
Scalable Path-Sensitive Program Analysis
via Dynamic Programming

Joxan Jaffar
National University of Singapore

joxan@comp.nus.edu.sg

Jorge A. Navas
National University of Singapore

navas@comp.nus.edu.sg

Andrew E. Santosa
National University of Singapore

andrews@comp.nus.edu.sg

Abstract
Path-sensitivity improves program analysis by excluding infeasible
paths and avoiding the merging of paths into a single abstraction
if they exhibit different behavior. The main challenge however is
that path-sensitive analysis is not scalable. In this paper, we present
a symbolic execution-based framework which uses dynamic pro-
gramming (DP) in order to reuse analyses arising from symbolic
execution already performed. A straightforward implementation of
DP, however, will allow little reuse. This is because symbolic ex-
ecution repeatedly considers similar subtrees with different con-
texts. The first of our contributions to use a method of interpola-
tion in order to generalize the result of symbolic execution so that
it can be reused in another context. This has the effect of pruning
the symbolic execution space, and is the basis of making our analy-
sis scalable. However, interpolation introduces inaccuracy because
some of the paths pruned may in fact be infeasible. We therefore
introduce a technique to ensure precision by testing that a notion
of witness paths that concretely demonstrate a particular analysis,
and we require that pruned paths satisfy the witness criterion. In the
end, we show that, in a sense defined by traditional abstract inter-
pretation, our framework loses no accuracy beyond the abstraction
that is required to close loops via their invariants.

We finally demonstrate practicality of our framework by instan-
tiating it with a driving application: static backward slicing anal-
ysis. We show that our approach can produce slices significantly
smaller than a path-insensitive version scaling up to tens of thou-
sand of lines of C code.

1. Introduction
Static analysis using abstract interpretation [7] and dataflow analy-
sis [22] is an efficient way of extracting information about all pos-
sible executions of a program. It has been successfully used in the
area of compiler optimization and program verification. Given the
program’s control-flow graph (CFG), it performs an enumeration of
the paths in the CFG while propagating abstract information reflect-
ing the effect of the execution of program statements along each
path. In the presence of loops or recursive calls, a fixpoint compu-
tation or widening is needed. Abstract interpretation and dataflow
analysis achieve efficiency by eliminating details that might be ir-

[Copyright notice will appear here once ’preprint’ option is removed.]

relevant to the objective of the analysis, however, this comes with a
loss of accuracy, consisting of:

1. extraction of information from paths that are infeasible, and

2. merging of different abstractions into a single abstraction that
is coarser than the sum of its parts.

Such inaccuracies result in lost opportunities for compiler op-
timizations or false positives in program verification. A systematic
way to avoid these inaccuracies is to perform path-sensitive analy-
sis, but doing so has not been scalable so far.

This paper presents such an analysis method. It is based on dy-
namic programming (DP), a widely used technique to solve com-
binatorial optimization problems exhibiting certain characteristics.
One major characteristic of DP is the existence of overlapping sub-
problems. This allows for the reuse of a solution of a subproblem
to solve another subproblem. Each subproblem is executed in a
context, which is an abstraction of the computation history so far.
Whenever the same subproblem is encountered in a similar context,
the previous solution can be reused. Now, in classical uses of DP,
such as the shortest-path problem in graphs, reuse is always pos-
sible and the problem is solvable efficiently. In our more general
setting, this is not the case1.

The main technical contribution of this paper can now be de-
scribed as defining conditions of reuse in a such a way that reuse is
frequent in practice, thus bringing path-sensitive analysis practical
for realistically sized programs.

In our framework, we first define analysis as the extraction
of information, in the form of abstract formulas, from symbolic
execution. We associate each path in the symbolic execution tree
with a collection of constraints from which this information is
extracted. It will be seen later that though this setup is completely
general, our framework is essentially geared for analysis toward
a target program point. This is mainly because the framework
prescribes a bottom-up processing of the symbolic execution tree.

Our DP formulation will suggest a depth-first traversal where
completed subtrees will give rise to a subsolution, expressed as a
summarization. Certain pairs of subtrees are “similar” in the sense
that they are addressing the same symbolic execution space2, but
they may have different contexts. In further traversal, the key then
is to determine if a subtree “similar” to one already summarized
satisfy the conditions that make the summarization reusable.

There are two conditions. The first concerns infeasible paths.
More precisely, when a subtree is analysed and then summarized
in a certain context, the symbolic execution performed would en-
counter, because of path-sensitivity, some infeasible paths in gen-
eral. Therefore, when encountering a similar subtree with a differ-

1 In fact the analysis problem, once formalized, is NP-hard.
2 This is later formalized as representing the same program point.

1 2010/11/25



ent context, reuse of the summarization is, in fact, unsound. This is
because the symbolic execution tree of the latter subtree would, in
general, contain more paths than the original tree.

We address this by discovering a generalization of the context
of an analyzed subtree in such a way that the computed analysis
continues to hold. One way is to ensure that the symbolic execution,
if re-performed on the subtree but with the generalized context,
would have all of the infeasible paths as with the original context.
We call this generalization process interpolation in concert with its
now well-known use in program verification. Once interpolation is
performed, further similar subtrees are far more likely. Our specific
method for interpolation will involve a simple and efficient process
of considering path constraints one at a time.

We now describe a second condition for reuse. This time its pur-
pose is not to preserve soundness, but instead to preserve accuracy.

Recall that in reuse, a summarization is applied to a subtree
which has fewer feasible paths than the subtree originating the sum-
marization. This means that the resulting analysis due to the reusing
subtree is, in general, not accurate. In fact, it can be arbitrarily inac-
curate. We introduce the concept of witnesses in order to ensure that
the candidate summarization is indeed accurate. More precisely, a
summarization, though formally representing the set of all answers
for a subtree, is often represented by one optimal answer. For ex-
ample, if we were seeking the upper bound of a variable, then a
summarization would need be just one number. In general, such an
optimal solution is realized in the subtree just some, and not all, of
its (feasible) paths. The idea here is to choose such a subset of paths
as witnesses to the (optimal answer of the) summarization. We thus
have our second condition for reuse: the witness paths must be fea-
sible in the candidate subtree.

Typical dynamic programming problems are acyclic, however,
programs contains loops. To handle loops, our algorithm performs
loop invariant generation, which we outline informally as follows.
Given a tree which contains a subtree that is similar to itself, we
compute a generalization of the parent node which then subsumes
the context of the subtree. This is a straightforward way to enforce
termination of symbolic execution in the presence of loops. What is
important is that this invariant discovery is executed in a lightweight
manner where the invariants for each path are constructed by delet-
ing the constraints in the original context that are not invariant
through the “cyclic” paths.

The final phase of our framework is to employ, in a standard
way, a fixpoint computation on the ”closed” symbolic execution
tree to compute the abstract answers of the particular analysis.

Organization. The rest of this paper is organized as follows.
Sec. 3 provides an informal overview of our approach illustrating
several examples. We choose static backward slicing analysis [26]
as our driving analysis due to its broad spectrum of applicability.
Sec. 4 introduces relevant concepts and definitions required for the
rest of the paper. Sec. 5 presents our framework rigorously but still
informally. In this section, we show that, in a sense defined by
traditional abstract interpretation, our framework loses no accuracy
beyond the abstraction that is required to close loops via invariants.

Sec. 6 presents our algorithm in detail. It is here that we detail
the central and most complex part which comprises an integrated
computation of two fixpoints: one which concerns symbolic execu-
tion, and for which loop invariant discovery is used, and second, a
more traditional computation for the abstract answers, as in abstract
interpretation.

Finally, Sec. 7 shows our experimental evaluation of our frame-
work, instantiated with our driving example of slicing, on a set
of C benchmarks. Our experiments demonstrate that our path-
sensitive framework produces slices significantly smaller than a
path-insensitive slicer scaling up to tens of thousand of lines.

2. Related Work
Our closest related work has been recently presented in [20].
Here, dynamic programming (DP) is used to solve not an anal-
ysis problem, but rather, a combinatorial optimization problem:
the Resource-Constrained Shortest Path (RCSP) problem. Al-
though [20] was an inspiration for this paper, there are key advances
here. First and most importantly, [20] is totally defined in a finite
setting. Thus for program analysis, this would mean considering
only loop-free programs. In contrast, we introduce a loop-invariant
discovery method for making symbolic execution finite and inte-
grate this with a fixpoint method of abstract interpretation. Second,
[20] considered only the extraction of bounds of variables. Here,
we present a general framework for program analysis. Third, [20]
provided only for the use of one witness (though they considered
storing redundant extra copies). Finally, this paper presents a full
implementation and demonstrates its use on large programs.

