Horn Clauses for Data Structures

Joxan Jaffar
National University of Singapore (NUS)

HCVS 2015, July 19, 2015

Overview

HOLY GRAIL: Automatic reasoning about Data Structures

- Assertion Language (\mathcal{H}, explicit heaps)
- Horn Clauses for Data Structures $(\operatorname{CLP}(\mathcal{H}))$
- Proving Horn Clauses (automatic induction)
- Local Reasoning, Compositional Proofs (frame rule)

\mathcal{H}-Language

- DEFINITION: A heap is a finite partial map between integers Heaps $=$ Values $\rightharpoonup_{\text {fin }}$ Values
- DEFINITION: \mathcal{H} is a first-order language over the Heaps.
(1) (Empty Heap):
$\Omega \quad \stackrel{\text { def }}{=} \quad$ a Heap with no elements
(2) Singleton Heap):

$$
p \mapsto v \quad \stackrel{\text { def }}{=} \quad \text { a Heap with exactly one element }(p, v)
$$

3 (Separation)

$$
\left(H \bumpeq H_{1} * \ldots * H_{n}\right) \quad \stackrel{\text { def }}{=} \quad\left\{\begin{array}{l}
\text { Heaps } H_{1}, . ., H_{n} \text { are separate/disjoint } \\
H=H_{1} \cup . . \cup H_{n} \text { as sets. }
\end{array}\right.
$$

- NOTE: $(\bumpeq) \not \equiv(=)$
$(\bumpeq$ is partial equality w.r.t. $(*))$

Program Reasoning with \mathcal{H}

- DEFINE: $\mathcal{M} \in$ Heaps as the Program Heap
- Standard memory operations can be mapped to \mathcal{H} :

$$
\begin{aligned}
& \text { C Syntax } \\
& \begin{array}{l}
\mathrm{v}=\mathrm{p}[0] ; \\
\mathrm{p}=\operatorname{malloc}(1) ; \\
\text { free }(\mathrm{p}) ; \\
\mathrm{p}[0]=\mathrm{v} ;
\end{array}
\end{aligned}
$$

\mathcal{H} Encoding
$\exists H: \mathcal{M} \bumpeq(p \mapsto v) * H$
$\exists H, v: \mathcal{M} \bumpeq(p \mapsto v) * H$
$\exists H, v: H \bumpeq(p \mapsto v) * \mathcal{M}$
$\exists H, H^{\prime}, w:\left\{\begin{array}{l}H \bumpeq(p \mapsto w) * H^{\prime} \\ \mathcal{M} \bumpeq(p \mapsto v) * H^{\prime}\end{array}\right.$

Hoare Triples (cont.)

- Access:

$$
\left\langle\phi, x:=[y], \exists x^{\prime}, H^{\prime}: \mathcal{M} \bumpeq(y \mapsto x) * H^{\prime} \wedge \phi\left[x^{\prime} / x\right]\right\rangle
$$

- Assignment:

$$
\left\langle\phi,[x]:=y, \exists H^{\prime}, H^{\prime \prime}, v: \wedge \begin{array}{l}
H^{\prime} \bumpeq(x \mapsto v) * H^{\prime \prime} \\
\mathcal{M} \bumpeq(x \mapsto y) * H^{\prime \prime}
\end{array} \wedge \phi\left[H^{\prime} / \mathcal{M}\right]\right\rangle
$$

- Allocation:

$$
\left\langle\phi, x:=\operatorname{alloc}(1), \exists x^{\prime}, v, H^{\prime}: \mathcal{M} \bumpeq(x \mapsto v) * H^{\prime} \wedge \phi\left[H^{\prime} / \mathcal{M}, x^{\prime} / x\right]\right\rangle
$$

- Deallocation:

$$
\left\langle\phi, \operatorname{free}(x), \exists H^{\prime}, v: H^{\prime} \bumpeq(x \mapsto v) * \mathcal{M} \wedge \phi\left[H^{\prime} / \mathcal{M}\right]\right\rangle
$$

Symbol Execution with \mathcal{H}

- Hoare triples are in "Strongest Post Condition" (SPC) form

$$
\forall \phi:\langle\phi, \text { Code, SPC(Code, } \phi)\rangle
$$

- $\mathrm{SPC} \Longrightarrow$ Automation via Symbolic Execution.

PROVE:

$$
\langle P, \text { Code, } Q\rangle
$$

STEPS:
(1) Use Hoare rules to compute $S P C(\operatorname{Code}, P)$;
(2) Prove (via a theorem prover) that

$$
S P C(\text { Code }, P) \rightarrow Q
$$

(3) QED

Symbolic Execution with \mathcal{H} (cont.)

- EXAMPLE: prove:

$$
\begin{equation*}
\langle H \bumpeq \mathcal{M}, x:=\operatorname{alloc}() ; \text { free }(x), H \bumpeq \mathcal{M}\rangle \tag{1}
\end{equation*}
$$

- Use Symbolic Execution to compute the SPC:

$$
\begin{aligned}
& \{H \bumpeq \mathcal{M}\} \quad x:=\operatorname{alloc}() ; \text { free }(x) \\
& x:=\text { alloc }() ; \quad\left\{H \bumpeq H_{0} \wedge \mathcal{M} \bumpeq\left(x \mapsto H_{-}\right) * H_{0}\right\} \quad \text { free }(x) \\
& x:=\text { alloc }() ; \text { free }(x) \quad\left\{H \bumpeq H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * \mathcal{M}\right\} \\
& x:=\text { alloc }() ; \text { free }(x) \quad\left\{H \bumpeq H_{0} \wedge H_{1} \bumpeq(x \mapsto-) * H_{0} \wedge H_{1} \bumpeq(x \mapsto-) * \mathcal{M}\right\}
\end{aligned}
$$

Since

$$
\begin{equation*}
H \bumpeq H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * \mathcal{M} \rightarrow H \bumpeq \mathcal{M} \tag{2}
\end{equation*}
$$

Triple (1) holds; QED

- ...but how to prove (2)?

A Solver for \mathcal{H}

- Symbolic Execution generates Verification Conditions of the form $S P C(C, P) \rightarrow Q$, e.g.:

$$
H \bumpeq H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * \mathcal{H} \rightarrow H \bumpeq \mathcal{H}
$$

holds iff

$$
H \bumpeq H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * \mathcal{H} \wedge H \neq \mathcal{H}
$$

is UNSAT.

- Approach:
- STEP 1: Normalization
- STEP 2: Constraint solver (hsolve) for flat \mathcal{H}-formulae
- STEP 3: DPLL(hsolve) for the Boolean structure.

STEP 1: Normalization

- W.I.o.g. we can restrict \mathcal{H} to three basic constraints:

Description

(Heap Empty) (Heap Singleton)
(Heap Separation)

Constraint

$$
\begin{aligned}
& H \bumpeq \Omega \\
& H \bumpeq(p \mapsto v) \\
& H \bumpeq H_{1} * H_{2}
\end{aligned}
$$

- THEOREM: We can normalize arbitrary \mathcal{H}-formulae to these basic constraints, e.g.

$$
\begin{gathered}
H \bumpeq H_{0} \wedge H_{1} \bumpeq(x \mapsto-) * H_{0} \wedge H_{1} \bumpeq(x \mapsto-) * \mathcal{M} \wedge H \neq \mathcal{M} \\
\downarrow \\
T_{1} \bumpeq \Omega \wedge H \bumpeq H_{0} * T_{1} \wedge T_{2} \bumpeq\left(x \mapsto_{-}\right) \wedge H_{1} \bumpeq T_{2} * H_{0} \wedge T_{3} \bumpeq\left(x \mapsto \mapsto_{-}\right) \wedge H_{1} \bumpeq T_{3} * \mathcal{H} \wedge \\
H \bumpeq T_{4} \bumpeq(s \mapsto t) \wedge T_{5} \bumpeq(s \mapsto u) \wedge H \bumpeq T_{4} * T_{6} \wedge \mathcal{H} \bumpeq T_{5} * T_{7} \wedge t \neq u \vee \\
\left.H \bumpeq T_{8} * T_{9} \wedge \mathcal{M} \bumpeq T_{8} * T_{10} \wedge T_{11} \bumpeq T_{9} * T_{10} \wedge T_{12} \bumpeq(x \mapsto y) \wedge T_{11} \bumpeq T_{12} * T_{13}\right)
\end{gathered}
$$

STEP 1: Normalization (cont.)

