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Abstract. We present an implementation of symbolic reachability analysis with the
features of compositionality, and intermittent abstraction, in the sense of pefrorm-
ing approximation only at selected program points, if at all. The key advantages of
compositionality are well known, while those of intermittent abstraction are that the
abstract domain required to ensure convergence of the algorithm can be minimized,
and that the cost of performing abstractions, now being intermittent, is reduced.

We start by formulating the problem in CLP, and first obtain compositionality.
We then address two key efficiency challenges. The first is that reasoning is required
about the strongest-postcondition operator associated with an arbitrarily long pro-
gram fragment. This essentially means dealing with constraints over an unbounded
number of variables describing the states between the start and end of the program
fragment at hand. This is addressed by using the variable elimination or projection
mechanism that is implicit in CLP systems. The second challenge is termination, that
is, to determine which subgoals are redundant. We address this by a novel formula-
tion of memoization called coinductive tabling.

We finally evaluate the method experimentally. At one extreme, where abstrac-
tion is performed at every step, we compare against a model checker. At the other
extreme, where no abstraction is performed, we compare against a program veri-
fier. Of course, our method provides for the middle ground, with a flexible com-
bination of abstraction and Hoare-style reasoning with predicate transformers and
loop-invariants.

1 Introduction

Predicate abstraction [15] is a successful method of abstract interpretation. The abstract
domain, constructed from a given finite set of predicates over program variables, is intuitive
and easily, though not necessarily efficiently, computable within a traversal method of the
program’s control flow structure.

While it is generally straightforward to optimize the process of abstraction to a certain
extent by performing abstraction at selected points only (eg. several consecutive asign-
ments may be compressed and abstraction performed accross one composite assignment,
as implemented in the BLAST system [19]), to this point there has not been a systematic
way of doing this. Moreover, since the abstract description is limited to a fixed number of
variables, such an ad-hoc method would not be compositional. For example, [2] requires
an elaborate extension of predicate abstraction which essentially considers a second set of
variables (called “symbolic constants”), in order to describe the behaviour of a function, in
the language of predicate abstraction. This provides only a limited form of compositional-
ity.



�
0 � i := 0 ; c := 0�
1 � while (i < n) do�
2 � i++�
3 � c++�
4 � c++�
5 � end

�
6 �

(a)

even � 0 � i � n � c ���� even � 1 � i1 � n1 � c1 ��� i1 	 0 � n1 	 n � c1 	 0 

even � 1 � i � n � c ���� even � 2 � i1 � n1 � c1 ��� i1 	 i � n1 	 n � i � n � c1 	 c 

even � 2 � i � n � c ���� even � 3 � i1 � n1 � c1 ��� i1 	 i � 1 � n1 	 n � c1 	 c 

even � 3 � i � n � c ���� even � 4 � i1 � n1 � c1 ��� i1 	 i � 1 � n1 	 n � c1 	 c � 1 

even � 4 � i � n � c ���� even � 5 � i1 � n1 � c1 ��� i1 	 i � 1 � n1 	 n � c1 	 c � 1 

even � 5 � i � n � c ���� even � 2 � i1 � n1 � c1 ��� i1 	 i � n1 	 n � c1 	 c � i � n 

even � 5 � i � n � c ���� even � 6 � i1 � n1 � c1 ��� i1 	 i � n1 	 n � c1 	 c � i  n 


(b)
Fig. 1. Even counts

In this paper, we present a way of engineering a general proof method of program rea-
soning based on predicate abstraction in which the process of abstraction is intermittent,
that is, approximation is performed only at selected program points, if at all. There is no
restriction of when abstraction is performed, even though termination issues will usually
restrict the choices. The key advantages are that (a) the abstract domain required to ensure
convergence of the algorithm can be minimized, and (b) the cost of performing abstrac-
tions, now being intermittent, is reduced.

For example, to reason that x � 2 after executing x := 0; x++; x++, one needs to
know that x � 1 holds before the final assignment. Thus, in a predicate abstraction setting,
the abstract domain must contain the predicate x � 1 for the above reasoning to be possible.
Also, consider proving x � 2n for the program snippet in Figure 1a. A textbook Hoare-
style loop invariant for the loop is c � 2i. Having this formula in the abstract domain
would, however, not suffice; one in fact needs to know that c � 2i � 1 holds in between
the two increments to c. Thus in general, a proper loop invariant is useful only if we could
propagate its information throughout the program exactly.

A main challenge with exact propagation is that reasoning will be required about the
strongest-postcondition operator associated with an arbitrarily long program fragment.
This essentially means dealing with constraints over an unbounded number of variables
describing the states between the start and end of the program fragment at hand. The
advantages in terms of efficiency, however, are significant: less predicates needed in the
abstract domain, and also, less frequent execution of the abstraction operation. Alterna-
tively, it may be argued that using the weakest precondition operator for exact propagation
may result in a set of constraints over a constant number of variables, and thus circumvent
the challenge mentioned above. To see that this is not true, let us consider the following
program fragment: while(x%7!=0)x++ ; while(x%11!=0)x++. Also, let us assume that
we have an exact propagation algorithm, based on either the weakest preconditon or the
strongest postcondition propagation operator, which computes a constraint that reflects the
relationship between the values of x before and after the execution of the program frag-
ment. Our algorithm needs to record the fact that between the two while loops the value of
x is a multiple of 7. This cannot be done without introducing an auxilliary variable in the
set of constraints. Assume now that this program fragment appears in the body of another
loop. Since that (outer) loop may be traversed multiple times in the analysis process, and
every traversal of the loop will introduce a new auxilliary variable, the number of auxilliary
variables is potentially unbounded, irrespective of the propagation operator that is used.