We next outline previous approaches to path-sensitive analysis.
We distinguish between program analysis for verification which at-
tempts to prove absence or existence of errors and program analy-
sis techniques for discovery of certain relationships, like ours. Note
that in a sense verification techniques are not comparable to ours
due to different objectives, however, their techniques to prune the
search space are closely related to ours.

Software Model Checking. Current state-of-the-art software model
checking is based on counterexample abstraction refinement (CE-
GAR) using predicate abstraction [3, 16]. The program is modeled
via a coarse abstraction and then, the abstraction is refined until the
property is refuted or proved. Abstraction refinement methods may
not terminate since the sequence of refinements is not guaranteed
to terminate. A crucial improvement for scalability has been lazy
abstraction with interpolants [15, 24] in order to eliminate the con-
sideration of irrelevant predicates in the abstraction. Our approach
posses a commonality with CEGAR in the fact that both use inter-
polants to eliminate irrelevant facts to prune the search space.

Program Analysis for Program Verification. SAT-based methods
have been used successfully for bounded model checking (e.g., F-
Soft [18]). These techniques rely on conflict analysis and clause
learning for pruning the search space. SAT-based approaches suf-
fer significantly in presence of loops. The solution is often incom-
plete by considering paths up to a bounded length. Recently, an-
other SAT-based method has been presented in [14]. The method
enumerates feasible paths, and for each one, different techniques
(e.g., predicate abstraction, abstract interpretation, symbolic execu-
tion, etc) can be used to find the proof or a violation. This flexibil-
ity allows, for instance, the use of abstract interpretation to handle
unbounded paths. Another incomplete SAT-based system is Sat-
urn [1, 11] which can only detect infeasibility by reasoning about fi-
nite domains. Other approaches to path-sensitive analysis for verifi-
cation based on heuristics are ESP [9] and Trace Partioning [4, 23].
ESP achieves scalability by keeping track of some branch correla-
tions under the assumption that different branches that produce dif-
ferent results should be treated differently. Trace partioning use dif-
ferent heuristics to decide whether or not merge the abstract states
at the join points in the CFG. This technique can be also used for
discovery properties.

Program Analysis for Discovery Properties. Here the detection of
infeasible paths is partial (e.g., branch correlation and conflict sets)
and the merging operation at the join nodes in the CFG is per-
formed based on heuristics. Profiling techniques [2] have been used
to identify those paths more frequently visited during the execution
of multiple tests (”hot paths”). Then, join points in the CFG that
belong to hot paths are split if the dataflow analysis may incur in
a loss of precision. ESP has been extended for dataflow analysis

2 2010/11/25



in [13] but the method is still based on heuristics. An interproce-
dural path infeasibility analysis is described in [5] to restructure
the original CFG by eliminating some conditional branches. The
scalability is achieved at the expense of a partial detection of in-
feasible paths based on simple branch correlations. An application
for dataflow analysis of this work is presented in [6] for comput-
ing a more precise set of def-use pairs. The technique is demand-
driven and computes the pairs and checks their feasibility using the
branch correlation analysis from [5]. Recently, another method to
detect infeasible paths based on conflict sets is described in [25].
The heuristics-based technique also splits nodes in the CFG if the
dataflow analysis may incur in loss of imprecision.

3. Basic Idea
In this section, we describe informally our method through sev-
eral examples using program slicing. Static slicing [26] defines the
backward slice of a program wrt a program point p and a variable
x (called the slicing criterion (p,{x})) as all statements of the pro-
gram that might affect the value of x at p. We follow here Weiser’s
dataflow approach. Assuming that a CFG is defined simplistically
as pair (N,E) where E ⊆ N×N and N is the set of nodes, we de-
fine Dn as the set of variables at node n ∈ N that may affect the
slicing criterion3. Data dependencies can be formulated using this
set by defining two kinds of dataflow information. Given an edge
e ≡ (i, j) ∈ E we denote def (e) and use(e) as the variables altered
and used, respectively, at e. Then,

Di = (D j \def(e))∪use(e). (1)

If j reaches the slicing criteria (i.e., j = p) then D j = {x}. Control
dependencies can also affect the criterion. Informally, a branch
e≡ (i, j) ∈ E is included if some of the statements under its scope
are included in the slice, and

Di = D j ∪use(e) (2)

In presence of loops the set Dn must be inferred via a fixpoint
computation which terminates due to the finiteness of the domain.
Finally, an edge e≡ (i, j) ∈ E is included in the slice if

Di ∩ def(e) 6= /0 (3)

Interpolation. Consider Fig. 1(a) and we slice on the criterion
〈〈7〉,{x}〉, Path-insensitive static slicing would not be able to elim-
inate any statement. However, the assignment x=z at 〈6〉 is not ex-
ecutable since the execution path to it is infeasible. By exposing
infeasible paths, a static slicer would be able to produce a more
precise slice. Here, our algorithm produces the most precise slice,
which is the empty program. However, detection of infeasible paths
comes at a cost of traversing the execution tree of the program,
whose size is potentially exponential to the size of the program.

Fig. 2(a) shows the execution tree traversed by our algorithm.
The nodes are labeled with P:C (P is a program point and C is a
context identifier to distinguish nodes with the same program point)
and edges between two locations labeled by the instruction that
executes when control moves from the source to the destination.
Feasible transitions are denoted by (black) solid edges, and (red)
infeasible transitions by zigzag edges. We denote subsumed nodes
by (green) dotted edges and the label ”(s)”.

Our method first reaches the node 6:1 with the path formula
Ψ6:1 ≡ c = 0∧ a > 0∧ y = 0∧ b > 0∧ z = y∧ c > 0, which is
infeasible. We now generate an interpolant. Given two formulas
Ψ and Φ where Ψ ⇒ Φ, an interpolant is a formula Ψ whose
variables belong to both Ψ and Φ, and both Ψ⇒ Ψ and Ψ ⇒ Φ.

3 For simplicity and w.l.o.g., we assume a single slicing criterion. Therefore,
we can omit it from the expression Dn.

Here we want to find a formula Ψ6:1 such that Ψ6:1 ⇒ Ψ6:1 and
Ψ6:1⇒ false.

While traversing the tree, we simultaneously produce answers
for our analysis. In the context of program slicing, at every node n,
we store the set Dn. At 6:1 the set D6:1 =⊥ as the path is infeasible.

After generating the interpolant and the answer of 6:1, the algo-
rithm backtracks to 5:1 and visits 7:1. Again, the algorithm needs to
generate an interpolant that should be as general as possible. Since
the formula path is satisfiable, it generates Ψ7:1 ≡ true, which is
the most general possible interpolant. Furthermore, the algorithm
updates D7:1 = {x}, provided directly by the slicing criteria.

We next use the pairs of interpolants and answers at 6:1 and 7:1
to produce a new pair at 5:1.

First, we explain how to produce the interpolant. Given Ψ6:1 as
a postcondition, we compute the first candidate interpolant at 5:1,
denoted Ψ

1
5:1 as the formula satisfying Ψ5:1 ⇒ Ψ

1
5:1 and Ψ

1
5:1 ⇒

(c > 0⇒Ψ6:1). Here, Ψ5:1 is a conjunction of the constraints along
the path that ends in 5:1 (i.e., c = 0∧ a > 0∧ y = 0∧ b > 0∧ z =
y). The constraint c > 0 is obtained from the transition relation
between 〈5〉 and 〈6〉, and Ψ6:1 is false. The most general Ψ

1
5:1

is c ≤ 0, which corresponds to the weakest liberal precondition
(wlp) [10] of the postcondition Ψ6:1 = false wrt the transition
relation c > 04. The second candidate interpolant Ψ

2
5:1 is computed

from Ψ7:1 (true), such that: Ψ5:1 ⇒ Ψ
2
5:1 and Ψ

2
5:1 ⇒ (c ≤ 0⇒

Ψ7:1). The most general Ψ
2
5:1 is true. Now the final interpolant for

5:1, denoted Ψ5:1 is the conjunction Ψ
1
5:1∧Ψ

2
5:1 which is c≤ 0.