PROOF: \mathcal{H} Normalization Rules (see paper)

$$
\begin{aligned}
& H \bumpeq E_{1} * E_{2} * S \longrightarrow H^{\prime} \bumpeq E_{1} * E_{2} \wedge H \bumpeq H^{\prime} * S \\
& H \bumpeq E_{1} * E_{2} \longrightarrow H^{\prime} \bumpeq E_{1} \wedge H \bumpeq H^{\prime} * E_{2} \quad \text { (} E_{1} \text { non-variable) } \\
& H \bumpeq H_{1} * E_{2} \longrightarrow H^{\prime} \bumpeq E_{2} \wedge H \bumpeq H_{1} * H^{\prime} \quad \text { (E2 non-variable) } \\
& H_{1} \bumpeq H_{2} \longrightarrow H^{\prime} \bumpeq \Omega \wedge H_{1} \bumpeq H_{2} * H^{\prime} \\
& H \neq E_{1} * E_{2} * S \longrightarrow \vee\left\{\begin{array}{l}
E_{1} \bumpeq(s \mapsto t) * H_{1}^{\prime} \wedge E_{2} \bumpeq(s \mapsto u) * H_{2}^{\prime} \\
H^{\prime} \bumpeq E_{1} * E_{2} \wedge H \neq H^{\prime} * S
\end{array}\right. \\
& H \neq E_{1} * E_{2} \longrightarrow H^{\prime} \bumpeq E_{1} \wedge H \neq H^{\prime} * E_{2} \quad \text { (} E_{1} \text { non-variable) } \\
& H \neq H_{1} * E_{2} \longrightarrow H^{\prime} \bumpeq E_{2} \wedge H \neq H_{1} * H^{\prime} \quad \text { (} E_{2} \text { non-variable) } \\
& H \neq \emptyset \longrightarrow H \bumpeq(s \mapsto t) * H^{\prime} \\
& H \neq(p \mapsto v) \longrightarrow \vee\left\{\begin{array}{l}
H \bumpeq \Omega \\
H \bumpeq(s \mapsto t) * H^{\prime} \wedge(p \neq s \vee v \neq t)
\end{array}\right. \\
& H \neq H_{1} * H_{2} \longrightarrow \vee\left\{\begin{array}{l}
H_{1} \bumpeq(s \mapsto t) * H_{1}^{\prime} \wedge H_{2} \bumpeq(s \mapsto u) * H_{2}^{\prime} \\
H^{\prime} \bumpeq H_{1} * H_{2} \wedge H \neq H^{\prime}
\end{array}\right. \\
& H_{1} \neq H_{2} \longrightarrow \vee\left\{\begin{array}{l}
H_{1} \bumpeq(s \mapsto t) * H_{1}^{\prime} \wedge H_{2} \bumpeq(s \mapsto u) * H_{2}^{\prime} \wedge t \neq u \\
H_{1} \bumpeq I * H_{1}^{\prime} \wedge H_{2} \bumpeq I * H_{2}^{\prime} \wedge H^{\prime} \bumpeq H_{1}^{\prime} * H_{2}^{\prime} \wedge H^{\prime} \neq \Omega
\end{array}\right.
\end{aligned}
$$

STEP 2: \mathcal{H}-Solver for Flat Constraints

- Basic idea: propagate heap membership constraints; define:

$$
\operatorname{in}(H, p, v) \quad \stackrel{\text { def }}{=} \quad(p, v) \in H
$$

- Heap membership propagation rules:
- Functional Dependency:

$$
\operatorname{in}(H, p, v) \wedge \operatorname{in}(H, p, w) \Longrightarrow v=w
$$

- Empty Heap:

$$
H \bumpeq \Omega \wedge \text { in }(H, p, v) \Longrightarrow \text { false }
$$

- Singleton Heap:

$$
\begin{aligned}
H \bumpeq(p \mapsto v) & \Longrightarrow \operatorname{in}(H, p, v) \\
H \bumpeq(p \mapsto v) \wedge \operatorname{in}(H, q, w) & \Longrightarrow p=q \wedge v=w
\end{aligned}
$$

STEP 2: \mathcal{H}-Solver (cont.)

- Separation:

$$
\begin{aligned}
H \bumpeq H_{1} * H_{2} \wedge \operatorname{in}(H, p, v) & \Longrightarrow \operatorname{in}\left(H_{1}, p, v\right) \vee \operatorname{in}\left(H_{2}, p, v\right) \\
H \bumpeq H_{1} * H_{2} \wedge \operatorname{in}\left(H_{1}, p, v\right) & \Longrightarrow \operatorname{in}(H, p, v) \\
H \bumpeq H_{1} * H_{2} \wedge \operatorname{in}\left(H_{2}, p, v\right) & \Longrightarrow \operatorname{in}(H, p, v) \\
H \bumpeq H_{1} * H_{2} \wedge \operatorname{in}\left(H_{1}, p, v\right) \wedge \operatorname{in}\left(H_{2}, q, w\right) & \Longrightarrow p \neq q
\end{aligned}
$$

- \mathcal{H}-Solver Algorithm (hsolve) $=$ Constraint Handling Rules with Disjunction
"Given a constraint store S, repeatedly apply propagation rules until a fixed point is reached."

Disjunction is handled by branching and backtracking.

STEP 2: H-Solver Algorithm

$$
\left.\begin{array}{rl}
\operatorname{in}(H, p, v) \wedge \operatorname{in}(H, p, w) & \Longrightarrow v=w \\
H \bumpeq \Omega \wedge \operatorname{in}(H, p, v) & \Longrightarrow \text { false } \\
H \bumpeq(p \mapsto v) & \Longrightarrow \operatorname{in}(H, p, v) \\
H \bumpeq(p \mapsto v) \wedge \operatorname{in}(H, q, w) & \Longrightarrow p=q \wedge v=w \\
H \bumpeq H_{1} * H_{2} \wedge \operatorname{in}(H, p, v) & \Longrightarrow \operatorname{in}\left(H_{1}, p, v\right) \vee \operatorname{in}\left(H_{2}, p, v\right) \\
H \bumpeq H_{1} * H_{2} \wedge \operatorname{in}\left(H_{1}, p, v\right) & \Longrightarrow \operatorname{in}(H, p, v) \\
H \bumpeq H_{1} * H_{2} \wedge \operatorname{in}\left(H_{2}, p, v\right) & \Longrightarrow \operatorname{in}(H, p, v) \\
H \bumpeq H_{1} * H_{2} \wedge \operatorname{in}\left(H_{1}, p, v\right) \wedge \operatorname{in}\left(H_{2}, q, w\right) & \Longrightarrow p \neq q
\end{array}\right] \begin{aligned}
& H \bumpeq(p \mapsto v), H \bumpeq I * J, J \bumpeq(p \mapsto w), v \neq w \\
& H \bumpeq(p \mapsto v), H \bumpeq I * J, J \bumpeq(p \mapsto w), v \neq w, \operatorname{in}(H, p, v) \\
& H \bumpeq(p \mapsto v), H \bumpeq I * J, J \bumpeq(p \mapsto w), v \neq w, \operatorname{in}(H, p, v), \operatorname{in}(J, p, w) \\
& H \bumpeq(p \mapsto v), H \bumpeq I * J, J \bumpeq(p \mapsto w), v \neq w, \operatorname{in}(H, p, v), \operatorname{in}(J, p, w), \operatorname{in}(H, p, w) \\
& H \bumpeq(p \mapsto v), H \bumpeq I * J, J \bumpeq(p \mapsto w), v \neq w, i n(H, p, v), \operatorname{in}(J, p, w), v=w
\end{aligned}
$$

\therefore Goal is UNSAT.

STEP 2: Main \mathcal{H}-Solver Results

Theorem (Soundness)

The \mathcal{H}-Solver is sound.

Proof: By the correctness of the CHR rules.