An important feature of our proof method is that it is compositional. We represent a
proof as a Hoare-style triple which, for a given program fragment, relates the input values
of the variables to the output values. This is represented as a formula, and in general, such



a formula must contain auxiliary variables in addition to the program variables. This is be-
cause it is generally impossible to represent the projection of a formula using a predefined
set of variables, or equivalently, it is not possible to perform quantifier elimination. Con-
sequently, in order to have unrestricted composition of such proofs, it is (again) necessary
to deal with an unbounded number of variables.

The paper is organized as follows. We start by formulating the problem in CLP, and
first obtain compositionality. We then address two key efficiency challenges. The first is
that reasoning is required about the strongest-postcondition operator associated with an ar-
bitrarily long program fragment. This means dealing with constraints over an unbounded
number of variables describing the states between the start and end of the program frag-
ment at hand. We address this problem by using the variable elimination or projection
mechanism that is implicit in CLP systems. The second challenge is termination, which
translates into determining the redundancy of subgoals. We address this by a novel formu-
lation of memoization called coinductive tabling.

We finally evaluate the method experimentally. At one extreme, where abstraction is
performed at every step, we compare against the model checker BLAST [19]. Here we em-
ploy a standard realization of intermittence by abstracting at prespecified points, and thus
our algorithm becomes automatic. At the other extreme, where no abstraction is performed
(but where invariants are used to deal with loops), we compare against the program-verifier
ESC/Java [6]. Of course, our method provides for the middle ground, with a flexible com-
bination of abstraction and Hoare-style reasoning with predicate transformers and loop-
invariants.

In summary, we present a CLP-based proof method which has the properties of being
compositional, and which employs intermittent abstraction. The major technical contribu-
tions, toward this goal, are: the CLP formulation of the proof obligation, which provides
expressiveness, and compositionality; a coinduction principle, which provides the basic
mechanism for termination; and engineering the use of the underlying CLP projection
mechanism in the process of exact propagation. Our method thus provides a flexible com-
bination of abstraction and Hoare-style reasoning with predicate transformers and loop-
invariants, that is compositional, and its practical implementation is feasible.

1.1 Related Work

An important category of tools that use program verification technology have been devel-
oped within the framework of the Java Modelling Language (JML) project. JML allows
one to specify a Java method’s pre- and post-conditions, and class invariants. Examples of
such program verification tools are: Jack [11], ESC/Java2 [6], and Krakatoa [24]. All these
tools employ weakest precondition/strongest postcondition calculi to generate proof obli-
gations which reflect whether the given post-conditions and class invariants hold at the end
of a method, whenever the corresponding pre-conditions are valid at the procedure’s en-
try point. The resulting proof obligations are subsequently discharged by theorem provers
such as Simplify [6], Coq [3], PVS [27], or HOL light [18]. While these systems perform
exact propagation, they depend on user-provided loop invariants, as opposed to an abstract
domain.

Cousot and Cousot [7] have recognized a long time ago that coarse-grained abstrac-
tions are better than fine-grained ones. Moreover, recently there have emerged systems
based on abstract interpretation, and in particular, on predicate abstraction. Some examples



are BLAST [19], SLAM [1], MAGIC [5], and Murphi– – [8], amongst others. While ab-
stract interpretation is central, these systems employ a further technique of automatically
determining the abstract domain needed for a given assertion. This technique iteratively
refines the abstract domain based on information derived from previous counterexamples.
These systems do not perform exact propagation in a systematic way.

The use of CLP for program reasoning is not new (see for example [14] for a non-
exhaustive survey). Due to its capability for handling constraints, CLP has been notably
used in verification of infinite-state systems [9, 10, 13, 17, 23], although results for finite-
state systems are also available [26, 12]. Indeed, it is generally straightforward to represent
program transitions as CLP rules, and to use the CLP operational model to prove assertions
stated as CLP goals. What is novel in our CLP formulation is firstly, the compositional
assertion, and then, coinductive tabling. More importantly, our formulation considers CLP
programs, assertions and tabling in full generality.

2 Preliminaries

Apart from a program counter k, whose values are program points, let there be n system
variables ṽ � v1 � ����� � vn with domains D1 � ����� � Dn respectively. In this paper, we shall use
just two example domains, that of integers, and that of integer arrays. We assume the
number of system variables is larger than the number of variables required by any program
fragment or procedure.

Definition 1 (States and Transitions). A system state (or simply state) is of the form�
k � d1 � ����� � dn � where k is a program point and di � D i � 1 � i � n, are values for the system

variables. A transition is a pair of states.

In what follows, we define a language of first-order formulas. Let V denote an infinite
set of variables, each of which has a type in D1 � ����� � Dn, let Σ denote a set of functors, and
Π denote a set of constraint symbols. A term is either a constant (0-ary functor) in Σ or of
the form f

�
t1 � ����� � tm � , m � 1, where f � Σ and each ti is a term, 1 � i � m. A primitive

constraint is of the form φ
�
t1 � ����� � tm � where φ is a m � ary constraint symbol and each ti is

a term, 1 � i � m.
A constraint is constructed from primitive constraints using logical connectives in the

usual manner. Where Ψ is a constraint, we write Ψ
�
X̃ � to denote that Ψ possibly refers to

variables in X̃ , and we write ˜	 Ψ
�
X̃ � to denote the existential closure of Ψ

�
X̃ � over variables

distinct from those in X̃ .
A substitution is a mapping which simultaneously replaces each variable in a term or

constraint by some expression. Where e is a term or constraint, we write eθ to denote the
result of applying θ to e. A renaming maps each variable in a given sequence, say X̃ , into
the corresponding variable in another given sequence, say Ỹ . We write 
 X̃ �� Ỹ  to denote
such a mapping. A grounding substitution, or simply grounding maps each variable of an
expression into a ground term representing a value in its respective domain. We denote by

 
 e   the set of all possible groundings of e.