For the answers, the algorithm following Eqs. 1 and 2, and
considering D6:1 = ⊥ and D7:1 = {x}, computes D5:1 = {x} by
performing set union for merging those answers. Note that due to
the infeasibility of the branch from 5:1 to 6:1, the Eq. 3 is not
applicable, and hence, no statement is added into the slice so far.
Indeed, no statement will be included in the slice since the variable
z was never propagated, and hence, Dk = {x}, for all node k.

This dynamic programming process continues recursively in a
post-order manner until the entire tree has been explored. A key
feature is that the algorithm uses the interpolants generated at each
program point, instead of the stronger original context, to weaken
the criteria for reusing answers corresponding to the point. For
instance, consider the node 3:2 in the tree. The path formula at
3:2 is Ψ3:2 ≡ c = 0 ∧ a ≤ 0. Before exploring the subtree, our
method tests if Ψ3:2 is subsumed by Ψ3:1, that is, if Ψ3:2 ⇒ Ψ3:1,
which is the case since Ψ3:1 is c≤ 0. Therefore, without exploring
the subtree emanating from 3:2, the algorithm simply reuses D3:1
as D3:2. Note that the subsumption holds due to the use of the
interpolant Ψ3:1. The original context at Ψ3:1 (a > 0∧c = 0∧y = 0)
would not have subsumed Ψ3:2. At 3:2 we want an interpolant Ψ3:2
that satisfies both Ψ3:2 ⇒ Ψ3:2 and Ψ3:2 ⇒ Ψ3:1. Here, the right
interpolant is Ψ3:1 of the subsuming node 3:1.

Witnesses. While subsuming a node may save search space and
yet preserve the correctness of the analysis, it does not preserve
necessarily the accuracy of the analysis. Consider the program
fragment in Fig. 1(b). The slice wrt x at 〈5〉 is obtained by our
algorithm so far, as the original program. However, a more detailed
analysis of the program discovers that the statement y=z at program
point 〈2〉 does not affect the computation of the criterion variable x.
The reason is that y can only affect x if statement at 〈4〉 is executed,
but 〈4〉 is unreachable because it is located at an infeasible path
whenever the program reaches 〈2〉.

4 In our implementation, we adopt the approaches of constraint deletion or
slackening described in [21] which are efficient, yet usually do not give us
the weakest interpolant.

3 2010/11/25



〈0〉c=0;
〈1〉if (a>0)

〈2〉 y=0;

〈3〉if (b>0)

〈4〉 z=y;

〈5〉if (c>0)

〈6〉 x=z;

〈7〉

3

0

2

a<=0

y=0

b<=0
b>0

4

c=0

z=y

1

5

c<=0
c>0

6

7x=z

a>0 〈0〉if (*)

〈1〉 y=0;

else {
〈2〉 y=z;x=0; }
〈3〉if (x>0)

〈4〉 x=y;

〈5〉

2

0

1

true true

y=z;x=0y=0

3

x>0

4

5

x=y

x<=0

〈0〉i=0; b=0; c=0; d=1;

〈1〉while (i<10){
〈2〉 if (a<0)

〈3〉 b=1;

else
〈4〉 c=1;

〈5〉 i++; }
〈6〉

i=i+1

0

i=0, b=0,

c=0, d=1

i<10

i>=10

a<0
a>=0

1

62

3 4

5

b=1 c=1

(a) (b) (c)

Figure 1. Three Programs, Their Control Flow Graphs, and Their Slices (Underlined Statements) on 〈〈7〉,{x}〉, 〈〈5〉,{x}〉, and 〈〈6〉,{c}〉,
respectively

7:1

0

1:1

2:1

3:1

b>0

4:1

5:1

y=0

a>0

c=0

z=y

c>0

6:1

a<=0

3:2

5:2

b<=0

(s)

(s)

c<=0

(s)

0

1:1

y=0

x>0

x=y

true true

2:1

3:23:1

y=z;x=0

4:1

5:1 5:2

x<=0

x>0

0

1:1

y=0

x>0

x=y

true true

2:1

3:23:1

y=z;x=0

4:1

5:1 5:2

x<=0

5:3

4:2

x<=0

(s)

0

i=0, b=0,

c=0, d=1

i<10

i>=10

a<0
a>=0

1:1

2:1

3:1

5:1

1:2

5:2

1:3

4:1

6:1

i’=i+1 i’=i+1

c’=1

b’=1

(s)

(a) (b) (c) (d)

Figure 2. Their Interpolated-based Symbolic Execution Trees

The symbolic execution tree computed by our algorithm, ex-
plained so far, is shown in Fig. 2(b). At node 3:1 the algorithm has
joined the solutions from its children D4:1 = {y} and D5:2 = {x}
obtaining D3:1 = {x,y}. The interpolant at 3:1 is true, due to the
nonexistence of infeasible paths in the subtree rooted at 3:1. This
causes subsumption to hold at 3:2, at which its answer is D3:2 =
D3:1 = {x,y}. Due to this answer, we include all the statements
along the path from 1:1 to 3:2 in the slice, the end result being all
statements included in the slice.

For the sake of discussion, let us consider that the node 3:2 is
not subsumed by 3:1. The symbolic execution tree is now shown
in Fig. 2(c). The key observation is that the new subtree rooted at
3:2 contains an infeasible path (the zigzag edge from 3:2 to 4:2)
since Ψ3:2⇒ x = 0, and therefore the more accurate result for Ψ3:2
should be D3:2 = {x}. Due to this, the assignment y=z at 〈2〉 would
not be included in the slice.

The program in Fig. 1(b) has illustrated once again that the
existence of infeasible paths is essential in order to obtain the
most precise slice. Moreover, it has also discovered that we need
to strengthen the condition that decides whether a node can be
subsumed or not in order to be precise. Hence, given the set of
dependencies Dn our algorithm will also store, for each variable

x ∈ Dn, the path formula ωx that “gives rise” to the answer. We
call this formula ωx, the witness to the dependency on x.

Informally, a node n with context Ψn is subsumed by n′ with
interpolant Ψn′ and reuse dependencies Dn′ if Ψn ⇒ Ψn′ (as
before), and for all x in Dn′ each representative path formula ωx
is possible with the new context Ψn. That is, ωx∧Ψn is satisfiable.

Back to the tree in Fig. 2(c), the context at node 3:2 is Ψ3:2 ≡
a ≤ 0 ∧ x = 0 ∧ y = z. The interpolant at 3:1 is Ψ3:1 ≡ true. It
is straightforward to see that Ψ3:2 ⇒ Ψ3:1. In addition, we test
that, for each variable in the dependency set, their witnesses are
satisfiable. That is, both Ψ3:2 ∧ωx and Ψ3:2 ∧ωy are satisfiable,
where ωx is x ≤ 0 and ωy is x > 0∧ x = y, each being constraints
along the paths that give rise to the corresponding dependencies.
The second formula is unsatisfiable. Therefore, the algorithm must
explore node 3:2, which, as shown, results in a more precise slice
including all underlined statements in the program in Fig. 1(b).

Loops. We explain now how our dynamic programming method
handles loops. This can be seen as a two-phase process.

In the first loop invariant generation phase, it abstracts the state
at the looping point with a loop invariant that is computed on-
the-fly in a lightweight manner. Consider the looping program in
Fig. 1(c) and its symbolic execution tree in Fig. 2(d). When node

4 2010/11/25



1:2 is reached, we attempt to compute a set of abstractions of the
state at node 1:1 that are invariant for the cyclic path 〈0〉-〈1〉-〈2〉-
〈3〉-〈5〉-〈1〉. We note that the original formula at 1:1 is Ψ1:1 ≡ i = 0
∧ b = 0 ∧ c = 0 ∧ d = 1. Among the atomic constraints, our algo-
rithm attempts to find a subset of constraints that are individually
invariant through the cycle 〈1〉-〈2〉-〈3〉-〈5〉-〈1〉. For example, i = 0
is not individually invariant, as the value of the variable i at 1:2 is 1,
while d = 1 is individually invariant, as its value is preserved at 1:2.
The sought after set is therefore {c = 0,d = 1}, named S1:1. When
interpreted as conjunction, any subset of this set is a path-based
invariant through the cycle, the strongest being c = 0 ∧ d = 1.
We then stop the traversal at 1:2 and compute interpolants given
c = 0∧d = 1 at 1:2. Here, instead of interpolating on infeasibility,
we interpolate on a more general postcondition, which is the path-
based invariant. For example, the interpolant Ψ5:1 is a condition
that satisfies Ψ5:1⇒Ψ5:1 and Ψ5:1⇒ (i′ = i+1⇒ c = 0∧d = 1),
where Ψ5:1 is i = 0∧b = 0∧c = 0∧d = 1∧ i < 10∧a < 0∧b′ = 1.
A suitable Ψ5:1 would be c = 0∧d = 1.