Theorem (Completeness)

The \mathcal{H}-Solver is complete. ${ }^{1}$

Proof: (see paper)

1. Assumes complete equality theory

STEP 3: DPLL(hsolve)

- DPLL(hsolve) for non-conjunctive goals, e.g.

$$
\begin{gathered}
T_{1} \bumpeq \Omega \wedge H \bumpeq H_{0} * T_{1} \wedge T_{2} \bumpeq(x \mapsto-) \wedge H_{1} \bumpeq T_{2} * H_{0} \wedge T_{3} \bumpeq(x \mapsto-) \wedge H_{1} \bumpeq T_{3} * \mathcal{M} \wedge \\
\left(T_{4} \bumpeq(s \mapsto t) \wedge T_{5} \bumpeq(s \mapsto u) \wedge H \bumpeq T_{4} * T_{6} \wedge \mathcal{M} \bumpeq T_{5} * T_{7} \wedge t \neq u \vee\right. \\
\left.H \bumpeq T_{8} * T_{9} \wedge \mathcal{M} \bumpeq T_{8} * T_{10} \wedge T_{11} \bumpeq T_{9} * T_{10} \wedge T_{12} \bumpeq(x \mapsto y) \wedge T_{11} \bumpeq T_{12} * T_{13}\right) \\
\downarrow \\
b_{1} \wedge b_{2} \wedge b_{3} \wedge b_{4} \wedge b_{5} \wedge b_{6} \wedge\left(b_{7} \wedge b_{8} \wedge b_{9} \wedge b_{10} \wedge \neg b_{11} \vee b_{12} \wedge b_{13} \wedge b_{14}\right) \wedge \\
b_{1} \leftrightarrow T_{1} \bumpeq \Omega \wedge b_{2} \leftrightarrow H \bumpeq H_{0} * T_{1} \wedge b_{3} \leftrightarrow T_{2} \bumpeq(x \mapsto-) \wedge b_{4} \leftrightarrow H_{1} \bumpeq T_{2} * H_{0} \wedge \\
b_{5} \leftrightarrow T_{3} \bumpeq(x \mapsto-) \wedge b_{6} \leftrightarrow H_{1} \bumpeq T_{3} * \mathcal{M} \wedge b_{7} \leftrightarrow T_{4} \bumpeq(s \mapsto t) \wedge b_{8} \leftrightarrow T_{5} \bumpeq(s \mapsto u) \wedge \\
b_{9} \leftrightarrow H \bumpeq T_{4} * T_{6} \wedge b_{10} \leftrightarrow \mathcal{M} \bumpeq T_{5} * T_{7} \wedge b_{11} \leftrightarrow t=u \wedge b_{12} \leftrightarrow T_{11} \bumpeq T_{9} * T_{10} \wedge \\
b_{13} \leftrightarrow T_{12} \bumpeq(x \mapsto y) \wedge b_{14} \leftrightarrow T_{11} \bumpeq T_{12} * T_{13}
\end{gathered}
$$

- $\operatorname{DPLL}(\mathcal{H})$ implemented in Satisfiability Modulo Constraint Handling Rules (SMCHR).

Details/Download:
http://www.comp.nus.edu.sg/~gregory/smchr.html

STEP 3: DPLL(hsolve) (cont.)

- EXAMPLE (complete):
\$./smchr -s heaps,linear, eq
$>\operatorname{emp}\left(T _1\right) / \backslash \operatorname{sep}\left(H, H _0, T _1\right) / \backslash \operatorname{one}\left(T _2, x, v 0\right) / \backslash$ sep(H_1, T_2, H_0) / ((one (T_4, s, t) / one(T_5, s, u) / $\operatorname{sep}\left(H, T _4, ~ T _6\right) ~ / ~ \$ $\operatorname{sep}\left(\right.$ Heap, $\mathrm{T}_{-} 5, \mathrm{~T}_{-} 7$) / $\left.\mathrm{t}!=\mathrm{u}\right) ~ \ /$
 one(T_12, x, y) / $\left.\operatorname{sep}\left(T_{-} 11, T_{-} 12, T_{-} 13\right)\right)$)
UNSAT
Therefore:

$$
\begin{gathered}
T_{1} \bumpeq \Omega \wedge H \bumpeq H_{0} * T_{1} \wedge T_{2} \bumpeq(x \mapsto-) \wedge H_{1} \bumpeq T_{2} * H_{0} \wedge T_{3} \bumpeq(x \mapsto-) \wedge H_{1} \bumpeq T_{3} * \mathcal{M} \wedge \\
\left(T_{4} \bumpeq(s \mapsto t) \wedge T_{5} \bumpeq(s \mapsto u) \wedge H \bumpeq T_{4} * T_{6} \wedge \mathcal{M} \bumpeq T_{5} * T_{7} \wedge t \neq u \vee\right. \\
\left.H \bumpeq T_{8} * T_{9} \wedge \mathcal{M} \bumpeq T_{8} * T_{10} \wedge T_{11} \bumpeq T_{9} * T_{10} \wedge T_{12} \bumpeq(x \mapsto y) \wedge T_{11} \bumpeq T_{12} * T_{13}\right)
\end{gathered}
$$

is UNSAT. Therefore:

$$
H \bumpeq H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * H_{0} \wedge H_{1} \bumpeq\left(x \mapsto_{-}\right) * \mathcal{M} \rightarrow H \bumpeq \mathcal{M}
$$

is VALID.Therefore:

$$
\langle H \bumpeq \mathcal{M}, x:=\operatorname{alloc}() ; \text { free }(x), H \bumpeq \mathcal{M}\rangle
$$

Experimental Results

- BENCHMARKS:
(1) subsets_ N - sum-of-subsets
(2) expr_ N - expression evaluation
(3) stack_ N - stack
(4) filter_N - TCP/IP filtering
(5) sort_N - Bubblesort
(6) search234_N-234-tree search
(7) insert234_N - 234-tree insert

TRIPLES:

(F) $\quad\left\langle\mathcal{M} \bumpeq(p \mapsto v) * F, C, \exists F^{\prime}: \mathcal{M} \bumpeq(p \mapsto v) * F^{\prime}\right\rangle$
$(O P) \quad\langle H \bumpeq \mathcal{M}, C, H O P \mathcal{M}\rangle$
(A) $\quad\left\langle\ldots, C, \exists F^{\prime}, v: \mathcal{M} \bumpeq(p \mapsto v) * F^{\prime}\right\rangle$
$(\Omega) \quad\langle\mathcal{M} \bumpeq \Omega, C$, false \rangle
where $O P \in\{\sqsubseteq, \sqsupseteq, \bumpeq\}$

- We compare $\operatorname{SMCHR}(\mathcal{H})$ vs. Verifast (Separation Logic).

Experimental Results (cont.)

				Heaps		Verifast	
Bench.	Safety	LOC	type	time(s)	\#bt	time(s)	\#forks
subsets_16	F	50	rw-	0.00	17	10.69	65546
expr_2	F	69	rw-	0.05	124	18.38	136216
stack_80	F	976	rwa	8.66	320	68.20	9963
filter_1	F	192	r--	0.03	80	0.75	8134
filter_2	F	321	r--	0.11	307	-	-
sort_6	F	178	rw-	0.03	54	2.66	35909
search234_3	F	251	r--	0.02	46	0.67	1459
search234_5	F	399	r--	0.05	76	90.65	118099
insert234_5	F	839	rwa	1.19	120	52.87	36885
expr_2	\sqsubseteq	69	rw-	0.20	1329	n.a.	n.a.
stack_80	\sqsubseteq	976	rwa	8.07	322	n.a.	n.a.
filter_2	$O P$	321	r--	0.00	2	n.a.	n.a.
stack_80	A	976	rwa	8.90	320	65.68	9801
insert234_5	A	839	rwa	1.50	60	40.64	55423
subsets_16	Ω	50	rw-	0.00	33	n.a.	n.a.

Experimental Results (cont.)

- RESULTS:
(1) Interpolation: Constraint-based approach allows for search-space pruing a la no-good learning/interpolation.
(2) Expressivity: E.g. the (heap equivalence) triple:

$$
\langle H \bumpeq \mathcal{M}, C, H \bumpeq \mathcal{M}\rangle
$$

cannot be directly expressed in Verifast/Separation Logic.

