
Constraint-based Program Reasoning with
Heaps and Separation

Gregory J. Duck, Joxan Jaffar, and Nicolas C. H. Koh

Department of Computer Science, National University of Singapore
{gregory, joxan}@comp.nus.edu.sg, kchuenho@dso.org.sg

Abstract. This paper introduces a constraint language H for finite par-
tial maps (a.k.a. heaps) that incorporates the notion of separation from
Separation Logic. We use H to build an extension of Hoare Logic for rea-
soning over heap manipulating programs using (constraint-based) sym-
bolic execution. We present a sound and complete algorithm for solving
quantifier-free (QF) H-formulae based on heap element propagation. An
implementation of the H-solver has been integrated into a Satisfiability
Modulo Theories (SMT) framework. We experimentally evaluate the im-
plementation against Verification Conditions (VCs) generated from sym-
bolic execution of large (heap manipulating) programs. In particular, we
mitigate the path explosion problem using subsumption via interpolation
– made possible by the constraint-based encoding.

Keywords: Heap Manipulating Programs, Symbolic Execution, Sepa-
ration Logic, Satisfiability Modulo Theories, Constraint Handling Rules.

1 Introduction

An important part of reasoning over heap manipulating programs is the ability
to specify properties local to separate (i.e. non-overlapping) regions of mem-
ory. Most modern formalisms, such as Separation Logic [20], Region Logic [2],
and (Implicit) Dynamic Frames [16][22], incorporate some encoding of sepa-
ration. Separation Logic [20] explicates separation between regions of memory
through separating conjunction (∗). For example, the Separation Logic formula
list(l)∗tree(t) represents a program heap comprised of two separate sub-heaps:
one containing a linked-list and the other a tree data-structure.

In this paper we explore a reformulation of Separation Logic in terms of a
first-order constraint language H over heaps (i.e. finite partial maps between
pointers and values). Under this approach, separating conjunction (∗) is re-
encoded as a constraint H l H1∗H2 between heaps, indicating that: (1) heaps
H1 and H2 are separate (i.e. disjoint domains) and (2) H is the heap union
of H1 and H2. We can therefore re-encode the above Separation Logic formula
as list(l, L) ∧ tree(t, T) ∧ H̄ l L∗T where list and tree are redefined to be
predicates over heaps, and the special variable H̄ represents the global heap at
the program point where it appears. We can also represent a singleton heap as
a constraint H̄ l (p 7→ v).

The motivation behind H is to lift some of the benefits of Separation Logic
to constraint-based reasoning techniques for heap manipulating programs, such
as constraint-based symbolic execution. Our method is based on an extension of
Hoare Logic [11] defined in terms of the constraint language H. Whilst Sepa-
ration Logic guarantees total correctness w.r.t. memory safety (e.g. no memory
errors such as dereferencing dangling pointers, etc.), our reformulation allows for
weaker axiomatizations, such as a version that drops the memory-safety require-
ment. This allows for a Strongest Post Condition (SPC) predicate transformer
semantics [7] to be defined in terms of H, which forms the basis of symbolic
execution. The resulting Verification Conditions (VCs) can then be discharged
using a suitable H-constraint solver/theorem prover. This is illustrated with a
simple example:

Example 1 (Heap Equivalence). Consider the following Hoare triple:

{H = H̄} x := alloc(); free(x) {H = H̄} (1)

This triple states that the global heap before the code fragment is equal to the
heap after the fragment, i.e. the global heap is unchanged. Here H is a ghost
variable representing the initial state of the global heap H̄. Symbolic execution
of the precondition P ≡ (H = H̄) yields the following H-constraints:

Q ≡
(
H = H0 ∧H1 l (x 7→)∗H0 ∧H1 l (x 7→)∗H̄

)
Here H0 and H1 represent the initial and intermediate values for H̄ respectively.
The underlined H-constraints encode the alloc() and free() respectively. Next
we can employ an H-constraint solver to prove that the postcondition is implied
by Q, i.e. the Verification Condition (VC) Q → H = H̄ holds, thereby proving
the triple (1) valid. ut

In order to discharge the VCs generated from symbolic execution we need a
solver for the resulting H-formulae. For this we present a simple decision proce-
dure for Quantifier Free (QF) H-formulae based on the idea of heap membership
propagation. We show that the algorithm is both sound and complete, and is
readily implementable using Constraint Handling Rules (CHR) [10]. We present
an implementation of an H-solver that has been integrated into a Satisfiability
Modulo Theories (SMT) framework using SMCHR [8]. Our decision procedure
is related to established algorithms for finite sets.

We use the H-solver as the basis of a simple program verification tool using
symbolic execution. In contrast to Separation Logic-based symbolic execution [4],
which is based on a set of rearrangement rules, our version is based on constraint
solving using the H-solver as per Example 1 above. Our encoding allows for
some optimization. Namely, we mitigate the path explosion problem of symbolic
execution by employing subsumption via interpolation [14][17] techniques.

This paper is organized as follows: Section 2 introduces Hoare and Separation
Logic, Section 3 formally introduces the H-language, Section 4 introduces an
extension of Hoare Logic based on the H-language, Section 5 presents an H-
solver algorithm and implementation, and Section 6 experimentally evaluates the
implementation. In summary, the contributions of this paper are the following:

– We define the H-language that encodes separation as a constraint between
heaps. We show that satisfiability of quantifier-free H-formulae is decidable,
and present a complete algorithm for solving H-formulae.

– We present an extension of Hoare Logic based on the H-language. Our exten-
sion is similar to Separation Logic, but allows for strongest post conditions,
and is therefore suitable for program reasoning via constraint-based symbolic
execution.