We next traverse the else branch of the if conditional after
replacing Ψ1:1 with the more general path-based invariant c = 0
∧ d = 1. The else branch is satisfiable under this abstraction, and
we reach 1:3 with the formula Ψ1:3 ≡ c = 0∧ d = 1∧ i < 10∧
a≥ 0∧ c′= 1∧ i′= i+1 (here we denote different variable versions
using primes). As the value of c is 1 at 1:3, among the elements of
S1:1, only d = 1 is invariant through this path. Therefore the loop
invariant computed for this path is d = 1. This step clarifies the
use of individually invariant constraints: the set S1:1 includes only
constraints that even if any removed, the remaining constraints are
still invariant through the already-traversed cycle. In this way, at
1:3 we are certain that d = 1 is invariant through both cycles in the
loop, and since there are no more cycles, d = 1 is the loop invariant.
We then backtrack and exit the loop reaching 6:1 with the formula
Ψ6:1 ≡ d = 1∧ i≥ 10.

Next, during the answer fixpoint generation phase, the al-
gorithm backward-propagates the answers through all execution
paths, including the cyclic ones, until the answers converge in a
fixpoint. For illustration, assume that the loop exit is taken first
since the variable i is not invariant, and D6:1 = {c}. This depen-
dency is propagated to 1:1 such that D1:1 = {c}. Then, our methods
starts computing a standard fixpoint for the loop. In the first itera-
tion, the method traverses forward the loop body reaching 1:2. At
1:2, our methods returns the answer D1:2 = D1:1 = {c}, as both
1:2 and 1:1 correspond to the same program point. Similarly, at 1:3
it produces D1:3 = {c}. Then, dependencies are propagated back
following Eqs 1 and 2 and slice computed using Eq 3. Due to con-
trol dependencies it adds the variables a and i into D1:1, such that
it becomes {i,a,c}. Since {i,a,c} 6⊆ {c} another fixpoint iteration
is required. After the second iteration, our method converges into
a fixpoint since no more dependencies can be added. The slice is
described by all underlined statements in program in Fig. 1(c).

4. Preliminaries
We outline the framework of Constraint Logic Programming
(CLP) [19] which formalizes a program as CLP rules. The pur-
pose is to use the operational semantics of CLP, which constructs
derivation trees, to symbolic execution of the program.

The universe of discourse is a set of terms, integers, and arrays
of integers. A constraint is written using a language of functions
and relations. An atom is of the form p(t̃) where p is a user-defined
predicate symbol and the t̃ a sequence of terms. A rule is of the
form A:-B̃∧ φ where the atom A is the head of the rule, and the
sequence of atoms B̃ and the constraint φ constitute the body of
the rule. We use rules to represent state transitions and program
end points, and restrict their syntax to p(k, x̃) :- p(k′, x̃′),ρ(x̃, x̃′).
In this syntax, k and k′ are program points, x̃ and x̃′ represent state

variables before and after the execution of the program, and ρ(x̃, x̃′)
represent the transition relation given by the statement between
points k and k′. A set of rules is called a program, denoted P.

For example, given a program fragment with two variables x
and y, the assignment 〈5〉 x = y+1 〈6〉 is represented as the rule
p(5,x,y) :- p(6,x′,y′)∧ y′ = y∧ x′ = y + 1. For a conditional 〈6〉
if (x>0) 〈7〉, we represent the transition between 〈6〉 and 〈7〉 by
the rule p(6,x,y) :- p(7,x′,y′)∧ y′ = y∧ x′ = x∧ x > 0.

A substitution simultaneously replaces each variable in a term
or constraint into some expression, notationally [ẽ/x̃], where x̃ is
a sequence x1, . . . ,xn of variables and ẽ a sequence e1, . . . ,en of
expressions, such that xi is replaced by ei for all 1≤ i≤ n.

A state is of the form p(k, x̃) ∧ φ(x̃), where k is an integer con-
stant, x̃ is a sequence of variables called primary variables, which
represent the variables that appear in the original program, and φ a
constraint on them. Given a state G , we denote the constraint part
as cons(G). Sometimes we write (c,G) to denote the state G aug-
mented with additional constraints c. This notation is to capture a
symbolic state which instantiated with a context c.

We say that a state G : p(k, x̃)∧Ψ(x̃) subsumes another state
G : p(k′, x̃′)∧Ψ(x̃′) if k = k′ and if both states are renamed apart,
Ψ(x̃′)⇒ ∃̃Ψ[x̃′/x̃]5. We also say that G generalizes G .

Let G i be p(k, x̃i)∧φ(x̃i) and P denote a state and a program re-
spectively. Let rule R ∈ P be p(ki, x̃) :- p(ki+1, x̃′)∧ρ(x̃, x̃′), writ-
ten so that none of its variables appear in G i. A reduct of G i using
R, denoted reduct(G i,R) is a state G i+1 of the form p(ki+1, x̃i+1) ∧
φ(x̃i) ∧ ρ(x̃i, x̃i+1). Reduction is a means to symbolically compute
strongest postcondition, where G i represents a symbolic pre-state,
R the transition, and G i+1 the symbolic post-state.

A derivation sequence is a possibly infinite sequence of states
G0,G1, · · · where G i, for i > 0, is a reduct of G i−1. Given τ any
sequence G0,G1, . . . ,Gn, we say that τ (or its end state Gn) is
feasible if cons(Gn) is satisfiable, and infeasible otherwise. A state
G i : p(k, x̃) ∧ Ψ(x̃) is looping if either it is derived from another
state with the same k (its looping parent) through one or more
reduction steps, or there is a state derived from it with the same
k. A sequence that ends in a state Gn is terminal when it is feasible
and cannot be reduced further.

A derivation tree for a state, G0, has as branches all derivation
sequences emanating from G0. It is closed if all its leaf states are
either terminal, infeasible, or subsumed by some other state. The
last state Gn in a derivation sequence has the syntax

p(kn, x̃n),φ(x̃0)∧
Vn

i=1 ρi(x̃i−1, x̃i),

where φ(x̃0) is cons(G0) from which the derivation sequence starts,
and each ρi(x̃i−1, x̃i) is added in the i-th derivation step.

Here we call cons(Gn) a solution, and a suffix constraint is
a constraint ψ :

Vn
i=m ρi(x̃i−1, x̃i). For a suffix constraint ψ and

some renamed-apart state G : p(k, x̃)∧ φ in a derivation tree, the
constraint φ∧ψ[x̃/x̃m−1] is a solution belonging to some successful
state. Here we say that ψ extends G into a solution.

In what follows, we shall use the terms symbolic execution path
and tree as synonymous with derivation sequence and tree.

5. The Framework
In this section, we present informally the core concepts that under-
pin the main algorithm schema defined later. While these concepts
were exemplified above in Sec. 3, here we provide a more general
setting. A precise realization of the framework in the next Sec. 6.

5 Here we use a more restricted version of subsumption than [[G ]]⊇ [[G ]], a
set inclusion wrt the declarative semantics of the CLP program. Here [[G ]]
is the set of the groundings of the variables in G such that the ground atoms
belong to the declarative semantics.

5 2010/11/25



The key subsection here is 5.2 which explains how a notion of reuse
is realized. This is the key to scalability.

5.1 Abstract Domain for Answers
We begin by defining an abstract domain in the traditional way, by
having a (possibly infinite) set of abstract formulas that we call
answers. An abstract domain is a lattice 〈L,v〉 (ordered by v)
that represent a set of abstract states (or answers). Let Σ denote
the universe of concrete program states. The abstraction function
α : 2Σ→ L and concretization function γ : L→ 2Σ relates elements
of the abstract lattice to concrete set of states forming a Galois
Connection [7]. An answer is applied to a suffix path, which is
a path from a state reachable from the initial state, to a terminal
state. An answer associated to this state intuitively represents an
abstraction of the constraints of the path, and is written in terms of
the primary variables of the state. We shall not require the abstract
transfer operation here, but will define it below.