Summary for \mathcal{H}

- Explicit heaps for expressiveness
- Promising Solver
- Symbolic Execution via Strongest Postcondition \longrightarrow Automatic Verification of \mathcal{H} assertions on whole-program, straight-line code

Overview (Recall)

- Assertion Language (\mathcal{H}, explicit heaps)
- Horn Clauses for Data Structures $(\operatorname{CLP}(\mathcal{H}))$
- Proving Horn Clauses (automatic induction)
- Local Reasoning, Compositional Proofs (frame rule)

CLP (\mathcal{H}) : Horn Clauses for Data Structures

Example: the predicate list (h, x), specifies a skeleton list in the heap h rooted at x.

$$
\begin{aligned}
& \operatorname{list}(h, x):-h \bumpeq \Omega, x=\text { null. } \\
& \operatorname{list}(h, x):-h \bumpeq(x \mapsto y) * h_{1}, \text { list }\left(h_{1}, y\right) .
\end{aligned}
$$

CLP (\mathcal{H}) : Horn Clauses for Data Structures

struct node \{
int data;
struct node *next;
\};
where the predicate increment_list is defined as follows.

$$
\begin{aligned}
& \text { increment_list }\left(h_{1}, h_{2}, x\right):- \\
& \quad h_{1} \bumpeq \Omega, h_{2} \bumpeq \Omega, x=\text { null. } \\
& \text { increment_list }\left(h_{1}, h_{2}, x\right):- \\
& \quad h_{1} \bumpeq(x \mapsto(d+1, n e x t)) * h_{1}^{\prime}, \\
& h_{2} \bumpeq(x \mapsto(d, \text { next })) * h_{2}^{\prime}, \\
& \quad \text { increment_list }\left(h 1^{\prime}, h_{2}^{\prime}, \text { next }\right) .
\end{aligned}
$$

Note: this is an example of a summary

Overview (Recall)

- Assertion Language (\mathcal{H}, explicit heaps)
- Horn Clauses for Data Structures $(\operatorname{CLP}(\mathcal{H}))$
- Proving Horn Clauses (automatic induction)
- Local Reasoning, Compositional Proofs (Frame Rule)

How to prove Predicates in Assertions?

- Verifying functional correctness of dynamic data structures
- Properties are formalized using a logic of heaps and separation - A core feature is the use of user-defined recursive predicates
- The Problem: entailment checking, where both LHS and RHS involve such predicates
- A fully automatic solution is not possible
- The state-of-the-art for automatic methods is inadequate

The State-of-the-Art: Unfold-and-Match

- Performs systematic folding and unfolding steps of the recursive rules, and succeeds when we produce a formula which is obviously provable:
- no recursive predicate in RHS of the proof obligation, and a direct proof can be achieved by consulting some generic SMT solver;
- no special consideration is needed on any occurrence of a predicate appearing in the formula, i.e., formula abstraction can be applied.
- Notable systems: DRYAD and HIP/SLEEK

Example: Unfold-and-Match

Consider $\widehat{\mathrm{I}}(\mathrm{x}, \mathrm{y}) \stackrel{\text { def }}{=} \mathrm{x}=\mathrm{y} \wedge \mathbf{e m p} \mid \mathrm{x} \neq \mathrm{y} \wedge(\mathrm{x} \mapsto \mathrm{t}) * \widehat{\mathrm{I}}(\mathrm{t}, \mathrm{y})$

$$
\begin{aligned}
& \text { Pre: } \widehat{\operatorname{Is}}(\mathrm{x}, \mathrm{y}) \\
& \quad \text { assume }(\mathrm{x}!=\mathrm{y}) \\
& \mathrm{z}=\mathrm{x} \cdot \mathrm{next} \\
& \text { Post: } \hat{\mathrm{I} s}(\mathrm{z}, \mathrm{y})
\end{aligned}
$$

Unfold the precondition $\widehat{\mathrm{l}}(\mathrm{x}, \mathrm{y})$

- Case 1: holds because ($\mathrm{x}=\mathrm{y}$) and assume (x ! $=\mathrm{y}$) implies false
- Case 2: holds by matching z with t

Shortcomings

(1) Recursion Divergence: when the "recursion" in the recursive rules is structurally dissimilar to the program code
(2) Generalization of Predicate: when the predicate describing a loop invariant or a function is used later to prove a weaker property
(occurs often in practice, especially in iterative programs)

Recursion Divergence

- When the "recursion" in the recursive rules is structurally dissimilar to the program code

$$
\begin{aligned}
& \widehat{\mathrm{I}}(\mathrm{x}, \mathrm{y}) *\left(\mathrm{y} \mapsto_{-}\right) \\
& \mathrm{z}=\mathrm{y} \cdot \mathrm{next} \\
& \hat{\mathrm{Is}}(\mathrm{x}, \mathrm{z})
\end{aligned}
$$

Fundamentally, it is about relating two definitions of a list segment: (recurse rightwards, and recurse leftwards)

$$
\begin{array}{ll}
\widehat{\mathrm{Is}}(\mathrm{x}, \mathrm{y}) \stackrel{\text { def }}{=} \mathrm{x}=\mathrm{y} \wedge \text { emp } & \mid \mathrm{x} \neq \mathrm{y} \wedge(\mathrm{x} \mapsto \mathrm{t}) * \widehat{\mathrm{I}}(\mathrm{t}, \mathrm{y}) \\
\mathrm{Is}(\mathrm{x}, \mathrm{y}) \stackrel{\text { def }}{=} \mathrm{x}=\mathrm{y} \wedge \text { emp } & \mid \mathrm{x} \neq \mathrm{y} \wedge(\mathrm{t} \mapsto \mathrm{y}) * \mathrm{Is}(\mathrm{x}, \mathrm{t})
\end{array}
$$

(sometimes inevitable, e.g., queue implementation using list segment)

Generalization of Predicate:

- When the predicate describing a loop invariant or a function is used later to prove a weaker property
- sorted_list(x, len, min) $\models \operatorname{list}(x$, len $)$
- $\operatorname{ls}(\mathrm{x}, \mathrm{y}) * \operatorname{list}(\mathrm{y}) \models \operatorname{list}(\mathrm{x})$

What is Needed: INDUCTION

- Traditional works on automated induction generally require variables of inductive type (so that the notions of base case and induction step are well-defined)
- Our predicates are (user-)defined over pointer variables, which are not inductive

The Specification Language

- We use the language \mathcal{H}, a logic with the features of explicit heaps and a separation operator
- It facilitates symbolic execution and therefore VC generation
- It has little/no bearing on the effectiveness of our induction method
- E.g. the below defines a skeleton list (we inherit the CLP semantics)

$$
\begin{aligned}
& \operatorname{list}(x, L):-\quad x=0, L \bumpeq \emptyset . \\
& \operatorname{list}(x, L):-L \bumpeq(x \mapsto t) * L_{1}, \quad \operatorname{list}\left(t, L_{1}\right) .
\end{aligned}
$$

(note that $*$ applies to terms, and not predicates as in traditional Separation Logic)

General Cut-Rule

$$
\text { (cut) } \frac{\mathcal{L}_{1} \models \mathcal{R}_{1} \quad \mathcal{L}_{2} \wedge \mathcal{R}_{1} \models \mathcal{R}}{\mathcal{L}_{1} \wedge \mathcal{L}_{2} \models \mathcal{R}}
$$

- Trivial from the deduction point of view (top to bottom)
- For proof derivation (bottom to top), obtaining an appropriate \mathcal{R}_{1} is tantamount to a magic step
- In manual proofs, we perform this magic step all the time
- Automating this step is extremely hard

Induction Rule 1

$$
\left(\text { IndUCTION-1) } \frac{\mathcal{L}_{1} \models \mathcal{R}_{1}}{\mathcal{L}_{1} \wedge \mathcal{L}_{2} \models \mathcal{R}} \quad \mathcal{L}_{2} \wedge \mathcal{R}_{1} \models \mathcal{R}\right.
$$

- $\mathcal{L}_{1} \models \mathcal{R}_{1}$ is "the same" as some obligation encountered in the proof path (which acts as an induction hypothesis), thus it will be discharged immediately
- We discover \mathcal{R}_{1} and proceed with the other obligation

Induction Rule 2

$$
(\text { Induction- } 2) \frac{\mathcal{L}_{1} \models \mathcal{R}_{1} \quad \mathcal{L}_{2} \wedge \mathcal{R}_{1} \models \mathcal{R}}{\mathcal{L}_{1} \wedge \mathcal{L}_{2} \models \mathcal{R}}
$$