– We present an implementation of the H-solver that has been integrated
into an SMT framework. We experimentally evaluate the solver against VCs
generated from symbolic execution of heap manipulating programs.

2 Preliminaries

This section presents a brief overview of Hoare and Separation Logic.
Hoare Logic [11] is a formal system for reasoning about program correctness.

Hoare Logic is defined in terms of axioms over triples of the form {φ} C {ϕ},
where φ is the pre-condition, ϕ is the post-condition, and C is some code frag-
ment. Both φ and ϕ are formulae over the program variables in C. The mean-
ing of the triple is as follows: for all program states σ1, σ2 such that σ1 |= φ
and executing σ1 through C derives σ2, then σ2 |= ϕ. For example, the triple
{x < y} x := x + 1 {x ≤ y} is valid. Note that under this definition, a triple is
automatically valid if C is non-terminating or otherwise has undefined behavior.
This is known as partial correctness.

Separation Logic [20] is a popular extension of Hoare Logic for reasoning over
heap manipulating programs. Separation Logic extends predicate calculus with
new logical connectives (namely empty heap (emp), singleton heap (p 7→ v), and
separating conjunction (H1∗H2)) such that the structure of assertions reflects
the structure of the underlying heap. For example, the pre-condition in the valid
Separation Logic triple {x 7→ ∗ y 7→ 2} [x] := [y]+1 {x 7→ 3 ∗ y 7→ 2} represents
a heap comprised of two disjoint singleton heaps, indicating that both x and y
are allocated and that location y points to the value 2. Here the notation [p]
represents pointer dereference. In the post-condition we have that x points to
value 3, as expected. Separation Logic also allows recursively-defined heaps for
reasoning over data-structures, such as list(l) and tree(t) from Section 1.

Separation Logic triples also have a slightly different meaning versus Hoare
triples regarding memory-safety. A Separation Logic triple {φ} C {ϕ} addi-
tionally guarantees that any state satisfying φ will not cause a memory access
violation in C. For example, the triple {emp} [x] := 1 {x 7→ 1} is invalid since
x is a dangling pointer in any state satisfying the pre-condition.

3 Heaps with Separation

This section formally introduces the syntax and semantics of heaps with sep-
aration, which we denote by H, that encodes some of the logical connectives

of Separation Logic. We assume as given a countably infinite set Values denot-
ing values, e.g. Values = Z. A heap is a finite partial map between Values, i.e.
Heaps = Values ⇀fin Values. This is the same definition as used by Separation
Logic. Given a heap h ∈ Heaps with domain D = dom(h), we sometimes treat h
as the set of pairs {(p, v) | p ∈ D ∧ v = h(p)}.

The H-language is the first-order language over heaps defined as follows:

Definition 1 (Heap Language). We define the H-signature ΣH as follows:
– sorts: Values, Heaps;
– constants: (empty heap) ∅ of sort Heaps;
– functions: (singleton heap) (7→) of sort Values× Values 7→ Heaps.
– predicates: (heap constraint) (∗. . .∗ l ∗. . .∗) of sort Heaps×· · ·×Heaps 7→
{true, false}.

The H-language is the first-order language over ΣH. ut
Example 1 used heap constraints of the form H l H1∗H2, where H, H1, and
H2 are variables. Throughout this paper we shall use upper-case letters H, I, J ,
etc., to denote heap variables, and lower-case letters p, v, etc., for value variables.

A valuation s (a.k.a. variable assignment) is a function mapping values to
Values ∪ Heaps. We define the semantics of the H-language as follows:

Definition 2 (Heap Interpretation). Given a valuation s, the H-interpreta-
tion I is a ΣH-interpretation such that:
– I(v, s) = s(v), where v is a variable;
– I(∅, s) = ∅ (as a Heap);
– I(p 7→ v, s) = {(q, w)} where q = I(p, s) and w = I(v, s);
– I(H1 ∗ . . .∗Hi l Hi+1 ∗ . . .∗Hn, s) = true iff for hi = I(Hi, s) we have that:

1. dom(h1) ∩ . . . ∩ dom(hi) = ∅ and dom(hi+1) ∩ . . . ∩ dom(hn) = ∅; and
2. h1 ∪ . . . ∪ hi = hi+1 ∪ . . . ∪ hn ut

Note that we treat each configuration of (∗) and (l) as a distinct predicate.
Intuitively, a constraint like H l H1∗H2 treats (∗) in essentially the same way
as separating conjunction from Separation Logic, except that we give a name H
to the conjoined heaps H1∗H2.

We define |=H . . . [s] as the satisfaction relation such that |=H φ [s] holds iff
I(φ, s) = true for all heap formulae φ. We also say that φ is valid if |=H φ [s]
holds for all s, and satisfiable if |=H φ [s] holds for at least one s.