Note that this definition of answer tacitly states that we are
interested in properties that hold at the end of the program. Indeed,
our bottom-up formulation is geared toward bottom-up analysis,
where information about a state is obtained from it successor, and
not predecessor, states. In general, our framework can be used for
analysis for any target program point. (Technically, we can inject
a statement if (*) goto END before the target point so that we can
continue to consider the final point END as the the target.) However,
for the sake of simplicity, we shall hereafter assume that the target
point is the final point.

An analysis of a program can now be defined as the set of all
answers that apply to all of its terminating suffix paths. As usual,
we usually seek not the entire set, but a representative subset, as we
exemplify later.

5.2 Dynamic Programming
A summarization σ is simply a formula on program variables that
represents the answers to a path Π in such a way that the answers
to an extended path c,Π can easily be computed. Where σ is a
summarization for a path Π, we write c⊕σ to denote the summa-
rization for the extended path c,Π. This in effect represents our
abstract transfer operation. A summarization is extended to apply
to subtrees in the obvious way, i.e., it is a formula which produces
the answers to a subtree given any context. First, define that for
two paths emanating from the same state having summarizations
σ1 and σ2 respectively, that σ1⊗σ2 denotes a summarization that
represents a (not necessarily strict) superset of the answers in σ1
and σ2. We shall call this the join-summarization operation, and
when it is precisely the union of the answers in σ1 and σ2, we shall
say that it is lossless.

Now if G is a state with up to (say) two descendants c1,G1
and c2,G2, then we define our dynamic programming framework
in levels i > 0, as follows:

summ(i)(G) =


σG if G is terminal
⊥ if G is infeasible
summ(i−1)(G) if G is looping
(c1⊕ summ(i)(G1))⊗ (c2⊕ summ(i)(G2)) otherwise

where σG denotes the base case summarization for G , ⊥ denotes
the undefined summarization which provides no information, and
summ(0)(G) always returns ⊥.

This definition implies that more than just a simple recursive
descent algorithm will be required in order to compute summariza-
tions. Instead, such an algorithm will require some kind of fixpoint
computation mechanism. This fixpoint computation is standard and
so we will relegate further discussion to the next section.

In general, the specific definition of a summarizations is appli-
cation dependent and hence manual.

Example 1. Consider first the variable dependency example from
Sec. 3. Given a path Π, an answer is simply a subset S of the
initial variables of the path upon which may affect the selected final
variables. A summarization σ can therefore be defined to be just S.
Formally, this summarization represents the set of all supersets of
S. Now we can compute a summarization for c⊕σ as the subset of
variables in c upon which the variables in σ depend. Here we use
directly the sets def and use from Eqs 1 and 2, Sec. 3. Given two
summarizations for two paths σ1 and σ2 emanating from the same
state, σ1⊗σ2 can be defined as the summarization obtained by the
set union of the variables in σ1 and σ2.

Example 2. In this second example, consider upper bounds analysis
on loop-free programs which is set up as follows. Let there be a
distinguished variable T which appears in the program only in the
form T = T + k for some positive constant k. Its initial value is 0.
An answer for a path is a formula Tf −T ≤ k where where Tf is
another distinguished variable which is used to capture the value
of T at the end of the program, and k is constant. Therefore an
answer captures an upper bound for the increment of T along one
path, and an answer for all paths will contain the upper bound of
T for the program. We can now define a summarization of a path
Π to be a single number, k, representing the (biggest) difference
in value the of the current value of T to the final. Note that the
current value of T is, formally, the initial value of T for the path
Π. Now we can compute a summarization for c⊕σ as simply k in
case c does not increment T , or k + k′, in case c increments T by
k′. Given two summarizations for two paths σ1 and σ2 emanating
from the same state, σ1⊗σ2 can be defined as the maximum of the
two summarization σ1 and σ2.

Example 3. Next consider points-to analysis, where a summariza-
tion is a pair from V×2V where V are the program variables. Thus a
summarization σ indicates, for each variable v, which set of (other)
variables v may point to. As above, we can compute a summariza-
tion c⊕σ for an extension c of Π as the merging of some sets of
σ in the obvious way, e.g. if c indicates that v1 now may point to
v2, we then adjoin the current points-to set of v1 with that of v2.
The joining of two summarizations σ1 and σ2 is equally straight-
forward: each variable v now points to the union of its points-to set
in σ1 and σ2.

Example 4. Finally consider interval analysis, and assume for sim-
plicity that the domain of discourse is a finite set of positive inte-
gers. A summarization can simply be a pair of integers. Extending
a summarization σ for a path Π with a constraint c is a straightfor-
ward matter of computing, for each new variable assigned in c, its
interval based on the intervals of the other variables in σ. The join-
ing of two summarizations σ1 and σ2 is simply to assign to each
variable an interval which best covers its two intervals indicated by
σ1 and σ2.

Note that in these four examples, the first three have join-
summarizations ⊗ that are lossless.

5.3 Reuse of Summarizations
The DP formulation above holds promise for efficient execution
whenever reuse is possible. Here we discuss two aspects which
prevent reuse. The first is mandatory, for its use affects soundness.
The second affects accuracy.

Interpolant
Suppose σ is a summarization for a symbolic execution tree Π for
a state G , and this summarization was computed using a context c,
that is, σ applies to the state (c,G). Suppose we wish to reuse σ

6 2010/11/25



for a variant state (c′,G), whose tree is Π′. Now σ was obtained
by considering only feasible paths in Π. Therefore there could be
paths in Π′ that are nonexistent in Π. This in turn means that any
use of σ is no longer sound.

However, if it can be shown that every feasible path in Π′ is
also feasible in Π, then reuse is clearly sound. This is the reason
why, when we compute a summarization, we also compute an
interpolant c” which is a context equal to or more general than c,
such that the tree of (c”,G) contains only feasible paths in Π. The
idea, of course, is that c” is as general as possible, to maximize the
applicability of reuse.

We now have our first of two conditions for the reuse of a
summarization: the candidate state must entail the interpolant.

Witnesses
We have chosen a dynamic programming formulation to obtain
solutions from subsolutions. Thus in the quest for an “optimal”
solution6, we require optimal subsolutions of subproblems. For the
resource bound example, an optimal solution is one which indicates
the lowest bound. In the variable dependency example, an optimal
solution mentions the smallest set of variables. Similarly for the
points-to example. Finally, in the interval analysis example, an
optimal solution mentions the narrowest interval.

We thus introduce, for each tree Π, a notion of witnesses. These
shall essentially be a subset of the terminating or looping paths in
Π which by themselves exhibit the optimal solution that ultimately
is represented in the form of a summarization for Π. Clearly we can
define that all the paths in Π are witnesses. But the point clearly, is
that we often require just a small number and in some cases, e.g.
our resource bounds example, just one.

We can now introduce our second condition for the reuse of
summarizations: that the witnesses associated with the summariza-
tion are feasible in the candidate state.

5.4 A Characterization of the Framework
Here we provide a particular view of traditional analysis. While it
is not technically essential to the presentation of the framework, its
purpose is to explain the framework in a traditional setting.

Abstract Interpretation [7] uses some abstract domain, a lattice
〈L,v〉 equipped with abstraction α and concretization γ functions.
Representing a program by a monotone abstract transfer function,
program analysis is then simply a fixpoint computation over ab-
stract formulas, and termination is guaranteed by ensuring that
progressing through the lattice structure is bounded. Failing this,
widening and narrowing operators can be used to guarantee con-
vergence. This computation is essentially driven by a traversal of
the control flow graph (CFG) of the program. One particular aspect
of this traversal is that when a node is visited more than once, the
abstract formulas computed so far are merged. A CFG is defined,
as usual, as a tuple 〈N,E,ρ〉 where N is a set of nodes, E ⊆ N×N
is a set of edges, and each edge e ∈ E is labeled by a transition re-
lation ρ(V,V ′) where V is the set of variables before and after the
transition. The point of interest here is to consider different imple-
mentations of a CFG. The typical one has its nodes corresponding
exactly to the program points in the program. However, in order
to provide more accuracy, a common practice is to split nodes in
a CFG in order to avoid abstraction by the abovementioned merge
operation. Consider for example the CFG in Figure 1(a) and note
that node 3 has two incoming edges. Figure 2(a), when read as a
CFG (instead of an execution tree), depicts such a split. It is easy
to see that performing traditional analysis on the latter CFG will, in

6 Recall that while an analysis returns sets of answers, often we just require
one of them.

general, be more accurate. Note that whenever a node is split into
two, each of these continues to represent the same program point.