3 Constraint Transition Systems

A key concept is that a program fragment P operates on a sequence of anonymous vari-
ables, each corresponding to a system variable at various points in the computation of P.



In particular, we consider two sequences x̃ � x1 � ����� � xn and x̃t � xt
1 � ����� � xt

n of anonymous
variables to denote the system values before executing P and at the “target” point(s) of P,
respectively. Typically, but not always, the target point is the terminal point of P. Our proof
obligation or assertion is then of the form

�
Ψ

�
x̃ ��� P

�
Ψ1

�
x̃ � x̃t ���

where Ψ and Ψ1 are constraints over the said variables, and possibly including new vari-
ables. Like the Hoare-triple, this states that if P is executed in a state satisfying Ψ, then
all states at the target points (if any) satisfy Ψ1. Note that, unlike the Hoare-triple, P may
be nonterminating and Ψ1 may refer to the states of a point that is reached infinitely often.
We will formalize all this below.

For example, let there be just one system variable x, let P be <0> x := x + 1 <1>,
and let the target point be <1>. Then

�
true � P

�
xt � x � 1 � holds, meaning P is the successor

function on x. Similarly, if P were the (perpetual) program <0> while (true) x := x +
2 <1> endwhile <2>, and if <1> were the target point, then

�
true � P

�
xt � x � 2z � holds,

that is, any state
�
1 � x � at point <1> satisfies

	
z
�
xt � x � 2z � . This shows, amongst other

things, that the parity of x always remains unchanged.
Our proof method accomodates concurrent programs of a fixed number of processes.

Where we have n processes, we shall use as a program point, a sequence of n program
points so that the ith program point is one which comes from the ith process, 1 � i � n.

We next represent the program fragment P as a transition system which can be executed
symbolically. The following key definition serves two main purposes. First, it is a high
level representation of the operational semantics of P, and in fact, it represents its exact
trace semantics. Second, it is an executable specification against which an assertion can be
checked.

Definition 2 (Constraint Transition System). A constraint transition of P is a formula

p
�
k � x̃ � �� p

�
k1 � x̃1 � � Ψ �

x̃ � x̃1 �
where k and k1 are variables over program points, each of x̃ and x̃1 is a sequence of
variables representing a system state, and Ψ is a constraint over x̃ and x̃1, and possibly
some additional auxiliary variables.

A constraint transition system (CTS) of P is a finite set of constraint transitions of P.
The symbol p is called the CTS predicate of P.

In what follows, unless otherwise stated, we shall consistently denote by P the program
of interest, and by p its CTS predicate.

Consider for example the program in Figure 1a; call it Even. Figure 1b shows a CTS
for Even, whose CTS predicate is even.

Consider another example: the Bakery algorithm with two processes in Figure 2. A
CTS for this program, call it Bak, is given in Figure 3. Note that we use the first and
second arguments of the term bak to denote the program points of the first and second
process respectively.

Clearly the variables in a constraint transition may be renamed freely because their
scope is local to the transition. We thus say that a constraint transition is a variant of an-
other if one is identical to the other when a renaming subsitution is performed. Further, we
may simplify a constraint transition by renaming any one of its variables x by an expression



Process 1:
while (true) do�

0 � x := y + 1�
1 � await (x<y � y=0)�
2 � x := 0

end

Process 2:
while (true) do�

0 � y := x + 1�
1 � await (y<x � x=0)�
2 � y := 0

end

Fig. 2. Two Process Bakery

bak � 0 � p2 � x � y � �� bak � 1 � p2 � x1 � y ��� x1 	 y � 1 

bak � 1 � p2 � x � y � �� bak � 2 � p2 � x � y ��� x � y � y 	 0 

bak � 2 � p2 � x � y � �� bak � 0 � p2 � x1 � y ��� x1 	 0 

bak � p1 � 0 � x � y � �� bak � p1 � 1 � x � y1 ��� y1 	 x � 1 

bak � p1 � 1 � x � y � �� bak � p1 � 2 � x � y ��� y � x � x 	 0 

bak � p1 � 2 � x � y � �� bak � p1 � 0 � x � y1 ��� y1 	 0 


Fig. 3. CTS of Two Process Bakery

y provided that x � y in all groundings of the constraint transition. For example, we may
simply state the last constraint transition in Figure 3 into

bak
�
p1 � 2 � x � y � �� bak

�
p1 � 0 � x � 0 �

by replacing the variable y1 in the original transition with 0.
The above formulation of program transitions is familiar in the literature for the pur-

pose of defining a set of transitions. What is new, however, is how we use a CTS to define
symbolic transition sequences, and thereon, the notion of a proof.

By similarity with logic programming, we use the term goal to denote a formula that
can be subjected to an unfolding process in order to infer a logical consequence.