3.1 Normalization

In the absence of quantifiers, we can restrict consideration of H-formula to a
subset in normal form defined as follows:

Definition 3 (Normal Form). A quantifier-free (QF) H-formula φ is in nor-
mal form if (1) all heap constraints are restricted to three basic forms:

H l ∅ H l (p 7→ v) H l H1∗H2

where p, v, H, H1, and H2 are distinct variables, and (2) there are no negated
heap constraints. ut

H l E1 ∗ E2 ∗ S −→ H ′ l E1 ∗ E2 ∧H l H ′ ∗ S
H l E1 ∗ E2 −→ H ′ l E1 ∧H l H ′ ∗ E2 (E1 non-variable)

H l H1 ∗ E2 −→ H ′ l E2 ∧H l H1 ∗H ′ (E2 non-variable)

H1 l H2 −→ H ′ l ∅ ∧H1 l H2 ∗H ′

H 6l E1 ∗ E2 ∗ S −→ ∨

{
E1 l (s 7→ t) ∗H ′

1 ∧ E2 l (s 7→ u) ∗H ′
2

H ′ l E1 ∗ E2 ∧H 6l H ′ ∗ S

H 6l E1 ∗ E2 −→ H ′ l E1 ∧H 6l H ′ ∗ E2 (E1 non-variable)

H 6l H1 ∗ E2 −→ H ′ l E2 ∧H 6l H1 ∗H ′ (E2 non-variable)

H 6l ∅ −→ H l (s 7→ t) ∗H ′

H 6l (p 7→ v) −→ ∨

{
H l ∅
H l (s 7→ t) ∗H ′ ∧ (p 6= s ∨ v 6= t)

H 6l H1 ∗H2 −→ ∨

{
H1 l (s 7→ t) ∗H ′

1 ∧H2 l (s 7→ u) ∗H ′
2

H ′ l H1 ∗H2 ∧H 6l H ′

H1 6l H2 −→ ∨

{
H1 l (s 7→ t) ∗H ′

1 ∧H1 l (s 7→ u) ∗H ′
2 ∧ t 6= u

H1 l I ∗H ′
1 ∧H2 l I ∗H ′

2 ∧H ′ l H ′
1 ∗H ′

2 ∧H ′ 6l ∅

Fig. 1. H-formulae normalization rewrite rules.

Any given QF H-formula φ can be rewritten into normal form using the
following steps: (1) push negation inwards using De Morgan’s laws, and (2)
transform the resulting formula using the rewrite rules from Figure 1. Here each
rewrite rule is of the form (head −→ body), and Ei runs over heap expressions
(H, ∅, (p 7→ v)), S runs over (∗)-sequences of heap expressions (E, E∗E, etc.),
and everything else runs over the variable symbols. A variable that appears in
a rule body, but not the rule head, is taken to represent a fresh variable symbol
that is introduced each time the rule is applied. For brevity we omit some rules,
namely: normalizing the RHS of a (l) to a heap variable (as this mirrors the
LHS rules), and making variables unique. The main result for normalization is
as follows:

Proposition 1 (Normal Form). For all QF H-formulae φ there exists a QF
H-formula ϕ such that (1) ϕ is in normal form and (2): for all valuations s
there exists a valuation s′ such that |=H φ [s] iff |=H ϕ [s′] and s(v) = s′(v) for
all v ∈ vars(φ).

Proof. (Sketch) By the correctness of, and induction over, the normalization
steps from Figure 1. ut

Proposition 1 means that, at the expense of an increased formula size, we need
only consider a limited subset of the H-language that lacks negation.

3.2 Extensions

We may extend Definitions 1 and 2 to include other kinds of heap constraints,
such as:
– Heap union H l H1 t H2 holds iff there exists a h ∈ Heaps such that
h = s(H1) ∪ s(H2) as sets and s(H) = h.

– Heap intersection H l H1 uH2 holds iff s(H) = s(H1) ∩ s(H2) as sets.
– Heap subset H1 v H2 holds iff s(H1) ⊆ s(H2) as sets.

These constraints can similarly be reduced to the normal form from Definition 3.
For some applications we may extend H with ad hoc user-defined heap con-

straints. For this we can use Constraint Logic Programming (CLP) [13] over H,
i.e. CLP(H). For example, the following CLP(H) predicate list(l, L) specifies a
skeleton list constraint under the standard least model semantics of CLP:

list(0, L) :- L l ∅
list(l, L) :- l 6= 0 ∧ L l (l 7→ n)∗L′ ∧ list(n,L′)

We can similarly define predicates for trees and arrays. The inclusion of CLP
predicates requires stronger reasoning power in contrast to the base H-language.
For this we can employ standard (yet incomplete) methods such as [15].

4 Program Reasoning with H

The core motivation of the H-language is reasoning over heap manipulating
programs. For this we consider the following extensions of Hoare Logic [11].

4.1 Direct Separation Logic Encoding

Separation Logic [20] is itself an extension of Hoare Logic. Given the similarity
in the heap representations, we can re-encode the axioms of Separation Logic
directly into Hoare axioms over H-formulae, as shown in Figure 2(B). Each axiom
is defined in terms of one of five auxiliary constraints: namely alloced, access,
assign, alloc, and free defined in Figure 2(A), which are themselves defined in
terms of H-formulae. The alloced(H,x) constraint represents that pointer x is
allocated in heap H, i.e. H l (x 7→ v)∗H ′ for some v and H ′. The remaining
auxiliary constraints encode a heap manipulation statement as an H-formula.
The statements are:
– heap access (x := [y]) sets x to be the value pointed to by y;
– heap assignment ([x] := y) sets the value pointed to by x to be y;
– heap allocation (x:=alloc()) sets x to point to a freshly allocated heap cell.1

– heap free free(x) deallocates the cell pointed to by x.
These axioms manipulate the global heap that is represented by a distinguished
heap variable H̄. Under this treatment, H̄ is an implicit program variable2 of type

1 Here we assume the (de)allocation of single heap cells. This can be generalized.
2 The variable is “implicit” in the sense that it is not explicitly represented in the

syntax of the programming language.

