm can scale.
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