Definition 3 (Goal). A query or goal of a CTS is of the form p
�
k � x̃ � � Ψ �

x̃ � , where k is a
program point, x̃ is a sequence of variables over system states, and Ψ is a constraint over
some or all of the variables x̃, and possibly some additional variables. The variables x̃ are
called the primary variables of this goal, while any additional variable in Ψ is called an
auxiliary variable of the goal.

Thus a goal is just like the conclusion of a constraint transition. We say the goal is a
start goal if k is the start program point. Similarly, a goal is a target goal if k is the target
program point. Running a start goal is tantamount to asking the question: which values
of x̃ which satisfy ˜	 Ψ

�
x̃ � will lead to a goal at the target point(s)? The idea is that we

successively reduce one goal to another until the resulting goal is at a target point, and
then inspect the results.

Next we define the meaning of proving a goal against a CTS.

Definition 4 (Proof Step, Sequence and Tree). Let there be a CTS for p, and let G �
p
�
k � x̃ � � Ψ be a goal for this. A proof step from G is obtained via a variant p

�
k � ỹ � �� p

�
k1 � ỹ1 � � Ψ1

of a transition in the CTS in which all the variables are fresh. The result is a goal of the
form p

�
k1 � ỹ1 � � Ψ � x̃ � ỹ � Ψ1, providing that the constraints Ψ � x̃ � ỹ � Ψ1 are satisfiable.

A proof sequence is a finite or infinite sequence of proof steps. A proof tree is defined
from proof sequences in the obvious way. A tree is complete if every internal node repre-
senting a goal G is succeeded by nodes representing every goal obtainable in a proof step
from G .



bak � 2 � 1 � x1 � y1 � �
x1 � 1 � x1 � 2

bak � 0 � 0 � x2 � y � �
x2 � 0 � y � 0

bak � 0 � 0 � x � y2 � �
x � 0 � y2 � 0x1 � 2 � y1 � 1

bak � 2 � 0 � x1 � y � �
x1 � 1 � y � 0

bak � 2 � 1 � x1 � y1 � �
x1 � 1 � x1 � 2

bak � 1 � 1 � x1 � y1 � �
x1 � 1 � y1 � 2

bak � 1 � 0 � x1 � y � �
x1 � 1 � y � 0

bak � 1 � 1 � x1 � y1 � �
x1 � 2 � y1 � 1

bak � 0 � 1 � x � y1 � �
x � 0 � y1 � 1

bak � 0 � 2 � x � y1 � �
x � 0 � y1 � 1

bak � 0 � 0 � x � y � �
x � 0 � y � 0

bak � 1 � 2 � x1 � y1 � �
x1 � 2 � y1 � 1

bak � 1 � 2 � x1 � y1 � �

Fig. 4. Proof Tree of 2-Process Bakery Algorithm (Partially Shown)

even
�
6 � i2 � n � c2 � � i2 � 1 � n � 1 � c2 � 2

even
�
4 � i2 � n � c1 � � i2 � 1 � n � 1 � c1 � 1

even
�
5 � i2 � n � c2 � � i2 � 1 � n � 1 � c2 � 2

even
�
3 � i2 � n � c � � i2 � 1 � n � 1 � c � 0

even
�
2 � i1 � n � c � � i1 � 0 � n � 1 � c � 0

even
�
0 � i � n � c � � n � 1 � c � 0

even
�
1 � i1 � n � c � � i1 � 0 � n � 1 � c � 0

Fig. 5. Proof Tree of Even Counts Program

Consider again the CTS in Figure 1b, and we wish to prove
�
n � 1 � p

�
c � 2 � . There is

in fact only one proof sequence from the start goal

even
�
0 � i � n � c � � n � 1 � c � 0.

or equivalently, even
�
0 � i � 1 � 0 � . This proof sequence is shown in Figure 5, and note that the

counter, represented in the last goal by the variable c2, has the value 2.

Definition 5 (Assertion). Let p be a program with start variables x̃, and let Ψ be a con-
straint. Let x̃t denote a sequence of variables representing system states not appearing in
p or Ψ. (These represent the target values of the system variables.) An assertion for p wrt
to x̃t is of the form p

�
k � x̃ � � Ψ � � Ψ1

�
x̃ � x̃t � . In particular, when k is the start program point,

we may abberviate the assertion using the notation
�
Ψ � p

�
Ψ1 �

It is intuitively clear what it means for an assertion to hold. That is, execution from
every instance θ of p

�
k � x̃ � � Ψ cannot lead to a target state where the property Ψ1

�
x̃θ � x̃t � is

violated.
In the example above, we could prove the assertion even

�
0 � i � n � c � � � ct � 2n where it

is understood that the final variable ct corresponds to the start variable c. Note that the last
occurrence of n in the assertion means that we are comparing ct with the initial and not
final value of n (though in this example, the two are in fact the same).

We now state the essential property of proof sequences:

Theorem 1. Let a CTS for p have the start point k and target point kt , and let x̃ and x̃1

each be sequences of variables over system states. The assertion
�
Ψ

�
x̃ ��� p

�
Ψ1

�
x̃t � x̃ ���

holds if for any goal of the form p
�
kt � x̃1 � � Ψ2

�
x̃1 � x̃ � appearing in a proof sequence from

the goal p
�
k � x̃ � � Ψ

�
x̃ � , the following holds: ˜	 Ψ2

�
x̃1 � x̃ � � � ˜	 Ψ1

�
x̃1 � x̃ �



The above theorem provides the basis of a search method, and what remains is to
provide a means to ensure termination of the search. Toward this end, we next define the
concepts of subsumption and coinduction and which allow the (successful) termination of
proof sequences. However, these are generally insufficient. In the next section, we present
our version of abstraction whose purpose is to transform a proof sequence so that it is
applicable to the termination criteria of subsumption and coinduction.