(A)

alloced(H, p)
def
= ∃H ′, v : H l (p 7→ v)∗H ′

access(H, p, v)
def
= ∃H ′ : H l (p 7→ v)∗H ′

assign(HOLD , p, v,HNEW)
def
= ∃H ′′, w :

{
HOLD l (p 7→ w)∗H ′′

HNEW l (p 7→ v)∗H ′′ ∧

alloc(HOLD , p,HNEW)
def
= ∃v : HNEW l (p 7→ v)∗HOLD

free(HOLD , p,HNEW)
def
= ∃v : HOLD l (p 7→ v)∗HNEW

(B)

{φ ∧ alloced(H̄, y)} x := [y] {∃x′ : access(H̄, y, x) ∧ φ[x′/x]}

{φ ∧ alloced(H̄, x)} [x] := y {∃H ′ : assign(H ′, x, y, H̄) ∧ φ[H ′/H̄]}

{φ} x := alloc() {∃x′, H ′ : alloc(H ′, x, H̄) ∧ φ[H ′/H̄, x′/x]}

{φ ∧ alloced(H̄, x)} free(x) {∃H ′ : free(H ′, x, H̄) ∧ φ[H ′/H̄]}

(C)
{p(H̄)} C {q(H̄)}

{H̄ l P∗R ∧ p(P) ∧ r(R)} C {∃Q,R′ : H̄ l Q∗R′ ∧ q(Q) ∧ r(R′)}

Fig. 2. (A) Auxiliary constraint definitions, (B) basic Hoare inference rules, and (C)
the Frame Rule.

Heap that is assumed to be threaded throughout the program. Other axioms of
Separation Logic, such as the Frame Rule [20], can similarly be re-encoded, as
shown in Figure 2(C).

It is not surprising that Separation Logic can be re-formulated as Hoare
axioms over the H-language. However, there are some important differences to
consider. Notably, the H-encoding allows for explicit heap variables to express
relationships between heaps across triples. In Example 1, we use the triple {H l
H̄} C {H l H̄} to express the property that the code fragment C does not
change the global heap H̄ through an explicit variable H. Such a global property
would require second order Separation Logic, e.g., ∀h : {h} C {h}. Furthermore,
with explicit heap variables, we can strengthen the Frame Rule by R′ for R in
the post-condition of Figure 2(C).

The H-based encoding tends to be more verbose compared to Separation
Logic, which favors more concise formulae. Whilst not so important for auto-
mated systems, the H-based encoding is likely less suitable for manual proofs of
correctness.

{φ} x := [y] {∃x′ : access(H̄, y, x) ∧ φ[x′/x]}

{φ} [x] := y {∃H ′ : assign(H ′, x, y, H̄) ∧ φ[H ′/H̄]}

{φ} free(x) {∃H ′ : free(H ′, x, H̄) ∧ φ[H ′/H̄]}

Fig. 3. Alternative Hoare inference rules.

4.2 Strongest Post-Condition Encoding

Separation Logic and the corresponding H-encoding from Figure 2 (B) enforces
total correctness w.r.t. memory safety. That is, a valid triple {φ} C {ϕ} addi-
tionally ensures that any state satisfying φ will not cause a memory fault (e.g.
dereferencing a dangling pointer) when executed by C. This is enforced by the
access, assignment, and free axioms of Figure 2 (B) by requiring that the pointer
x be allocated in the global heap H in the pre-condition via the alloced(H̄, x)
constraint.

Memory safety has implications for forward reasoning methods such as sym-
bolic execution. For example, to symbolically execute a formula φ through an
assignment [x] := v, we must first prove that φ→ alloced(H̄, x). Such a proof can
be arbitrarily difficult in general, e.g. for formulae with quantifiers or recursively-
defined CLP(H) predicates. Furthermore, if memory safety is not a property of
interest, this extra work is unnecessary.

By decoupling the heap representation (H) from the logic, we can experiment
with alternative axiomatizations. One such axiomatization that is partially cor-
rect modulo memory safety is shown in Figure 3.3 This version drops the require-
ment that x be allocated in H̄ in the pre-condition, and therefore treats memory
errors the same way as undefined behavior (or non-termination) in classic Hoare
Logic.

There are several advantages to the weaker axiomatization of Figure 3. Firstly,
the axioms of Figure 3 specify a Strongest Post Condition (SPC) predicate trans-
former semantics and is therefore immediately suitable for automated forward
based reasoning techniques such as symbolic execution. This is in contrast to
symbolic execution in Separation Logic [4] (or the corresponding axioms from
Figure 2), where symbolic execution requires the alloced condition to be sepa-
rately proven. The SPC axiomatization allows for weaker, more concise, specifi-
cations.

3 The axiom for heap allocation is the same as Figure 2 (B).

Example 2 (Double List Reverse). For example, consider the following triples in
the spirit of Example 1:

{H l H̄} l := reverse(reverse(l)) {H l H̄} (2)

{H̄ l L∗H ′ ∧ list(L, l) ∧H l H̄} l := reverse(reverse(l)) {H l H̄} (3)

Both attempt to state the same property: that double in-place list-reverse leaves
the global heap H̄ unchanged. Suppose that the only property of interest is
the heap equivalence (i.e. not memory safety). Triple (2) is valid under the
weaker Figure 3 axiomatization, but not the stronger Figure 2 (B) version which
requires memory safety. The latter requires a more complex specification, such
as Triple (3), where the recursively defined property list(L, l) ensures l points
to a valid allocated list. ut

There are also some disadvantages to consider. For obvious reasons, the SPC
axiomatization is unsuitable if memory safety is a property of interest. Further-
more, the soundness of Separation Logic’s Frame Rule (or Figure 2 (C)) depends
on memory safety, and thus is not valid under the new interpretation. Therefore
the SPC axiomatization is not suitable for Separation Logic-style local reasoning
proofs. In essence, this is a trade-off between local reasoning vs. making symbolic
execution “easier”, highlighting the flexibility of our overall approach.