- $\mathcal{L}_{2} \wedge \mathcal{R}_{1} \models \mathcal{R}$ is "the same" as some obligation encountered in the proof path (which acts as an induction hypothesis), thus it will be discharged immediately
- We discover \mathcal{R}_{1} and proceed with the other obligation

Summary

- Our automated induction rules allow for
- a systematic method to discover \mathcal{R}_{1} (in the cut-rule)
- application of induction to discharge a proof obligation
- A significant technicality is to ensure induction applications do not lead to circular (i.e., wrong) reasoning

Example (simplified by ignoring heaps)

$$
\begin{gathered}
\operatorname{even}(x):-\quad x=0 \\
\operatorname{even}(x):-\quad y=x-2, \text { even }(y) \\
m 4(x):-\quad x=0 \\
m 4(x):-\quad z=x-4, m 4(z) \\
m 4(x) \neq \operatorname{even}(x)
\end{gathered}
$$

- Unfold-and-Match will not work: there always remains obligation with predicate m 4 in the LHS and predicate even in the RHS

Example: Induction Works

		True	
		$\mathrm{z}=\mathrm{x}-4, \operatorname{even}(\mathrm{z}) \models \mathrm{y}=\mathrm{x}-2, \mathrm{t}=\mathrm{y}-2$, even (t)	(Smt)
True		$z=x-4, \operatorname{even}(\mathrm{z}) \models \mathrm{y}=\mathrm{x}-2, \operatorname{even}(\mathrm{y})$	(RU)
(SMT) $\overline{\mathrm{x}=0 \models \mathrm{x}=0}$	m4 (z) \models even (z)	$z=x-4, \operatorname{even}(\mathrm{z}) \models$ even(x)	
(RU) $\overline{\mathrm{x}=0 \vDash \operatorname{even}(\mathrm{x})}$		$=\mathrm{x}-4, \mathrm{~m} 4(\mathrm{z}) \models \operatorname{even}(\mathrm{x})$	I-1)
	m4	\vDash even(x)	

Example: Induction Works

$$
\begin{aligned}
& (\mathrm{SMT}) \frac{\text { TRUE }}{\mathrm{x}=0 \mid=\mathrm{x}=0} \\
& (\mathrm{RU}) \frac{\mathrm{x}=0 \equiv \operatorname{even}(\mathrm{x})}{\mathrm{x}=0(\mathrm{x}) \models \operatorname{even}(\mathrm{x})} \\
& (\mathrm{LU}) \frac{}{m 4(}
\end{aligned}
$$

Example: Induction Works

- Applying induction rule 1 , we discover even (z) as a candidate for a cut point.

This step allows us to "flip" the predicate even(z) into the LHS so that subsequently Unfold-and-Match can work.

Results

- Proving commonly-used "lemmas" (or "axioms"); many existing systems simply accept them as facts from the users

```
sorted_list(x, min) \modelslist(x)
sorted_list
sorted_list ( 
sorted_ls(x, y, min, max)*sorted_list(y, min}\mp@subsup{)}{2}{\prime})\wedge max \leq min _ \modelssorted_list(x,min
```



```
|s
\mp@subsup{\hat{\}}{1}{}}(x,\mathrm{ last, len) * (last }\mapsto\mathrm{ new )}\models\mp@subsup{\widehat{\}}{1}{}(x,\mathrm{ new, len }+1
avl(x, hgt, min, max, balance) \models bstree(x, hgt, min, max)
bstree(x, height, min, max )}\models\operatorname{bintree(x, height)
```

(running time ranges from 0.2 - 1 second per benchmark)

Results

- Eliminate the usage of lemmas: it indeed runs faster - we only look at the available induction hypotheses $(0-3)$
- other systems look at all the "lemmas" (or "axioms")

Table: Verification of Open-Source Libraries.

Program	Function	T / F
glib/gslist.c Singly Linked-List	find, position, index, nth, last,length, append, insert_at_pos,merge_sort, remove,insert_sorted_list	$<1 s$
glib/glist.c Doubly Linked-List	nth, position, find, index, last, length	$<1 s$
OpenBSD/ queue.h Queue	simpleq_remove_after, simpleq_insert_tail, simpleq_insert_after	$<1 s$
ExpressOS/ cachePage.c	lookup_prev, add_cachepage	$<1 s$
linux/mmap.c	insert_vm_struct	$<1 s$

What Next?

- Improve the robustness
- e.g. works for $A \models B$, but might fail if we strengthen A (or weaken B)
- having too strong antecedent (or too weak consequent) is an obstacle to the usage of induction

Overview (Recall)

Toward automatic reasoning about Data Structures

- Assertion Language (\mathcal{H}, explicit heaps)
- Horn Clauses for Data Structures (CLP $(\mathcal{H}))$
- Proving Horn Clauses (automatic induction) ?
- Local Reasoning, Compositional Proofs (Frame Rule)

Local / Compositional Reasoning

The Rule in Separation Logic which allows local reasoning:

$$
\frac{\{\phi\} P\{\psi\}}{\{\phi * \pi\} P\{\psi * \pi\}}
$$

the premise $\{\phi\} P\{\psi\}$ ensures that the implicit heap arising from the formula ϕ captures all the heap accesses, read or write, in the program fragment P.

The Frame Rule does not Apply with Explicit Heaps

- if $\{\phi\} P\{\psi\}$ is established because ψ follows from the strongest postcondition of P executed from ϕ, it is not the case that any heap separate from ψ remains unchanged by the execution of P.
- because there are multiple heaps, only those which are affected by the program must be isolated.

Our new Frame Rule:

- used by specifying explicitly named subheaps in order to elegantly isolate relevant portions of the global heap.
- As a significant result, our frame rule is concerned only on heap updates, as opposed to being concerned about all heap references as in traditional SL.

Why do we need a Frame Rule?

- So far, only straight-line verification
- Loop invariants
- Procedure calls
- Local Reasoning / Compositional Proofs

All Heaps are Ghost except for the Global Heap \mathcal{M}

The postconditions shown are the strongest postconditions:

$$
\begin{array}{ll}
\{\phi\} x=\operatorname{malloc}(1)\{\operatorname{alloc}(\phi, x)\} & \text { (Heap allocation) } \\
\{\phi\} \operatorname{free}(x)\{\operatorname{free}(\phi, x)\} & \text { (Heap deallocation) } \\
\{\phi\} x=* y\{\operatorname{access}(\phi, y, x)\} & \text { (Heap access) } \\
\{\phi\} * x=y\{\operatorname{assign}(\phi, x, y)\} & \text { (Heap assignment) }
\end{array}
$$

where the auxiliary macros alloc, free, access, and assign expand as follows:

$$
\begin{array}{lll}
\text { alloc }(\phi, x) & \stackrel{\text { def }}{=} & \mathcal{M} \bumpeq(x \mapsto v) * \mathcal{H} \wedge \phi\left[\mathcal{H} / \mathcal{M}, v_{1} / x\right] \\
\text { free }(\phi, x) & \stackrel{\text { def }}{=} & \mathcal{H} \bumpeq(x \mapsto v) * \mathcal{M} \wedge \phi[\mathcal{H} / \mathcal{M}] \\
\operatorname{access}(\phi, y, x) & \stackrel{\text { def }}{=} & \mathcal{M} \bumpeq(y \mapsto x) * \mathcal{H} \wedge \phi[v / x] \\
\operatorname{assign}(\phi, x, y) & \stackrel{\text { def }}{=} & \mathcal{M} \bumpeq(x \mapsto y) * \mathcal{H}_{1} \wedge \\
& & \mathcal{H} \bumpeq(x \mapsto v) * \mathcal{H}_{1} \wedge \phi[\mathcal{H} / \mathcal{M}]
\end{array}
$$

where \mathcal{H} and \mathcal{H}_{1} are fresh heap variables, and v and v_{1} are fresh value variables. \square

Ghosts and Heap Reality

- User-defined Predicates use only ghost variables
- Connection the global heap is by means of $\mathcal{H} \sqsubseteq \mathcal{M}$ ("heap reality" of \mathcal{H})
- User-defined Predicates in an assertion can always be framed.
- What is interesting, therefore, is the preservation of heap reality

Example

```
struct node {
    int data;
    struct node *next;
};
```

```
{list(\mathcal{H},x),\mathcal{H}\sqsubseteq\mathcal{M}}
y = x;
while (y) {
    y->data++;
    y = y->next;
}
{ increment_list ( }\mp@subsup{\mathcal{H}}{1}{},\mathcal{H},x),\mp@subsup{\mathcal{H}}{1}{}\sqsubseteq\mathcal{M}
```

where the predicate increment_list is defined as follows.

$$
\begin{aligned}
& \text { increment_list }\left(h_{1}, h_{2}, x\right):- \\
& \quad h_{1} \bumpeq \Omega, h_{2} \bumpeq \Omega, x=\text { null. } \\
& \text { increment_list }\left(h_{1}, h_{2}, x\right):- \\
& \quad h_{1} \bumpeq(x \mapsto(d+1, n e x t)) * h_{1}^{\prime}, \\
& h_{2} \bumpeq(x \mapsto(d, \text { next })) * h_{2}^{\prime}, \\
& \quad \text { increment_list }\left(h 1^{\prime}, h_{2}^{\prime}, \text { next }\right) .
\end{aligned}
$$

Note: $\quad \operatorname{list}(\mathcal{H}, x)$ frames through, but not necessarily $\mathcal{H} \sqsubseteq \mathcal{M}$.