3.1 Subsumption. Consider a finite and complete proof tree from some start goal. A goal
G in the tree is subsumed if there is a different path in the tree containing a goal G � such
that 
 
 G   � 
 
 G �   .

The principle here is simply memoization: one may terminate the expansion of a proof
sequence while constructing a proof tree when encountering a subsumed goal.

3.2 Coinduction. The principle here is that, within one proof sequence, the proof obliga-
tion associated with the final goal may assume that the proof obligation of an ancestor goal
has already been met. This can be formally explained as a principle of coinduction (see eg:
Appendix B of [25]). Importantly, this simple form of coinduction does not require a base
case nor a well-founded ordering.

We shall simply demonstrate this principle by example. Suppose we had the transition
p
�
0 � x � �� p

�
0 � x � � � x � � x � 2 and we wished to prove the assertion p

�
0 � x � � � even

�
xt � x � ,

that is, the difference between x and its final value is even. Consider the derivation step:

p
�
0 � x � � � even

�
xt � x �

p
�
0 � x � � � x � � x � 2 � � even

�
xt � x �

We may use, in the latter goal, the fact that the earlier goal satisfies the assertion. That is,
we may reduce the obligaton of the latter goal to even

�
xt � x � � � x � � x � 2 � � even

�
xt � x � .

It is now a simple matter of inferring whether this formula holds. In general practice, the
application of coinduction testing is largely equivalent to testing if one goal is simply an
instance of another.

4 Abstraction

In the literature on predicate abstraction, the abstract description is a specialized data struc-
ture, and the abstraction operation serves to propagate such a structure though a small pro-
gram fragment (a contiguous group of assignments, or a test), and then obtaining another
structure. The strength of this method is in the simplicity of using a finite set of predicates
over the fixed number of program variables as a basis for the abstract description.

We choose to follow this method. However, our abstract description shall not be a
distinguished data structure. In fact, our abstract description of a goal is itself a goal.

Definition 6 (Abstraction). An abstraction A is applied to a goal. It is specified by a
program point pc

�
A � , a sequence of variables var

�
A � corresponding to a subset of the

system variables, and finally, a finite set of constraints pred
�
A � over var

�
A � , called the

“predicates” of A .
Let A be an abstraction and G be a goal p

�
k � x̃ � � Ψ where k � pc

�
A � . Let x̃1 denote the

subsequence of x̃ corresponding to the system variables var
�
A � . Let x̄ denote the remaining

subsequence of x̃. Without losing generality, we assume that x̃1 is an initial subsequence of
x̃, that is, x̃ � x̃1 � x̄. Then the abstraction A

�
G � of G by A is p

�
k �Z̃ � x̄ � � Ψ � Ψ2 
 var

�
A � �� Z̃  ,



where Z̃ is a sequence of fresh variables renaming x̃1, and Ψ2 is the finite set of constraints�
ψ2 � pred

�
A � : Ψ � � ψ2 
 var

�
A � �� x̃1  �

For example, let A be such that pc
�
A � � 0, var

�
A � � �

v1 � and pred
�
A � � �

v1 � 0 � v1 �
0 � . That is, the first variable is to be abstracted into a negative or a nonnegative value.
Let G be p

�
0 � 
 x1 � x2 � x3  � � x1 � x2 � x2 � 1. Then the abstraction A

�
G � is a goal of the form

p
�
0 � 
 Z � x2 � x3  � � x1 � x2 � x2 � 1 � Z � 0, which can be simplified into p

�
0 � 
 Z � x2 � x3  � � x2 �

1 � Z � 0. Note that the orginal goal had ground instances p
�
0 � 
 1 � 1 � n  � for all n, while the

abstracted goal has the instances p
�
0 � 
 m � 1 � n  � for all n and all nonnegative m. Note that

the second variable x2 has not been abstracted even though it is tightly constrained to the
first variable x1. Note further that the value of x3 is unchanged, that is, the abstraction
would allow any constraint on x3, had the example goal contained such a constraint, to be
propagated.

Lemma 1. Let A be an abstraction and G a goal. Then 
 
 G   � 
 
 A �
G �   .

The critical point is that the abstraction of a goal has the same format as the goal itself.
Thus an abstract goal has the expressive power of a regular goal, while yet containing a
notion of abstraction that is sufficient to produce a finite-state effect. Once again, this is
facilitated by the ability to reason about an unbounded number of variables.

Consider the “Bubble” program and its CTS in Figures 7(a) and 7(b), which is a sim-
plified skeleton of the bubble sort algorithm (without arrays). Consider the subprogram
corresponding to start point 2 and whose target point is 6, that is, we are considering the
inner loop. Further suppose that the following assertion had already been proven:

bub
�
2 � i � j � t � n � � � it � i � tt � t � n � i � 1 � nt � n

that is, the subprogram increments t by n � i � 1 while preserving both i and n, but not j.
Consider now a proof sequence for the goal bub

�
0 � i � j � t � n � � n � 0, where we want to prove

that at program point
�
8 � , t � �

n2 � n ��� 2. The proof tree is depicted in Figure 6. The proof
shows a combination of the use of intermittent abstraction and compositional proof:� At point (A), we abstract the goal bub

�
2 � i1 � j � t1 � n � � i1 � 0 � t1 � 0 � n � 1 using the

predicates i � n � 1 and t � n � i � �
i2 � i ��� 2. Call this abstraction A . Here the set of

variables is var
�
A � � �

i � t � , hence both the variables i1 and t1 that correspond respec-
tively to system variables i and t are renamed to fresh variables i2, and t2. Meanwhile,
the variables j and n retain their original values.� After performing the above abstraction, we reuse the proof of the inner loop above.
Here we immediately move to program point

�
6 � , incrementing t with n � i � 1, and

updating j to an unknown value. However, i and n retain their original values at
�
2 � .� The result of the intermittent abstraction above is a coinductive proof.