5 A Solver for H-formulae

Automated symbolic execution depends on an H-solver to discharge the gen-
erated Verification Conditions (VCs). In this section we present a simple, yet
sound and complete, algorithm for solving the quantifier-free (QF) fragment of
the H-language.

Algorithm The H-solver algorithm is based on the propagation of heap mem-
bership and (dis)equality constraints. Heap membership (a.k.a. heap element) is
represented by an auxiliary in(H, p, v) constraint, which is defined as follows:

Definition 4 (Heap Membership). We extend Definitions 1 and 2 to include
the heap membership constraint in(H, p, v) defined as follows:

|=H in(H, p, v) [s] iff (s(p), s(v)) ∈ s(H)

where H, p, and v are variables. ut

Heap element in(H, p, v) is analogous to set membership x ∈ S from set theory.
(Dis)equality is propagated via the usual x = y and x 6= y constraints.

The H-solver operates over conjunctions of normalized H-constraints as per
Definition 3. Arbitrary QF H-formula φ can be normalized to a ϕ using the rules
from Figure 1, such that the solutions to φ and ϕ correspond as per Proposition 1.
The arbitrary Boolean structure of ϕ can be handled using the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm [6] modulo the H-solver.

in(H, p, v) ∧ in(H, p,w) =⇒ v = w (1)

H l ∅ ∧ in(H, p, v) =⇒ false (2)

H l (p 7→ v) =⇒ in(H, p, v) (3)

H l (p 7→ v) ∧ in(H, q, w) =⇒ p = q ∧ v = w (4)

H l H1∗H2 ∧ in(H, p, v) =⇒ in(H1, p, v) ∨ in(H2, p, v) (5)

H l H1∗H2 ∧ in(H1, p, v) =⇒ in(H, p, v) (6)

H l H1∗H2 ∧ in(H2, p, v) =⇒ in(H, p, v) (7)

H l H1∗H2 ∧ in(H1, p, v) ∧ in(H2, q, w) =⇒ p 6= q (8)

Fig. 4. H-solver CHR propagation rules.

We specify the H-solver as a set of Constraint Handling Rules [10] with dis-
junction (CHR∨) [1] as shown in Figure 4. Here each rule (Head =⇒ Body)
encodes constraint propagation, where the constraints Body are added to the
store whenever a matching Head is found. Rule (1) encodes the functional de-
pendency for finite partial maps; rules (2)–(4) encode propagation for heap empty
H = ∅ and heap singleton H l (p 7→ v) constraints; and rules (5)–(8) encode
heap membership propagation through heap separation H l H1∗H2 constraints.
Most of these rules are self-explanatory, e.g., rule (6) states that if H l H1∗H2

and in(H1, p, v), then it must be the case that in(H, p, v), since H1 is a sub-heap
of H. We assume a complete solver for the underlying equality theory (x = y,
x 6= y).

The H-solver employs the standard CHR∨ execution algorithm with the rules
from Figure 4. We shall present a semi-formal summary below. The input is a
constraint store S defined to be a set4 of constraints (representing a conjunction).
Let Rules be the rules from Figure 4, then the algorithm hsolve(S) is recursively
defined as follows:

– (Propagation Step) If there exists R ∈ Rules of the form (h1 ∧ . . . ∧ hn =⇒
Body), a subset {c1, . . . , cn} ⊆ S of constraints, a subset E ⊆ S of equality
constraints, and a matching substitution θ such that: E → (θ.hi = ci) for
i ∈ 1..n then rule R is applicable to the store S. We apply rule R as follows:

• If Body = false then return false;
• If Body = d1 ∧ . . . ∧ dm then return hsolve(S ∪ θ.{d1, . . . , dm}); else
• If Body = d1 ∨ . . . ∨ dm then let Si := hsolve(S ∪ θ.{di}) for i ∈ 1..m. If

there exists an Si 6= false then return Si, else return false.

– Else if no such R exists, return S.

Propagation proceeds until failure occurs or a fixed point is reached.

Example 3 (H-Solving). Consider the following goal G:

H l (p 7→ v) ∧H l I∗J ∧ J l (p 7→ w) ∧ v 6= w

4 We assume a set-based CHR semantics.

{Hl(p 7→v), HlI∗J, Jl(p 7→w), v 6=w} (3)

{Hl(p 7→v), HlI∗J, Jl(p 7→w), v 6=w, in(H, p, v)} (3)

{Hl(p 7→v), HlI∗J, Jl(p 7→w), v 6=w, in(H, p, v), in(J, p, w)} (7)

{Hl(p 7→v), HlI∗J, Jl(p 7→w), v 6=w, in(H, p, v), in(J, p, w), in(H, p,w)} (1)

{Hl(p 7→v), HlI∗J, Jl(p 7→w), v 6=w, in(H, p, v), in(J, p, w), v=w} (E)

false

Fig. 5. H-solving constraint propagation steps.

We wish to show that this goal is unsatisfiable using the H-solver from Figure 4.
Initially the constraint store contains the initial goal G. Constraint propagation
proceeds as shown in Figure 5. Here we apply rules (3), (3), (7), (1), (E) to
the underlined constraint(s) in order, where (E) represents an inference made
by the underlying equality solver. Propagation leads to failure, and there are no
branches – therefore goal G is unsatisfiable. ut

Since all the rules from Figure 4 are propagation rules, the solving algorithm
hsolve(G) will always terminate with some final store S. The H-solver is both
sound and complete w.r.t. (un)satisfiability.