We now consider a classification of CFG’s. Before proceeding,
we shall restrict to CFG’s in which there is a feasible path from the
source node to every other node7. We shall also allow CFG’s to be
infinite.

DEFINITION 1. (Path Sensitivity) The analysis is

• fully path-sensitive if the (in general, infinite) CFG is a tree.
• path-sensitive modulo loops if the only loops in the CFG are

those from a node to a parent which represents the same pro-
gram point.
• partially path-sensitive if in the CFG there are two nodes which

represent the same program point.
• path insensitive if every node in the CFG represents a distinct

program point.

We can now characterize our framework, whenever its join is loss-
less, as producing analyses that are path-sensitive modulo loops.

6. Algorithm
We start with a few definitions. We denote by ext(W,G) the set of
suffix constraints of G witnessed by the elements of W. An answer
tuple is a tuple 〈G ;W ;σ;C T 〉, where G is a goal, W a set of wit-
nesses, and σ a summarization, and C T a sequence of generalized
ancestor states of G , which is used by the loop invariant discovery
mechanism. We define a partial order v on summarizations (with
the strict version <) and define val to be a mapping from suffix
constraints to summarizations.

Our algorithm in Fig. 3 performs depth-first post-order traver-
sal of the derivation tree of a state, returning an answer tuple after
traversing a closed subtree. It maintains a global memo table MT
that is a set of computed triples containing the first three compo-
nents of an answer tuple. The table is initially empty. The procedure
takes as input a state, say G , and a sequence of pairs called CT , also
initially empty. The purpose of CT is to record all potential loop-
ing parents for a given program point. At each recursive call, the
algorithm terminates when encountering a terminal, infeasible or
subsumed node. A node can be subsumed by either a state of a
triple in MT or an ancestor state in CT , called the “looping” case.
If none of the above cases for termination is satisfied, the algorithm
traverses the derivation tree further by generating the reducts of the
current state corresponding to a strongest postcondition step and
performs recursive calls on those reducts. The result of each case is
an answer tuple, whose first component is a generalization G of G .

The first INFEASIBLE case (Lines 2-3) is triggered when the
state G is infeasible. As mentioned, our algorithm always attempts
to generalize G by weakening its constraints while preserving in-
feasibilities. Here, G’s constraint is equivalent to f alse, and since
we want to preserve infeasibility, we cannot weaken this constraint
further. Hence, here we return an answer tuple with a state with
false as constraint, an empty set of witnesses, and undefined set
of summarizations. The last component is only meaningful when
there is a looping point in the derivation tree of G . Since G is non
looping, we return the no-generalization symbol ε.

In the second, TERMINAL (Lines 4-5), the execution reaches the
end of the path. Since the path is satisfiable, the input state G can
be fully generalized. Here we return a generalization of G with its
constraint true. The second component of the answer tuple is again
an empty set of witnesses. The third component is σG , which is
the base-case summarization defined by the analysis problem at
hand (e.g., the variable in slicing criterion). This is not a looping

7 Thus we exclude only “dead” nodes.

7 2010/11/25



SymbolicExec(G ,CT )
1: switch(G : p(k, x̃)∧Ψ(x̃)))
INFEASIBLE
2: case Ψ is unsatisfiable:
3: return 〈p(k, x̃)∧ false; /0;⊥;ε〉
TERMINAL
4: case k = pcend :
5: return 〈p(k, x̃)∧ true; /0;σG ;ε〉
SUBSUMED

6: case there exists 〈p(k, x̃)∧Ψ(x̃);WT ;σT 〉 ∈MT and
7: Ψ(x̃)⇒Ψ(x̃) and ∀ϕ ∈WT : Ψ∧ϕ is satisfiable:
8: return 〈p(k, x̃)∧Ψ(x̃);WT ;σT ;ε〉
LOOPING
9: case G is looping
10: if there exists 〈GP : p(k, x̃P)∧ΨP(x̃P);σP〉 in CT :
11: 〈Φ(x̃P);C T 〉 ← INVARIANT(CT )
12: return 〈p(k, x̃)∧Φ(x̃); /0;σP;C T 〉
13: else
14: Gc,σc← G ,⊥
15: 〈〈p(k, x̃)∧Ψ(x̃); ;σ;C T 〉 ← Unfold(Gc,〈Gc;σc〉 :: CT )
16: if (C T = 〈p(k, x̃)∧Φ(x̃); 〉 :: C ′T ) then
17: C T ← C ′T
18: if (Φ(x̃) 6⇒Ψ(x̃)) then
19: MT ←MT \{tuples of recursive calls}
20: Gc← p(k, x̃)∧Φ(x̃)
21: goto 15
22: if (σc < σc⊗σ) then
23: MT ←MT \{tuples of recursive calls}
24: σc← σc⊗σ

25: goto 15
26: MT ← MT ∪ {〈p(k, x̃)∧Ψ(x̃); /0;σc〉}
27: return 〈p(k, x̃)∧Ψ(x̃); /0;σc;C T 〉
RECURSIVE
28: default:
29: 〈G ;W ;σ;C T 〉 ← Unfold(G ,CT )
30: MT ← MT ∪ {〈G ;W ;σ〉}
31: return 〈G ;W ;σ;C T 〉

Figure 3. SymbolicExec

sequence, and similar to the infeasible case, we also return ε as the
last component.

The third termination case, SUBSUMED (Lines 6-8), searches
for an entry in MT such that the current state, Ψ(x̃) entails the
interpolant associated to the entry, Ψ(x̃). If the entailment holds,
the state G has at most the same subsolutions as the stored p(k, x̃)
∧ Ψ(x̃), and since we could not have found any new subsolution,
we can stop the traversal at this point. However, the memoed
summarization σT may be inaccurate if it was given by a suffix
constraint that extends G to an infeasible state. For this, at Line
7, we also test that all witnesses in WT are feasible in the current
context. If both conditions are satisfied, we return the contents of
the memoed entry itself with additional last component ε.

The LOOPING case (Lines 9-27) handles loops to make the
symbolic execution finite. The test at Line 10 determines if G is
a state at the end of a looping path, that is, if there is a looping
ancestor GP with summarization σP in CT , in which case the
algorithm executes Line 11. Otherwise, it executes Line 14.

At Lines 11-12, our algorithm builds on-the-fly a loop invariant
by combining invariants that are correct for each looping path in the
loop’s body. We call such invariant a path-based invariant. Assume
the current state G : p(k, x̃) ∧ Ψ(x̃) is derived from GP : p(k, x̃P)
∧ ΨP(x̃P) where 〈GP; 〉 is in the sequence CT , with the same

Unfold(G , CT )
32: Ψ(x̃),Gc : p(k, x̃)∧Ψ(x̃),W,σ← true,G , /0,⊥
33: foreach 〈G ′ : p(k′, x̃′)∧Ψ(x̃)∧ρ(x̃, x̃′);R〉

in {〈G ′;R〉|G ′ = reductP(Gc,R)}
34: 〈p(k′, x̃′)∧Ψ

′(x̃′);W ′;σ′;C T 〉 ← SymbolicExec(G ′,CT )
35: Ψ(x̃)←Ψ(x̃)∧ INTERP(Ψ(x̃),(ρ(x̃, x̃′)⇒Ψ

′(x̃′)))
36: W ′′,σ′′← ρ∧W ′,(val(ρ)⊕σ′)
37: σ← σ⊗σ′′

38: W ← SELECT(W ∪W ′′,σ)
39: if (C T 6= ε) then Gc← APPLYINVARIANT(Gc,C T )
40: return 〈p(k, x̃)∧Ψ(x̃);W ;σ;C T 〉

Figure 4. Unfold

program point representing a cyclic control flow path. Note that
formula Ψ(x̃) is necessarily of the form ΨP(x̃P) ∧Ψ′(x̃P, x̃)8 where
Ψ′(x̃P, x̃) is the conjunction of all constraints along the looping
path. To generate a path-based invariant, we generalize ΨP(x̃P) into
Φ(x̃P) such that a new sequence from GP : p(k, x̃P) ∧Φ(x̃P) by the
same derivations results in G : p(k, x̃) ∧ Φ(x̃P) ∧ Ψ′(x̃P, x̃), with
GP subsuming G .