5 The Whole Algorithm

We now summarize our proof method for an assertion
�
Ψ � p

�
Ψ1 �

Suppose the start program point of p is k and the start variables of p are x̃. Then consider
the start goal p

�
k � x̃ � � Ψ and incrementally build a complete proof tree. For each path in the

tree constructed so far leading to a goal G if:



Composition)
(Proof

bub � 8 � i3 � j1 � t3 � n ��� i3 	 n � 1 � t3 	 n � i3 � � i23 � i3 �
�
2

(Coinduction using (A))
bub � 2 � i3 � j1 � t3 � n ��� i3 � n � 1 � t3 	 n � i3 � � i23 � i3 �

�
2

(Satisfies t3 	 � n2 � n � � 2)

bub � 7 � i3 � j1 � t3 � n ��� i3 � n � t3 	 n � i3 � � i23 � i3 �
�
2

bub � 6 � i2 � j1 � t3 � n ��� i2 � n � 1 � t3 	 n � � i2 � 1 � � � � i2 � 1 � 2 � i2 � 1 � � 2

bub � 2 � i2 � j � t2 � n ��� i2 � n � 1 � t2 	 n � i2 � � i22 � i2 �
�
2 (Intermittent abstraction)

(A)bub � 2 � i1 � j � t1 � n ��� i1 	 0 � t1 	 0 � n � 1

bub � 8 � i1 � j � t1 � n ��� i1 	 0 � t1 	 0 � 0 � n � 1 (Satisfies t1 	 � n2 � n � � 2)

bub � 1 � i1 � j � t1 � n ��� i1 	 0 � t1 	 0 � n  0

bub � 0 � i � j � t � n ��� n  0

Fig. 6. Compositional Proof

�
0 � t := 0; i := 0�
1 � while (i < n-1) do�
2 � j := 0�
3 � while ( j < n-i-1) do�
4 � j := j+1; t := t+1�
5 � end�
6 � i := i+1�
7 � end

�
8 �

bub � 0 � i � j � t � n � �� bub � 1 � i1 � j � t1 � n ��� i1 	 0 � t1 	 0 

bub � 1 � i � j � t � n � �� bub � 8 � i � j � t � n ��� i  n � 1 

bub � 1 � i � j � t � n � �� bub � 2 � i � j � t � n ��� i � n � 1 

bub � 2 � i � j � t � n � �� bub � 3 � i � j1 � t � n � � j1 	 0 

bub � 3 � i � j � t � n � �� bub � 6 � i � j � t � n ��� j  n � i � 1 

bub � 3 � i � j � t � n � �� bub � 4 � i � j � t � n ��� j � n � i � 1 

bub � 4 � i � j � t � n � �� bub � 5 � i � j1 � t1 � n � � j1 	 j � 1 � t1 	 t � 1 

bub � 5 � i � j � t � n � �� bub � 6 � i � j � t � n ��� j  n � i � 1 

bub � 5 � i � j � t � n � �� bub � 4 � i � j � t � n ��� j � n � i � 1 

bub � 6 � i � j � t � n � �� bub � 7 � i1 � j � t1 � n ��� i1 	 i � 1 

bub � 7 � i � j � t � n � �� bub � 8 � i � j � t � n ��� i  n � 1 

bub � 7 � i � j � t � n � �� bub � 2 � i � j � t � n ��� i � n � 1 


(a) (b)

Fig. 7. Program “Bubble”

� G is either subsumed or is coinductive, then consider this path closed, ie: not to be
expanded further;� G is a goal on which an abstraction A is defined, replace G by A

�
G � ;� G is a target goal, and if the constraints on the primary variables x̃1 in G do not satisfy

Ψθ, where θ renames the target variables in Ψ into x̃1, terminate and return false.� the expansion of the proof tree is no longer possible, terminate and return true.

Theorem 2. If the above algorithm, applied to the assertion
�
Ψ � p

�
Ψ1 � , terminates and

does not return false, then the assertion holds.

6 CLP Technology

It is almost immediate that CTS is implementable in CLP. Given a CTS for p, we build a
CLP program in the following way: (a) for every transition of the form

�
k � x̃ � �� �

k � � x̃ � � � Ψ
we use the CLP rule the clause �

�
k � x̃ � : � �

�
k � � x̃ � � � Ψ (assuming that Ψ is in the constraint

domain of the CLP implementation at hand); (b) for every terminal program point k, we
use the CLP fact �

�
k � ������� � � � , where the number of anonymous variables is the same as

the number of variables in x̃.



We see later that the key implementation challenge for a CLP system is the incremen-
tal satisfiability problem. Roughly stated, this is the problem of successively determining
that a monotonically increasing sequence of constraints (interpreted as a conjunction) is
satisfiable.