Proposition 2 (Soundness). For all G, S, if hsolve(G) = S, then for all
valuations s, |=H G [s] iff |=H S [s].

Proof. (Sketch) By the correctness of the rules from Figure 4 w.r.t. Definitions 2
and 4. ut

Proposition 3 (Completeness). For all G, S such that hsolve(G) = S, then
6|=H G [s] for all valuations s (i.e. G is unsatisfiable) iff S = false.

Proof. (Sketch) The “⇐” direction follows from Proposition 2. We consider the
“⇒” direction. The rest is proof by contrapositive: assuming S 6= false we show
that there exists a valuation s such that |=H G [s]. Let sE be a valuation for the
underlying equality subset of S over integer variables, then let s(v) = sE(v) for
integer variables, and

s(H) = {(sE(p), sE(v)) | in(H, p, v) ∈ S} (4)

for all heap variables H. Assume that 6|=H S [s]. By case analysis of Definition 2
we find that a rule must be applicable:
– Case s(H) 6∈ Heaps: Rule (1);
– Case H l ∅ and s(H) 6= ∅: Rule (2);
– Case H l (p 7→ v) and s(H) 6= {(p, v)}: Rules (3) or (4);
– Case H l H1∗H2 and s(H) 6= s(H1) ∪ s(H2): Rules (5), (6), or (7);
– Case H l H1∗H2 and dom(s(H1)) ∩ dom(s(H2)) 6= ∅: Rule (8)

This contradicts the assumption that S is a final store, therefore if S 6= false
then |=H S [s], and therefore |=H G [s] by Proposition 2 completes the proof. ut

H 6l ∅ =⇒ in(H, s, t) (9)

H 6l (p 7→ v) =⇒ ∨

{
H l ∅
in(H, s, t) ∧ (s 6= p ∨ t 6= v)

(10)

H 6l H1∗H2 =⇒ ∨

in(H, s, t) ∧ ¬in(H1, s, t) ∧ ¬in(H2, s, t)

in(H1, s, t) ∧ ¬in(H, s, t)

in(H2, s, t) ∧ ¬in(H, s, t)

in(H1, s, t) ∧ in(H2, s, u)

(11)

access(H, p, v)⇐⇒ in(H, p, v) (12)

assign(H0, p, v,H1) =⇒ in(H0, p, w) ∧ in(H1, p, v) (13)

assign(H0, p, v,H1) ∧ in(H0, q, w) =⇒ p = q ∨ in(H1, q, w) (14)

assign(H0, p, v,H1) ∧ in(H1, q, w) =⇒ p = q ∨ in(H0, q, w) (15)

alloc(H0, p,H1) =⇒ in(H1, p, v) (16)

alloc(H0, p,H1) ∧ in(H0, q, w) =⇒ p 6= q ∧ in(H1, q, w) (17)

alloc(H0, p,H1) ∧ in(H1, q, w) =⇒ p = q ∨ in(H0, q, w) (18)

free(H0, p,H1)⇐⇒ alloc(H1, p,H0) (19)

Fig. 6. Extended H-solver propagation rules.

The proof for Proposition 3 is constructive; namely, (4) can be used to construct a
solution for a satisfiable goal G. Furthermore, we can combine the normalization
of Proposition 1 and DPLL(hsolve) to derive a sound and complete algorithm
for solving arbitrary QF H-formulae φ.

5.1 Extensions

The propagation rules from Figure 4 define a solver for the base H-language.
We can use heap membership propagation to define rules for other kinds of
H-constraints, as shown in Figure 6.

Rules (9)–(11) handle the negations of the base H-constraints from Defi-
nition 3. These rules are an alternative to the decomposition from Figure 1.
We can also define rules for directly handling the auxiliary constraints from
Figure 2 (A) for program reasoning. For example, rules (13)–(15) handle the
assign(H0, p, v,H1) constraint. We similarly provide rules for the other auxiliary
constraints. Here, variables appearing in a rule body but not in the rule head
are interpreted the same way as with Figure 1.

6 Experiments

In this section we test an implementation of the H-solver against verification con-
ditions (VCs) derived from symbolic execution. We compare against Verifast [12]

(version 12.12), a program verification system based on Separation Logic. Our
motivation for the comparison is: (1) Verifast is based on forward symbolic ex-
ecution, and (2) Verifast incorporates the notion of separation (via Separation
Logic). That said, the Verifast execution algorithm [12] is very different from the
H-solver.

We have implemented a version of the H-solver as part of the Satisfiability
Modulo Constraint Handling Rules (SMCHR) [8] system.5 SMCHR is a Satis-
fiability Modulo Theories (SMT) framework that supports theory (T) solvers
implemented in CHR. The SMCHR system also supports several “built-in” the-
ories, such as a linear arithmetic solver based on [9], that can be combined with
the H-solver to handle the underlying (dis)equality constraints. The SMCHR
system has also been extended to support disjunctive propagators [19] for rules
with disjunctive bodies, such as Rule (5).

For these benchmarks we either restrict ourselves to the fragment of Verifast
that is fully automatable, or we provide the minimal annotations where appro-
priate. For the H-solver, we have implemented a prototype symbolic execution
tool as a GCC plug-in. Our tool symbolically executes GCC’s internal GIMPLE
representation to generate path constraints. Given a safety condition ϕ, we gen-
erate the corresponding verification condition (∃x̄ : φ) |= ϕ, which is valid iff
φ∧¬ϕ is unsatisfiable. Here x̄ represents existential variables introduced during
symbolic execution. Unsatisfiability is tested for using the H-solver.