The procedure INVARIANT invoked in Line 11 derives, using a
theorem prover, constraints that are individually invariant in the
looping path. The constraints are obtained from the set of atomic
constraints in ∃var(ΨP)− x̃P : ΨP (projection of ΨP onto the
variables x̃P)9. Name this conjunction (set) of constraints SGP .
We remove from it any constraint ϕ such that ϕ ∧ Ψ′(x̃′) 6⇒
ϕ[x̃/x̃P], that is, when the derivation of state p(k, x̃P) ∧ ϕ through
the same cyclic path results in a state that is not subsumed by it.
The remaining constraints are individually invariant through this
path. The conjunction of the elements in this set is denoted by Φ.
At Line 12, the algorithm returns an answer tuple containing a state
with the computed invariant for the looping path, empty witnesses,
σP as the summarization, the current recorded summarization for
GP (initially the empty set), which we will elaborate further, and
weakening C T of CT . Generally, the looping derivation path from
GP to G also “passes through” nested looping points such that to
maintain the correctness of the algorithm, the weakening of GP
into GP also necessitates constraint deletions in such looping states.
These weakenings are reflected in C T .

Lines 14-27 handle the case when the current state is at the start
of a loop. Gc is the generalization of G and it is a combination of all
path-based invariants generated (in Line 11) so far. σc is the current
summarization for the input state G . Both are initialized to G and
⊥, respectively in Line 14.

At Line 15, the algorithm calls the Unfold procedure (Fig. 4),
which produces reducts and recursively calls SymbolicExec. We
detail Unfold later, but for now, it is sufficient to know that it
returns a state p(k, x̃) ∧Ψ(x̃) which is a generalization of Gc,
summarization σ, and a generalization GP via path-based invariant
generation of Gc or some ancestor state.

Lines 16-25 implement two different fixpoint computations
which are dependent on the return values of Unfold:

1. The loop invariant generation phase is implemented by Lines
16-21. At Line 18 we test if GP is a generalization of the current
state, and if so, we also test if the generalization is stronger

8 The existence of nested looping points between GP and G may complicate
the presentation, but here we prefer a simple formulation for readability.
9 Note that this is still a correct symbolic description of the program state,
as for all groundings θP of x̃P, (∃var(ΨP)− x̃P : ΨP)θP is valid if and only
if ΨPθP is satisfiable.

8 2010/11/25



than the generalization Ψ(x̃). If this is the case, then GP reflects
a strong enough loop invariant that ensures the infeasibilities in
the derivation subtree. Otherwise, we perform a “restart” where,
at Line 19, we first remove all memoed triples generated in the
recursive calls (via Unfold). We then update Gc with the current
loop invariant (Line 20). This update results in removing some
infeasibilities maintained by Ψ(x̃), and in the next iteration we
will have a more general Ψ(x̃). We then jump to Line 15 to
continue a new iteration via Unfold.

2. Once the loop invariant generation ends, Gc is ensured to be
invariant. However, the summarization σ (obtained by merging
all summarizations from the recursive calls in Unfold) does not
necessarily converge yet into a fixpoint. The answer fixpoint
generation phase ensures that. At Line 22 we detect if there is
a new summarization in σ that is not already in σc. If so, we
have not reached a fixpoint, and we therefore perform another
“restart,” where at Line 23 we first clear the triples generated in
the recursive calls of Unfold and merge the new summarizations
to σc (Line 24).
If a fixpoint has been reached, we return an answer tuple with
empty witnesses and σc after memoing it in the memo table
(Line 26). The reason for empty witnesses is that we have ap-
plied generalization to G (which is applied to all states derived
from G at Line 39 in of Unfold) such that the suffix constraints
ext(W,G) may actually not extending the original, stronger
state G into solutions.

Lines 29-31 handle the symbolic execution step. At Line 29 the
algorithm calls the Unfold procedure, which returns generalizations,
loop invariants, and a summarization. Here we memo the first three
components of the returned answer tuple (Line 30) and return the
tuple to the caller (Line 31).

We next discuss the Unfold procedure (Fig. 4), whose purpose
is to execute recursive calls to SymbolicExec and combines the
results. At any derivation tree node with state G , the procedure
performs reductions resulting in state G ′, and calling SymbolicExec
in Line 34.

The recursive call to SymbolicExec (Line 34) returns an answer
tuple containing a generalization of the reduct G ′ : p(k′, x̃′) ∧
Ψ
′(x̃′). A key operation of the algorithm is the propagation of

the answer tuples to the caller. Here we compute a formula Ψ(x̃)
that generalizes Ψ(x̃) and still preserves the path infeasibility in
the derivation tree of the particular reduct G ′. That is, Ψ(x̃) is an
interpolant [8] satisfying the following conditions:

1. Ψ(x̃)⇒Ψ(x̃) and

2. Ψ(x̃)⇒ (ρ(x̃, x̃′)⇒Ψ
′(x̃′)).

For example, when G ′ is itself infeasible instead of its further de-
scendants, the call to SymbolicExec executes Line 3 where an an-
swer tuple with false constraint is returned. Therefore, Ψ

′ obtained
at Line 34 is false, and Ψ has to satisfy: Ψ(x̃)⇒ (ρ(x̃, x̃′)⇒ false),
or, Ψ(x̃)⇒¬ρ(x̃, x̃′) to preserve the infeasibility of G ′. The func-
tion INTERP(Ψ(x̃), (ρ(x̃, x̃′)⇒ Ψ

′(x̃′))) in Line 35 returns an in-
terpolant. The final interpolant is the conjunction, also of all inter-
polants resulting from the calls.

Ideally, instead of an interpolant, we would like to compute the
weakest liberal precondition (wlp) [10] which is the weakest inter-
polant possible, however, maintaining such formulas is problematic
in practice [12]. Therefore, we derive Ψ(x̃) efficiently (in polyno-
mial time) as a less general interpolant provided by the greedy con-
straint deletion and slackening techniques described in [21].

Lines 36-38 deal with the witnesses and summarizations re-
turned by the recursive call. The algorithm maintains two variables

W and σ that are the set of witnesses and summarizations so far,
each initialized to /0 and ⊥, respectively at Line 32. In essence,
W ′′ is an extension of W ′ with the current transition relation of
R. Ideally, we want σ′′ = val(ext(W ′′,Gc)), but we relax this into
σ′′ ⊇ val(ext(W ′′,Gc)) to allow approximations. At Line 37, we
merge σ′′ with the current set σ of summarizations. The function
SELECT at Line 38 selects among the witnesses collected so far
the optimal set among them, that is, it returns a set of witnesses
W ′ ⊆W ∪W ′′ where val(ext(W ′,Gc)) = σ.

The next step (Line 39) propagates the computed path-based
invariants to further paths in order to make sure all paths were con-
sidered under the global loop invariant. Notice that the recursive
call to SymbolicExec in Line 34 possibly also returns a candidate
loop invariants of the looping ancestors in C T in case the path con-
tains looping points. At Line 39 we update Gc to take into account
this generalization. For example, assume that Gc is of the form
p(k, x̃)∧Ψc(x̃P)∧ρc(x̃P, x̃), and GP, where C T = 〈GP; 〉 :: , is
of the form p(kP, x̃P)∧ΦP(x̃P). APPLYINVARIANT replaces Ψc(x̃P)
in Gc with the more general ΨP(x̃P) of GP, and the resulting state
is assigned to Gc. This results in weakening of reducts in Line 33,
which may wake up a new transition which was infeasible previ-
ously but now under the weaker context Gc becomes feasible.

We now state the correctness of our algorithm.

THEOREM 1 (Soundness). Assume set S of all solutions of a state
G given a CLP program P. SymbolicExec(G ,nil) returns an answer
tuple 〈 ; ;σ; 〉 such that ⊗ϕ∈Sval(ϕ)v σ.

To improve the efficiency of our algorithm, some heuristics can
be applied such as prioritizing feasible reducts before infeasible
reducts to obtain a more general abstraction, as feasible reducts
have the potential to reach a looping point, which may result in
generation of path-based invariant that weakens the context of some
looping point.