6.1 Exact Propagation is “CLP-Hard”

Here we informally demonstrate that the incremental satisfiability problem is reducible to
the problem of analyzing a straight line path in a program. We will consider here con-
straints in the form of linear diophantine equations, i.e., multivariate polynomials over
the integers. Without loss of generality, we assume each constraint is written in the form
X � Y � Z or X � nY where n is an integer. Throughout this section, we denote by X , Y , Z
logic variables, and by x, y, z their corresponding program variables, respectively.

Suppose we already have a sequence of constraints Ψ0 � ����� � Ψi and a corresponding
path in the program’s control flow.

Suppose we add a new constraint Ψi � 1 � �
X � Y � Z � . Then, if one of these variables,

say Y , is new, we add the assignment y : � x � z where y is a new variable created to corre-
spond to Y . The remaining variables x and z are each either new, or are the corresponding
variables to X and Z, respectively. If however all of X , Y and Z are not new, then add the
statement if (x � y � z) ... . Hereafter we pursue the then branch of this if statement.

Similarly, suppose the new constraint were of the form X � nY . Again, if x is new, we
simply add the assignment x : � n � y where x is newly created to correspond to X . Other-
wise, add the statement if (x = n * y) ... to the path, and again, we now pursue the
then branch of this if statement.

Clearly an exact analysis of the path we have constructed leading to a successful traver-
sal required, incrementally, the solving of the constraint sequence Ψ0 � ����� � Ψn.

6.2 Key Elements of CLP Systems

A CLP system attempts to find answers to an initial goal G by searching for valid substi-
tutions of its variables, in a depth-first manner. Each path in the search tree in fact involves
the solving of an incremental satisfiability problem. Along the way, unsatisfiability of the
constraints at hand would entail backtracking.

The key issue in CLP is the incremental satisfiability problem, as mentioned above. A
standard approach is as follows. Given that the sequence of constraints Ψ0 ������� � Ψi has been
determined to be satisfiable, represent this fact in a solved form. Essentially, this means that
when a new constraint Ψi � 1 is encountered, the solved form can be combined efficiently
with Ψi � 1 in order to determine the satisfiability of the new conjunction of constraints.

This method essentially requires a representation of the projection of a set of con-
straints onto certain variables. Consider, for example, the set x0 � 0 � x1 � x1 � 1 � x2 �
x1 � 1 � ����� � xi � xi � 1 � 1. Assuming that the new constraint would only involve the vari-
able xi (and this happens vastly often), we desire a representation of xi � i. This projection
problem is well studied in CLP systems [21]. In the system CLP(R ) [22] for example,
various adaptations of the Fourier-Motzkin algorithm were implemented for projection in
Herbrand and linear arithmetic constraints.

We finally mention another important optimization in CLP: tail recursion. This tech-
nique uses the same space in the procedure call stack for recursive calls. Amongst other



int main()�
int i=0, j, x=0;
while (i<7)

�
j=0;
while (j<7)

�
x++; j++; �

i++; �
if (x>49)

�
ERROR: � �

(a)

int main()�
int i=0, j, x=0;
while (i<50)

�
i++; j=0;
while (j<10)

�
x++; j++; �

while (x>i)
�
x--; � �

if (x<50)
�
ERROR: � �

(b)

Fig. 8. Programs with Loop

benefits, this technique allows for a potentially unbounded number of recursive calls. Tail
recursion is particurly relevant in our context because the recursive calls arising from the
CTS of programs are often tail-recursive.

The CLP(R ) system that we use to implement our prototype has been engineered to
handle constraints and auxiliary variables efficiently using the above techniques.

7 Experiments

7.1 Exact Runs

We start with an experiment which shows that concrete execution can potentially be less
costly than abstract execution. To that end, we compare the timing of concrete execution
using our CLP-based implementation and a predicate abstraction-based model checker.
We run a simple looping program, whose C code is shown in Figure 8 (a). First, we have
BLAST generate all the 100 predicates it requires. We then re-run BLAST by providing
these predicates. BLAST took 22.06 seconds to explore the state space. On the same ma-
chine, and without any abstraction, our verification engine took only 0.02 seconds. For
comparison, SPIN model checker [20] executes the same program written in PROMELA

in less than 0.01 seconds. Note that for all our experiments, we use a Pentium 4 2.8 GHz
system with 512 MB RAM running GNU/Linux 2.4.22.

Time (in Seconds)
CLP with Tabling ESC/Java 2
x==0 — x==0 —

Non-Looping 2.45 2.47 9.89 9.68
Looping 22.05 21.95 1.00 1.00

Table 1. Timing Comparison with ESC/Java

Next, consider the synthetic program
consisting of an initial assignment x := 0
followed by 1000 increments to x, with the
objective of proving that x � 1000 at the
end. Consider also an alternative version
where the program contains only a single
loop which increments its counter x 1000
times. We input these two programs to our

program verifier, without using abstraction, and to ESC/Java 2 as well. The results are
shown in Table 1. For both our verifier and ESC/Java 2 we run both with x initialized to 0
and not initialized, hopefully forcing symbolic execution.

Table 1 shows that our verifier runs faster for the non-looping version. However, there
is a noticeable slowdown in the looping version for our implementation. This is caused by
the fact that in our implementation of coinductive tabling, subsumption check is done based
on similarity of program point. Therefore, when a program point inside a loop is visited
for the i-th time, there are i � 1 subsumption checks to be performed. This results in a total
of about 500,000 subsumption checks for the looping program. In comparison, the non-
looping version requires only 1,000 subsumption checks. However, our implementation



is currently at a prototype stage and our tabling mechanism is not implemented in the
most efficient way. For the looping version, ESC/Java 2 employs a weakest precondition
propagation calculus; since the program is very small, with a straightforward invariant (just
the loop condition), the computation is very fast. Table 1 also shows that there is almost
no difference between having x initialized to 0 or not.