A well-known problem with forward symbolic execution is the so-called path
explosion problem. The number of paths through a (loop-free) program fragment
can easily be exponential. We can mitigate this problem using subsumption via
interpolation [14][17]. The basic idea is as follows: given a VC φ1 |= ϕ that holds
for path φ1, we generate an interpolant ψ1 for φ1, that, by definition, satisfies
φ1 |= ψ1 |= ϕ. As symbolic execution continues, we can prune (subsume) all
other paths with constraints φ2 such that φ2 |= ψ1. The key is that this pruning
can occur early, as we construct the constraint for each path.

Our interpolation algorithm is based on an improved version of the constraint
deletion idea from [14]. Given a path constraint φ = c1∧ . . .∧cn we find a subset
I ⊆ {c1, . . . , cn} such that I∧¬ϕ remains unsatisfiable. For this we simply re-use
the SAT solver’s Unique Implication Point UIP algorithm over the implication
graph formed by the H-solver propagation steps.

We test several programs that exhibit the path explosion problem. These
include: subsets N - sum-of-subsets size N ; expr N - simple virtual machine
executing N instructions; stack N - for all M ≤ N , do N -pushes, then N -
pops; filter N - filter for TCP/IP packets; sort N - bubble-sort of length N ;
search234 N - 234-tree search; insert234 N - 234-tree insert. Most of our examples
are derived from unrolling loops of smaller programs.

The results are shown in Table 7. Here Safety indicates the safety condition
(defined below), LOC indicates the number of lines-of-code, type indicates heap
operations used (with r = read, w = write, and a = allocation/deallocation), #bt
is the number of backtracks for our prototype tool, and #forks is the number of

5 SMCHR is available from http://www.comp.nus.edu.sg/∼gregory/smchr/

Heaps Verifast

Bench. Safety LOC type time(s) #bt time(s) #forks

subsets 16 F 50 rw- 0.00 17 10.69 65546
expr 2 F 69 rw- 0.05 124 18.38 136216

stack 80 F 976 rwa 8.66 320 68.20 9963
filter 1 F 192 r-- 0.03 80 0.75 8134
filter 2 F 321 r-- 0.11 307 – –
sort 6 F 178 rw- 0.03 54 2.66 35909

search234 3 F 251 r-- 0.02 46 0.67 1459
search234 5 F 399 r-- 0.05 76 90.65 118099
insert234 5 F 839 rwa 1.19 120 52.87 36885

expr 2 v 69 rw- 0.20 1329 n.a. n.a.
stack 80 v 976 rwa 8.07 322 n.a. n.a.

filter 2 OP 321 r-- 0.00 2 n.a. n.a.

stack 80 A 976 rwa 8.90 320 65.68 9801
insert234 5 A 839 rwa 1.50 60 40.64 55423

subsets 16 ∅ 50 rw- 0.00 33 n.a. n.a.

Fig. 7. Theorem proving and symbolic execution benchmarks.

symbolic execution forks for Verifast, and corresponds to the number of paths
through the code. All experiments were run on GNU/Linux x86 64 with a Intel R©

Core
TM

i5-2500K CPU clocked at 4GHz. A timeout of 10 minutes is indicated by
a dash (–). The safety conditions correspond to (some variant of) the following
triples:
– Framing (F) with {H̄ l (p 7→ v)∗F}C{∃F ′ : H̄ l (p 7→ v)∗F ′} where p is

outside the footprint of the code C;
– Operations (OP) where OP ∈ {v,w,l} with {H l H̄}C{H OP H̄};
– Allocation (A) with {. . .}C{∃F ′, v : H̄ l (p 7→ v)∗F ′} for p allocated by C;
– Empty (∅) with {H̄ l ∅} C {false}, i.e. C will always fault on memory.

Some safety conditions, namely (OP) and (∅), cannot be encoded directly in
Separation Logic or Verifast, and are marked by “n.a.”.

Overall our tests exhibit significant search-space pruning thanks to interpo-
lation. In contrast Verifast explores the entire search-space, and thus has ex-
ponential runtime behavior. However the time-per-path ratio favors Verifast,
suggesting that Verifast would perform better on examples that do not have a
large search-space, or when interpolation fails to subsume a significant number
of branches. Our tool and SMT solver implementation are preliminary and can
likely be further optimized.

7 Related Work

Several systems [3][5][12] implement Separation Logic-based symbolic execution,
as described in [4]. However, due to the memory-safety requirements of Separa-
tion Logic, symbolic execution is limited to formulae over the footprint of the
code. Our symbolic execution is based on the SPC Hoare Logic extension and

therefore works for arbitrary formulae. This is convenient when memory-safety
is not a property of interest, such as Example 2.

Several automatic theorem provers for Separation Logic triples/formulae have
been developed, including [4][5][18]. These systems generally rely on a set of
rearrangement rules, and are usually limited to a subset of all formulae, e.g.
those with no non-separating conjunction, etc. In contrast our H-solver uses
a different algorithm based on heap-membership propagation, and handles any
arbitrary QF H-formulae.