7. Experimental Evaluation
We conducted our experiments implementing the classic Weiser’s
algorithm [26] for program slicing and plugging it into our frame-
work. We performed experiments to address the following issues:
(a) the effectiveness of our approach against a path-insensitive ver-
sion by comparing the size of their slices, and (b) how efficiently
our path-sensitive approach can compute program slices.

The implementation of our framework models the heap as an
array. A flow-insensitive pointer analysis is then used to partition
updates and reads into alias classes where each class is modeled by
a different array. A theorem prover is used to decide linear arith-
metic formulas over integer variables and array elements in order
to check the satisfiability of formulas, computing interpolants, and
computing individually invariants. External functions are modeled
as having no side effects and returning an unknown value. The im-
plementation of the slicing analysis covers loops, function calls,
pointers, and arrays. Given a statement that involves pointers the
sets def and use utilize the results of the pointer analysis. For in-
stance, given the statement *p =*q the set def contains everything
that might be pointed to by p and the set use includes everything
that might be pointed by q.

Table 1 presents our experimental results on a set of C bench-
marks. We used several instrumented device driver programs pre-
viously used as software model checking benchmarks: cdaudio,
diskperf, floppy, and serial. In addition, we also considered mpeg,
the mpeg-1 algorithm for compressing video, and fcron.2.9.5, a
cron daemon. We consider for the criteria variables that may be
of interest during debugging tasks. For the instrumented software
model checking programs, we choose as slicing criteria the set of
variables that appear in the safety conditions used for their verifica-

9 2010/11/25



Path-Insens Path-Sens
Program LOC Size Red Time Size Red Time

mpeg 5K 4% 21s 43% 628s
diskperf 6K 32% 2s 57% 94s
floppy 8K 36% 9s 47% 263s

cdaudio 9K 23% 10s 52% 301s
serial 12K 39% 16s 50% 395s

fcron.2.9.5 12K 42% 32s 61% 832s
Mean 23% 15s 51% 418s

Table 1. Reduction in Slice Size and Analysis Times for Slicing
on Intel 3.2Gz 2Gb.

tion in [15]. In the case of mpeg we choose a variable that contains
the type of the video to be compressed. Finally, in fcron.2.9.5 we
choose all the file descriptors opened and closed by the application.

Table 1 compares the slicer algorithm making use of path-
sensitivity provided by our framework (columns labelled with Path-
Sens) against the same slicer coupled in the framework but with-
out path-sensitivity (labelled with Path-Insens). Path-insensitivity
is achieved by the following modifications in the framework: (1)
all paths are feasible, and (2) reuse always summarizations. Those
changes have similar effect to merge always the abstract states
along incoming edges in a control-flow merging node. Clearly, we
could have used a much faster off-the-shelf path-insensitive pro-
gram slicer using, for example, using dependence graphs [17].
However, our objective here is to isolate the impact of path-
sensitivity and hence, we decided to perform the comparison on
a common platform to produce the fairest results.

The column LOC represents the number of lines of program
without comments. The column Size Red shows the reduction in
slice size (in %) wrt the original program size. The reduction size
is computed using the formula (1− size o f slice

size o f original )× 100. By size
we mean all executable statements in the program, excluding type
declarations, unused functions, comments, and blank lines. The
column Time reflects the running time of the analysis in seconds
excluding the alias analysis phase and the production of the CFG
since they are negligible. Finally, we summarize in row Mean
the numbers of columns Size Red and Time by computing their
geometric and arithmetic mean, respectively.

Our results described in Table 1 demonstrate the effectiveness
of the path-sensitive slicer at least for the benchmarks and criteria
used. Overall, the path-sensitive variant produces program slices
roughly 30% smaller than its path-insensitive counterpart. We ob-
served the largest reduction margin for the program mpeg ranging
from 4% to 43%. The selected criteria here heavily affect the evalu-
ation of many if statements. Path-sensitivity allows us to eliminate
many branches and hence, all dependencies originated from them.

More importantly, these results exhibit that our path-sensitive
framework is able to slice those programs in a reasonable amount
of time. As expected, the slicing time is closely related to the size
of the program. We investigated the slower times for the programs
mpeg and fcron.2.9.5. We noticed that the reason in both cases
was due to the naive fixpoint computation implemented in the
slicing algorithm. The current implementation is not optimized and
computes dependencies from scratch at each new iteration. This
caused a significant slowdown due to the high frequency of fixpoint
iterations required in both programs.

8. Conclusion
We presented a path-sensitive symbolic execution-based frame-
work for program analysis. Its accuracy is essentially that of a
full enumeration of all symbolic paths, up to loops. We then ad-
dressed the fundamental problem of a large enumeration space. We

began with a formulation of the analysis in dynamic programming,
a method which can be efficient whenever the reuse of subsolu-
tions, which constitute part of bigger solutions, is often possible.
Our main contribution was to define a condition, based on interpo-
lation, that is weak enough to allow reuse, and another condition,
witnesses, a condition that balances the first condition in such a
way as to preserve accuracy. Finally, we demonstrated the practi-
cality of our framework by experimenting with a driving example
of program slicing. We showed that our approach can scale up to
tens of thousand of lines of C code producing slices significantly
smaller than a path-insensitive slicer.

References
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, and P. Hawkins.

An overview of the Saturn project. In PASTE ’07, pages 43–48, 2007.
[2] G. Ammons and J. R. Larus. Improving data-flow analysis with path

profiles. In PLDI ’98, pages 72–84, 1998.
[3] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic

predicate abstraction of C programs. In PLDI’01, pages 203–213.
[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine,

D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software (extended abstract). In PLDI’03, pages 196–207.

[5] R. Bodı́k, R. Gupta, and M. L. Soffa. Interprocedural conditional
branch elimination. In PLDI ’97, pages 146–158.

[6] R. Bodı́k, R. Gupta, and M. L. Soffa. Refining data flow information
using infeasible paths. FSE’97, pages 361–377.

[7] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis. In 4th POPL, pages 238–252. ACM Press,
1977.

[8] W. Craig. Three uses of Herbrand-Gentzen theorem in relating model
theory and proof theory. Journal of Symbolic Computation, 22, 1955.

[9] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verifi-
cation in polynomial time. In PLDI ’02, pages 57–68, 2002.

[10] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in
Automatic Computation. Prentice-Hall, 1976.

[11] I. Dillig, T. Dillig, and A. Aiken. Sound, complete and scalable path-
sensitive analysis. In PLDI ’08, pages 270–280, 2008.

[12] C. Flanagan and J. B. Saxe. Avoiding exponential explosion: Gener-
ating compact verificatio n conditions. In 28th POPL, pages 193–205.
ACM Press, 2001.

[13] H Hampapuram, Y. Yang, and M. Das. Symbolic path simulation in
path-sensitive dataflow analysis. In PASTE’05, pages 52–58, 2005.

[14] W. R. Harris, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Program
analysis via satisfiability modulo path programs. In POPL’10, pages
71–82, 2010.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Ab-
stractions from proofs. In 31st POPL, pages 232–244. ACM Press,
2004.

[16] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstrac-
tion. In 29th POPL, pages 58–70. ACM Press, 2002. SIGPLAN No-
tices 37(1).

[17] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI ’88, pages 35–46.

[18] F. Ivancic, Z. Yang, M K. Ganai, A. Gupta, I. Shlyakhter, and P. Ashar.
F-soft: Software verification platform. In CAV/05, pages 301–306.

[19] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J.
LP, 19/20:503–581, May/July 1994.

[20] J. Jaffar, A. E. Santosa, and R. Voicu. Efficient memoization for
dynamic programming with ad-hoc constraints. In 23rd AAAI, pages
297–303. AAAI Press, 2008.

[21] J. Jaffar, A. E. Santosa, and R. Voicu. An interpolation method for
CLP traversal. In 15th CP, volume 5732 of LNCS. Springer, 2009.

[22] G. A. Kildall. A unified approach to global program optimization. In
POPL ’73, pages 194–206.

10 2010/11/25



[23] L. Mauborgne and X. Rival. Trace partitioning in abstract interpreta-
tion based static analyzers. In ESOP’05, pages 5–20, 2005.

[24] K. L. McMillan. Lazy abstraction with interpolants. In CAV ’06, pages
123–136.

[25] A. Thakur and R. Govindarajan. Comprehensive path-sensitive data-
flow analysis. In CGO ’08, pages 55–63, 2008.

[26] M. Weiser. Program slicing. In ICSE ’81, pages 439–449, 1981.

11 2010/11/25