Heap Evolution

Let $T=\{\phi\} P\{\psi\}$ where $\tilde{\mathcal{H}}$ appears in ϕ and $\tilde{\mathcal{H}}^{\prime}$ appears in ψ. Then:

$$
T \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}
$$

means that the largest $\tilde{\mathcal{H}}^{\prime}$ can be is $\tilde{\mathcal{H}}$ plus any new cells allocated by P, and minus any that are freed by P.

Usage: if $T \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}$ then any heap that is separate from $\tilde{\mathcal{H}}$ at the point of the precondition of T (i.e., before P is executed) will be separate from $\tilde{\mathcal{H}}^{\prime}$ at the point of the postcondition (i.e., after P is executed).

EVOLUTION RULES (Basic)

$$
\begin{aligned}
& \text { MALLOC } \\
& \frac{\phi \models \tilde{\mathcal{H}} \sqsubseteq \mathcal{M} \quad \psi \models \tilde{\mathcal{H}}^{\prime} \sqsubseteq \mathcal{M} \quad \operatorname{dom}\left(\tilde{\mathcal{H}}^{\prime}\right) \subseteq \operatorname{dom}(\tilde{\mathcal{H}}) \cup\{x\}}{\{\phi\} \mathrm{x}=\operatorname{malloc}(1)\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}} \\
& \text { FREE } \\
& \frac{\phi \models \tilde{\mathcal{H}} \sqsubseteq \mathcal{M} \quad \psi \models \tilde{\mathcal{H}^{\prime}} \sqsubseteq \mathcal{M} \quad \operatorname{dom}\left(\tilde{\mathcal{H}}^{\prime}\right) \subseteq \operatorname{dom}(\tilde{\mathcal{H}}) \backslash\{x\}}{\{\phi\} \text { free }(\mathrm{x})\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}} \\
& \text { OTHER-STATEMENTS } \\
& \frac{\phi \models \tilde{\mathcal{H}} \sqsubseteq \mathcal{M} \quad \psi \models \tilde{\mathcal{H}}^{\prime} \sqsubseteq \mathcal{M} \operatorname{dom}\left(\tilde{\mathcal{H}^{\prime}}\right) \subseteq \operatorname{dom}(\tilde{\mathcal{H}})}{\{\phi\} s\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}} \\
& \text { SEQ-COMPOSITION } \\
& \frac{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime} \quad\{\psi\} Q\{\gamma\} \rightsquigarrow \tilde{\mathcal{H}^{\prime}} \triangleright \tilde{\mathcal{H}}^{\prime \prime}}{\{\phi\} P ; Q\{\gamma\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime \prime}} \\
& \text { COMPOSITION } \\
& \frac{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}_{1}^{\prime} \quad\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}_{2}^{\prime}}{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright\left(\tilde{\mathcal{H}}_{1}^{\prime} \cup \tilde{\mathcal{H}}_{2}^{\prime}\right)}
\end{aligned}
$$

EVOLUTION RULES (Structural)

$$
\begin{aligned}
& \text { IF-THEN-ELSE } \\
& \{\phi\} \operatorname{assume}(b) ; P_{1}\left\{\psi_{1}\right\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}_{1}^{\prime} \quad \tilde{\mathcal{H}}_{\tilde{\mathcal{H}}}^{\prime} \sqsubseteq \tilde{\mathcal{H}}_{1}^{\prime} \\
& \frac{\{\phi\} \text { assume }(\neg b) ; P_{2}\left\{\psi_{2}\right\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \dot{\mathcal{H}}_{2}^{\prime} \quad \tilde{\mathcal{H}}^{\prime} \sqsubseteq \tilde{\mathcal{H}}_{2}^{\prime}}{\{\phi\} \text { if }(b) \text { then } P_{1} \text { else } P_{2}\left\{\psi_{1} \vee \psi_{2}\right\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}} \\
& \text { NARROWING-POST } \\
& \frac{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}_{1}^{\prime} \quad \tilde{\mathcal{H}^{\prime}} \sqsubseteq \tilde{\mathcal{H}}_{1}^{\prime}}{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}} \\
& \text { WIDENING-PRE } \\
& \frac{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}}_{1} \triangleright \tilde{\mathcal{H}}^{\prime} \quad \phi \models \tilde{\mathcal{H}} \sqsubseteq \mathcal{M} \quad \tilde{\mathcal{H}}_{1} \sqsubseteq \tilde{\mathcal{H}}}{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}} \\
& \text { CALL } \\
& \frac{\{\phi\} p()\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime} \in \operatorname{Specs} \quad \phi^{\prime} \models \phi}{\left\{\phi^{\prime}\right\} \text { call } p()\{-\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}}
\end{aligned}
$$

Evolution Theorem

$$
\frac{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}}{\left\{\phi \wedge \tilde{\mathcal{H}} * \mathcal{H}_{0}\right\} P\left\{\psi \wedge \tilde{\mathcal{H}}^{\prime} * \mathcal{H}_{0}\right\}}
$$

Update Enclosure (Our version of Memory Safety)

Suppose that P is of the form $P_{1} ; s ; P_{2}$.
We say $\tilde{\mathcal{H}}$ encloses the update s of P if $\left\{\tilde{\tilde{\mathcal{L}}}^{\prime}\right\} \quad P_{1}\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime}$ holds, and for each model \mathcal{I} of $\psi, x \in \operatorname{dom}\left(\mathcal{I}\left(\tilde{\mathcal{H}}^{\prime}\right)\right)$ holds.

$$
T \rightsquigarrow \tilde{\mathcal{H}} \gg P .
$$

denotes that \mathcal{H} encloses all the updates of P.
Usage: Heap reality $\mathcal{H} \sqsubseteq \mathcal{M}$ falsified only if program updates a cell in $\operatorname{dom}(\mathcal{H})$, or deallocates a cell in \mathcal{M} whose address is also in $\operatorname{dom}(\mathcal{H})$.