Other formalisms, such as (Implicit) Dynamic Frames [16][22] and Region
Logic [2], also encode separation. The underlying approach is to represent the
heap H as a (possibly implicit) total map over all possible addresses, and to
represent access or modification rights as sets of addresses F . Separation is rep-
resented as set disjoint-ness, i.e. F1 ∩ F2 = ∅. One difficulty is that we must
relate H with F , which can make reasoning comparatively more difficult. For
example, consider the following VCs:

p 6∈ F ∧ list(H,F, l) ∧ assign′(H, p, v,H ′) |= list(H ′, F, l) (5)

H l L∗R ∧R l (p 7→ w)∗R′ ∧ list(L, l) ∧ assign(H, p, v,H ′) |= L v H ′ (6)

where assign′ is a suitable re-encoding of assign for total heaps. Both VCs are
natural encodings of the same problem: we wish to prove that l is still a list after
writing to a (separate) pointer p. VC (6) holds independently of the recursively
defined list relation, and can be trivially disposed of using our H-solver. In
contrast, VC (5) depends on the recursively-defined list predicate as it relates
H with F , and is therefore more difficult to prove.

Our H-solving algorithm is related to analogous algorithms for finite sets,
such as [23]. Although formalized differently, the basic idea is similar, i.e. based
on the propagation of set membership x ∈ S constraints. In [21] this idea was
adapted into a decision procedure for Region Logic. Our approach works directly
with heaps rather than indirectly via sets.

8 Future Work and Conclusions

In this paper we presented a reformulation of the key ideas behind Separation
Logic as a first-order constraint-language H over heaps. Here we express separa-
tion as a constraint between heaps. We present an SPC extension of Hoare Logic
based on encoding of heap-manipulating statements in terms of H-formulae. Our
extension is suitable for forward reasoning via constraint-based symbolic execu-
tion. We present a sound and complete solver for QF H-formulae and have
implemented a version as part of an SMT framework. Experimental evaluation
yields promising results.

There is significant scope for future work, such as: building theorem provers
for recursively-defined properties based on the H-solver, or further developing
program verification tools using H-language-based symbolic execution.

References

1. S. Abdennadher and H. Schütz. CHR∨: A flexible query language. In Proceedings
of the 3rd International Conference on Flexible Query Answering Systems, volume
1495, pages 1–14. Springer, 1998.

2. A. Banerjee, D. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In Proceedings of the 22nd European conference on Object-
Oriented Programming, pages 387–411. Springer-Verlag, 2008.

3. J. Berdine, C. Calcagno, and P. O’Hearn. Smallfoot: Modular automatic assertion
checking with separation logic. In In International Symposium on Formal Methods
for Components and Objects, pages 115–137. Springer, 2005.

4. J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation
logic. In Proceedings of the Third Asian conference on Programming Languages
and Systems, pages 52–68. Springer-Verlag, 2005.

5. M. Botinčan, M. Parkinson, and W. Schulte. Separation logic verification of c
programs with an SMT solver. Electronic Notes in Theoretical Computer Science,
254:5–23, October 2009.

6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, July 1962.

7. E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communcations of the ACM, 18(8):453–457, August 1975.

8. G. Duck. SMCHR: Satisfiability modulo constraint handling rules. Theory and
Practice of Logic Programming, 12(4-5):601–618, 2012. Proceedings of the 28th

international conference on Logic Programming.
9. B. Dutertre and L. De Moura. A fast linear-arithmetic solver for DPLL(T). In

Proceedings of the 18th international conference on Computer Aided Verification,
pages 81–94. Springer, 2006.

10. T. Frühwirth. Theory and practice of constraint handling rules. Special Issue on
Constraint Logic Programming, Journal of Logic Programming, 37, October 1998.

11. C. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, October 1969.

12. B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens.
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In Proceed-
ings of the 3rd international conference on NASA Formal methods, pages 41–55.
Springer-Verlag, 2011.

13. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. LP,
19/20:503–581, May/July 1994.

14. J. Jaffar, A. Santosa, and R. Voicu. An interpolation method for CLP traversal.
In Proceedings of the 15th international conference on Principles and practice of
constraint programming, pages 454–469. Springer-Verlag, 2009.

15. J. Jaffar, A. E. Santosa, and R. Voicu. A coinduction rule for entailment of recur-
sively defined properties. In Proceedings of the 14th International Conference on
Principles and Practice of Constraint Programming, volume 5202 of LNCS, pages
493–508. Springer, 2008.

16. I. Kassios. Dynamic frames: Support for framing, dependencies and sharing with-
out restrictions. In International Symposium on Formal Methods, pages 268–283.
Springer, 2006.

17. K. McMillan. Lazy annotation for program testing and verification. In Proceedings
of the 22nd International Conference on Computer Aided Verification, volume 6174,
pages 104–118. Springer Berlin / Heidelberg, 2010.

18. H. Nguyen, C. David, S. Qin, and W. Chin. Automated verification of shape
and size properties via separation logic. In Proceedings of the 8th international
conference on Verification, model checking, and abstract interpretation, pages 251–
266. Springer-Verlag, 2007.

19. O. Ohrimenko, P. Stuckey, and M. Codish. Propagation via lazy clause generation.
Constraints, 14:357–391, 2009.

20. J. C. Reynolds. Separation logic: A logic for shared mutable data objects. In 17th

IEEE Symposium on Logic in Computer Science, pages 55–74. IEEE Computer
Society Press, 2002.

21. S. Rosenberg, A. Banerjee, and D. Naumann. Decision procedures for region logic.
In Proceedings of the 13th international conference on Verification, Model Check-
ing, and Abstract Interpretation, pages 379–395. Springer-Verlag, 2012.

22. J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In Proceedings of the 23rd European conference on
Object-Oriented Programming, pages 148–172. Springer Berlin Heidelberg, 2009.

23. C. Zarba. Combining sets with elements. In Verification: Theory and Practice,
pages 762–782. Springer, 2004.