7.2 Experiments Using Abstraction

Next we show an example that demonstrates that the intermittent approach requires fewer
predicates. Let us consider a second looping program written in C, shown in Figure 8 (b).
The program’s postcondition can be proven by providing an invariant x=i � i<50 before
the first statement of the loop body of the outer while loop. For predicate abstraction, we
use the following predicates x=i, i<50, and respectively their negations x �� i, i � 50 for
that program point to our verifier. The proof process finishes in less than 0.01 seconds.
If we do not provide an abstract domain, the verification process finishes in 20.34 sec-
onds. Here intermittent predicate abstraction requires fewer predicates: We also run the
same program with BLAST and provide the predicates x=i and i<50 (BLAST would auto-
matically also consider their negations). BLAST finishes in 1.33 seconds, and in addition,
it also produces 23 other predicates through refinements. Running it again with all these
predicates given, BLAST finishes in 0.28 seconds.

while (true) do�
0 � xi := max(x j �� i) + 1�
1 � await ( � j : j �� i � xi<x j � x j=0)�
2 � xi := 0

end
Fig. 9. Bakery Algorithm Peudocode for

Further, we also tried our proof
method on a version of the bakery mu-
tual exclusion algorithm. We need ab-
straction since the bakery algorithm
is an infinite-state program. The pseu-
docode for process i is shown in Fig-
ure 9. Here we would like to verify

mutual exclusion, that is, no two processes are in the critical section (program point�
2 � ) at the same time. Our version of the bakery algorithm is a concurrent program with

asynchronous composition of processes. Nondeterminism due to concurrency can be en-
coded using nondeterministic choice. We encode the algorithm for 2, 3 and 4 processes
in BLAST, where nondeterministic choice is implemented in using the special variable
BLAST NONDET which has a nondeterministic value. When N is the number of processes,

each of the program has the N variables pci, where 1 � i � N, each denoting the program
point of process i. pci can only take a value from

�
0 � 1 � 2 � . and also N variables xi, each

denoting the “ticket number” of a process. We also translate the BLAST code into CTS.
In our experiments, we attempt to verify mutual exclusion property, that is, no two pro-

cesses can be in the critical section at the same time. Here we perform 3 sets of runs, each
consisting of runs with 2, 3 and 4 processes. In all 3 sets, we use a basic set of predicates:
xi=0, xi � 0, pci=0, pci=1, pci=2, where i � 1 ��������� N and N the number of processes, and
also their negations.

� Set 1: Use of predicate abstraction at every state with full predicate set. We per-
form abstraction at every state encountered during search. In addition to the basic
predicates, we also require the predicates shown in Table 2 (a) (and their negations) to
avoid spurious counterexamples.



Bakery-2 x1<x2
Bakery-3 x1<x2, x1<x3, x2<x3
Bakery-4 x1<x2, x1<x3, x1<x4

x2<x3, x2<x4, x3<x4

Time (in Seconds)
CLP with Tabling BLAST

Set 1 Set 2 Set 3

Bakery-2 0.02 0.01 � 0.01 0.17
Bakery-3 0.83 0.14 0.09 2.38
Bakery-4 131.11 8.85 5.02 78.47

(a) Additional Predicates (b) Timing Constraints

Table 2. Results of Experiments Using Abstraction

� Set 2: Intermittent predicate abstraction with full predicate set. We use intermit-
tent abstraction on our prototype implementation. We abstract only when for some
process i, pci=1 holds. The set of predicates is as in the first set.� Set 3: Intermittent predicate abstraction with reduced predicate set. We use in-
termittent abstraction on our tabled CLP system. Wee only abstract whenever there
are N � 1 processes at program point 0 (in the 2-process sequential version this means
either pc1=0 or pc2=0). For a N-process bakery algorithm, we only need the basic
predicates and their negations without the additional predicates shown in Table 2 (a).

We have also compared our results with BLAST. We supplied the same set of predicates
that we used in the first and second sets to BLAST. Again, in BLAST we do not have
to specify their negations explicitly. Interestingly, for 4-process bakery algortihm BLAST

requires even more predicates to avoid refinement, which are x1=x3+1, x2=x3+1, x1=x2+1,
1 � x4, x1 � x3, x2 � x3 and x1 � x2. We suspect this is due to the fact that precision in
predicate abstraction-based state-space traversal depends on the power of the underlying
theorem prover. We have BLAST generate these additional predicates it needs in a pre-run,
and then run BLAST using them. Here since we do not run BLAST with refinement, as the
lazy abstraction technique [19] has no effect, and BLAST uses all the supplied predicates
to represent any abstract state.

For these problems, using our intermittent abstraction with CLP tabling is also markedly
faster than both full predicate abstraction with CLP and BLAST. We show our timing re-
sults in Table 2 (b) (smallest recorded time of 3 runs each).

The first set and BLAST both run with abstraction at every visited state. The timing
difference between them and second and third sets shows that performing abstraction at
every visited state is expensive. The third set shows further gain over the second when we
understand some intricacies of the system.

Acknowledgement: We thank Ranjit Jhala for help with BLAST.
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