Rules for Update Enclosure (Basic)

$$
\begin{aligned}
& \text { HEAP-ASSIGN } \\
& \begin{array}{c}
\phi \models \tilde{\mathcal{H}} \sqsubseteq \mathcal{M} \quad x \in \operatorname{dom}(\tilde{\mathcal{H}}) \\
\{\phi\} * \mathrm{x}=\mathrm{y}\{-\} \rightsquigarrow \tilde{\mathcal{H}} \gg *_{\mathrm{x}}:=\mathrm{y}
\end{array} \\
& \text { FREE } \\
& \frac{\phi \models \tilde{\mathcal{H}} \sqsubseteq \mathcal{M} \quad x \in \operatorname{dom}(\tilde{\mathcal{H}})}{\{\phi\} \text { free }(x)\{-\} \rightsquigarrow \tilde{\mathcal{H}} \gg \text { free }(\mathrm{x})} \\
& \text { OTHER-STATEMENTS } \\
& \frac{\phi \models \tilde{\mathcal{H}} \sqsubseteq \mathcal{M}}{\{\phi\} s\{-\} \rightsquigarrow \tilde{\mathcal{H}} \gg s} \\
& \text { SEQ-COMPOSITION } \\
& \frac{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \gg P \quad\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \triangleright \tilde{\mathcal{H}}^{\prime} \quad\{\psi\} Q\{\gamma\} \rightsquigarrow \tilde{\mathcal{H}}^{\prime} \gg Q}{\{\phi\} P ; Q\{\gamma\} \rightsquigarrow \tilde{\mathcal{H}} \gg(P ; Q)}
\end{aligned}
$$

Rules for Update Enclosure (Structural)

$$
\begin{gathered}
\text { WIDENING-PRE } \\
\frac{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \gg P\left(\tilde{\mathcal{H}^{\prime}} \sqsubseteq \mathcal{M}\right.}{\{\phi\} P\{\psi\} \rightsquigarrow\left(\tilde{\mathcal{H}} \cup \tilde{\mathcal{H}}^{\prime}\right) \gg P} \\
\text { IF-THEN-ELSE } \\
\frac{\{\phi\} \operatorname{assume}(b) ; P_{1}\left\{\psi_{1}\right\} \rightsquigarrow \tilde{\mathcal{H}} \gg\left(\operatorname{assume}(b) ; P_{1}\right)}{\{\phi\} \operatorname{assume}(\neg b) ; P_{2}\left\{\psi_{2}\right\} \rightsquigarrow \tilde{\mathcal{H}}^{2} \gg\left(\operatorname{assume}(\neg b) ; P_{2}\right)} \\
\{\phi\} \equiv \text { if }(b) \text { then } P_{1} \text { else } P_{2}\left\{\psi_{1} \vee \psi_{2}\right\} \rightsquigarrow \tilde{\mathcal{H}} \gg P \\
\text { CALL } \\
\frac{(\{\phi\} p()\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \gg[p \prime \text { s body }]) \in \text { Specs } \quad \phi^{\prime} \models \phi}{\left\{\phi^{\prime}\right\} \text { call } p()\{-\} \rightsquigarrow \tilde{\mathcal{H}} \gg \text { call } p()}
\end{gathered}
$$

The New Frame Rule

$$
\frac{\{\phi\} P\{\psi\} \rightsquigarrow \tilde{\mathcal{H}} \gg P}{\left\{\phi \wedge \tilde{\mathcal{H}} * \mathcal{H}_{0} \wedge \mathcal{H}_{0} \sqsubseteq \mathcal{M}\right\} P\left\{\psi \wedge \mathcal{H}_{0} \sqsubseteq \mathcal{M}\right\}}
$$

Solves Two Problem Areas

For the first time, we have a systematic method for automatic proof in two settings:

- Summaries
- Structure Sharing

Cyclic Graph (Basic Setup)

Consider a generic predicate which describes a general, possibly cyclic, graph. We assume that each node has exactly two successors "left" and "right". Some key points:

- the subheaps h_{1} and h_{2} are separate and together house a graph rooted at x and where the "visited" nodes are kept in the set of values t.
- t represents a set of locations, "visited" during previous processing of a predecessor node. By construction t will be disjoint from $\operatorname{dom}\left(h_{1}\right) \cup \operatorname{dom}\left(h_{2}\right)$,
- the heap h_{1} represents the nodes the left subtree of x that are visited for the first time in a left-to-right preorder traversal.
- Similarly, the second heap h_{2} represents the nodes the right subtree of x that are visited for the first time.

Cyclic Graph

$$
\begin{aligned}
& \operatorname{graph} r o o t\left(h_{1}, h_{2}, x\right):-\operatorname{graph}\left(h_{1}, h_{2}, x, \emptyset\right) . \\
& \operatorname{graph}\left(h_{1}, h_{2}, x, t\right):- \\
& \quad h_{1} \bumpeq \Omega, h_{2} \bumpeq \Omega, x=\text { null } \vee x \in t . \\
& \operatorname{graph}\left(h_{1}, h_{2}, x, t\right):- \\
& h_{x} \bumpeq(x \mapsto(-, \text { left }, \text { right })), \\
& \quad x \notin t, t_{1}=t \cup\{x\}, \\
& \quad \operatorname{graph}\left(h_{1 a}, h_{1 b}, \text { left, } t_{1}\right), h_{1} \bumpeq h_{x} * h_{1 a} * h_{1 b}, \\
& \quad t_{2}=t_{1} \cup \operatorname{dom}\left(h_{1 a}\right) \cup \operatorname{dom}\left(h_{1 b}\right) \\
& \operatorname{graph}\left(h_{2 a}, h_{2 b}, \text { right }, t_{2}\right), h_{2} \bumpeq h_{2 a} * h_{2 b} .
\end{aligned}
$$

Cyclic Graph

This graph is a model for graph $\operatorname{root}\left(h_{1}, h_{2}, x\right)$.
Variable x is node 0 . The heap h_{1} comprises nodes $0,1,3,4$; while h_{2} comprises just node 2. Consider $\operatorname{graph}\left(h_{2 a}, h_{2 b}\right.$, right, $\left.t_{2}\right)$ where right is node 2. This is in fact an expression obtained by unfolding $\operatorname{graph}\left(h_{1}, h_{2}, x, \emptyset\right)$. Now $h_{2 a}$ comprises just node 2, while $h_{2 b} \bumpeq \Omega$.

Marking a Cyclic Graph

```
struct node {
    int m;
    struct node *left, *right;
};
void mark(struct node *x) {
    if (!x || x->m == 1) return;
    struct node *l = x->left, *r = x->right;
    x->m = 1; mark(l); mark(r);
}
```


Marking a Cyclic Graph

$\operatorname{mgraph}\left(h_{1}, h_{2}, x, t\right):-$

$$
h_{1} \bumpeq \Omega, h_{2} \bumpeq \Omega, x=\text { null } \vee x \in t .
$$

$\operatorname{mgraph}\left(h_{1}, h_{2}, x, t\right):-\quad / /$ marked
$h_{x} \bumpeq(x \mapsto(1$, left, right $)), \quad x \notin t, t_{1}=t \cup\{x\}$,
$\operatorname{mgraph}\left(h_{1 a}, h_{1 b}\right.$, left, $\left.t_{1}\right), h_{1} \bumpeq h_{x} * h_{1 a} * h_{1 b}$,
$t_{2}=t_{1} \cup \operatorname{dom}\left(h_{1 a}\right) \cup \operatorname{dom}\left(h_{1 b}\right)$,
$\operatorname{mgraph}\left(h_{2 a}, h_{2 b}\right.$, right, $\left.t_{2}\right), h_{2} \bumpeq h_{2 a} * h_{2 b}, h_{1} * h_{2}$.
$\operatorname{pmgraph}\left(h_{1}, h_{2}, x, t\right):-\quad \operatorname{mgraph}\left(h_{1}, h_{2}, x, t\right)$.
pmgraph $\left(h_{1}, h_{2}, x, t\right)$:- // unmarked
$h_{x} \bumpeq(x \mapsto(0$, left, right $)), \quad x \notin t, t_{1}=t \cup\{x\}$, $\operatorname{pmgraph}\left(h_{1 a}, h_{1 b}\right.$, left, $\left.t_{1}\right), h_{1} \bumpeq h_{x} * h_{1 a} * h_{1 b}$,
$t_{2}=t_{1} \cup \operatorname{dom}\left(h_{1 a}\right) \cup \operatorname{dom}\left(h_{1 b}\right)$,
$\operatorname{pmgraph}\left(h_{2 a}, h_{2 b}\right.$, right, $\left.t_{2}\right), h_{2} \bumpeq h_{2 a} * h_{2 b}, h_{1} * h_{2}$.

Marking a Cyclic Graph

```
requires: }\quad\operatorname{pmgraph}(\mp@subsup{\mathcal{H}}{1}{},\mp@subsup{\mathcal{H}}{2}{},x,t),\quad\mp@subsup{\mathcal{H}}{1}{}\sqsubseteq\mathcal{M},\quad\mp@subsup{\mathcal{H}}{2}{}\sqsubseteq\mathcal{M
ensures: }\quad\operatorname{mgraph}(\mp@subsup{\mathcal{H}}{1}{\prime},\mp@subsup{\mathcal{H}}{2}{\prime},x,t),\quad\mp@subsup{\mathcal{H}}{1}{\prime}\sqsubseteq\mathcal{M},\quad\mp@subsup{\mathcal{H}}{2}{\prime}\sqsubseteq\mathcal{M}\mathrm{ ,
    dom}(\mp@subsup{\mathcal{H}}{1}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{1}{\prime}),\quad\operatorname{dom}(\mp@subsup{\mathcal{H}}{2}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{2}{\prime}
frame: }\quad(\mp@subsup{\mathcal{H}}{1}{}\cup\mp@subsup{\mathcal{H}}{2}{})>>\cdot,\mp@subsup{\mathcal{H}}{1}{}\triangleright\mp@subsup{\mathcal{H}}{1}{\prime},\mp@subsup{\mathcal{H}}{2}{}\triangleright\mp@subsup{\mathcal{H}}{2}{\prime
void mark(struct node *x) {
{pmgraph( (\mathcal{H},\mp@subsup{\mathcal{H}}{2}{},x,t), 蟥\sqsubseteq\mathcal{M},\mp@subsup{\mathcal{H}}{2}{}\sqsubseteq\mathcal{M}}
1 assume(x && x->m != 1); l = x->left; r = x->right;
{ H}\mp@subsup{\mathcal{H}}{x}{\bumpeq}=(x\mapsto(0,I,r)), x\not\int, t t =t \cup {x}, pmgraph(\mathcal{H
    \mathcal{H}}\bumpeq~\mp@subsup{\mathcal{H}}{x}{*}*\mp@subsup{\mathcal{H}}{1a}{}*\mp@subsup{\mathcal{H}}{1b}{}
    t2 =t1 \cupdom ( (\mathcal{H1a}) \cup dom (\mathcal{H}
    \mathcal{H}\bumpeq~\mp@subsup{\mathcal{H}}{2a}{*}*\mp@subsup{\mathcal{H}}{2b}{},\quad\mp@subsup{\mathcal{H}}{1}{}*\mp@subsup{\mathcal{H}}{2}{},\quad\mp@subsup{\mathcal{H}}{1}{}\sqsubseteq\mathcal{M},\quad\mp@subsup{\mathcal{H}}{2}{}\sqsubseteq\mathcal{M}}
2 x->m = 1;
{ pmgraph( (\mathcal{H}
    H}\mp@subsup{\mathcal{H}}{1}{}\bumpeq\mp@subsup{\mathcal{H}}{x}{*}*\mp@subsup{\mathcal{H}}{1a}{*}*\mp@subsup{\mathcal{H}}{1b}{},\quad\mp@subsup{\mathcal{H}}{2}{}\bumpeq\mp@subsup{\mathcal{H}}{2a}{}*\mp@subsup{\mathcal{H}}{2b}{}
    pmgraph}(\mp@subsup{\mathcal{H}}{2a}{},\mp@subsup{\mathcal{H}}{2b}{},r,\mp@subsup{t}{2}{}),\quadx\not\int,\mp@subsup{t}{1}{}=t\cup{x},\mp@subsup{t}{2}{}=\mp@subsup{t}{1}{}\cup\operatorname{dom}(\mp@subsup{\mathcal{H}}{1a}{})\cup\operatorname{dom}(\mp@subsup{\mathcal{H}}{1b}{})
```


Marking a Cyclic Graph

```
3 mark(l);
{ mgraph( }\mp@subsup{\mathcal{H}}{1a}{\prime},\mp@subsup{\mathcal{H}}{1b}{\prime},l,\mp@subsup{t}{1}{}),\quad\mp@subsup{\mathcal{H}}{1a}{\prime}\sqsubseteq\mathcal{M},\quad\mp@subsup{\mathcal{H}}{1b}{\prime}\sqsubseteq\mathcal{M}\mathrm{ ,
    dom(\mp@subsup{\mathcal{H}}{1a}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{1a}{\prime}), dom(\mp@subsup{\mathcal{H}}{1b}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{1b}{\prime}), // postcondition
    \mathcal{H}}\bumpeq\mp@subsup{\mathcal{H}}{x}{}*\mp@subsup{\mathcal{H}}{1a}{*}*\mp@subsup{\mathcal{H}}{1b}{},\quad\mp@subsup{\mathcal{H}}{2}{}\bumpeq\mp@subsup{\mathcal{H}}{2a}{}*\mp@subsup{\mathcal{H}}{2b}{}, // Rule (Hoare-FR
    pmgraph( }\mp@subsup{\mathcal{H}}{2a}{},\mp@subsup{\mathcal{H}}{2b}{},r,\mp@subsup{t}{2}{})\mathrm{ ,
    x\not\int, t1 =t \cup {x}, t2 = t1 \cupdom( (\mathcal{H}
    H\mathcal{L1a}
    \mathcal{H}
    \mathcal{H}}2a*\mp@subsup{\mathcal{H}}{2b}{}*(x\mapsto(1,l,r))\sqsubseteq\mathcal{M}} // Rule(FR
4 mark(r);
{mgraph( (\mathcal{H}}\mp@subsup{1\mp@code{a}}{\prime}{,},\mp@subsup{\mathcal{H}}{1b}{\prime},l,\mp@subsup{t}{1}{}),\operatorname{dom}(\mp@subsup{\mathcal{H}}{1a}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{1a}{\prime}),\operatorname{dom}(\mp@subsup{\mathcal{H}}{1b}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{1b}{\prime}
x\not\int, t1 =t \cup {x}, t2 = t1 \cup dom(H)}(\mp@subsup{\mathcal{H}}{1a}{})\cup\operatorname{dom}(\mp@subsup{\mathcal{H}}{1b}{})
mgraph( }\mp@subsup{\mathcal{H}}{2a}{\prime},\mp@subsup{\mathcal{H}}{2b}{\prime},r,\mp@subsup{t}{2}{}),\quad\mp@subsup{\mathcal{H}}{2a}{\prime}\sqsubseteq\mathcal{M},\quad\mp@subsup{\mathcal{H}}{2b}{\prime}\sqsubseteq\mathcal{M}\mathrm{ ,
dom(\mp@subsup{\mathcal{H}}{2a}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{2a}{\prime}),\quad\operatorname{dom}(\mp@subsup{\mathcal{H}}{2b}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{2b}{\prime})// postcondition
H
H}\mp@subsup{\mathcal{Lb}}{\prime}{\prime}*\mp@subsup{\mathcal{H}}{1b}{\prime}*\mp@subsup{\mathcal{H}}{1a}{}*\mp@subsup{\mathcal{H}}{2a}{}*(x\mapsto(1,I,r)), // Rule (EV
\mathcal{H}
} { mgraph( }\mp@subsup{\mathcal{H}}{1}{\prime},\mp@subsup{\mathcal{H}}{2}{\prime},x,t),\mp@subsup{\mathcal{H}}{1}{\prime}\sqsubseteq\mathcal{M},\mp@subsup{\mathcal{H}}{2}{\prime}\sqsubseteq\mathcal{M}\mathrm{ ,
dom}(\mp@subsup{\mathcal{H}}{1}{})=\operatorname{dom}(\mp@subsup{\mathcal{H}}{1}{\prime}),\quad\operatorname{dom}(\mp@subsup{\overline{\mathcal{H}}}{2}{})=\operatorname{dom}(\mp@subsup{\overline{\mathcal{H}}}{2}{\prime})
```


Conclusion

- Expressive assertion language for dynamic data structures
- Strongest Postcondition semantics
- Automatic Induction for a Class of VC's
- New Frame Rule for Local Reasoning / Compositional Proofs
- All the above in (regular) Hoare Logic

Some References

- HIP/SLEEK
W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape, size and bag properties via user-defined predicates in separation logic. In SCP, 10061036, 2012
- DRYAD
X. Qiu, P. Garg, A. Stefanescu, and P. Madhusudan. Natural proofs for structure, data, and separation. In PLDI, pages 231242, 2013
- \mathcal{H} Language
G. Duck, J. Jaffar, and N. Koh. A constraint solver for heaps with separation. In CP, pages 282-298, 2013
- Auto Induction
D. H. Chu, J. Jaffar, and M. T. Trinh, Automatic induction proofs of data-structures in imperative programs, In PLDI, 2015
- New Frame Rule
D.H. Chu and J. Jaffar, Local Reasoning with First-Class Heaps and a new Frame Rule, draft, www. comp.nus.edu.sg/~joxan/papers/frame.pdf

