
Efficient Memoization for Dynamic Programming with Ad-Hoc C onstraints

Joxan Jaffar Andrew E. Santosa R̆azvan Voicu
School of Computing, National University of Singapore

Republic of Singapore 117590
{joxan,andrews,razvan}@comp.nus.edu.sg

Abstract

We address the problem of effective reuse of subproblem so-
lutions in dynamic programming. In dynamic programming,
a memoed solution of a subproblem can be reused for another
if the latter’s context is a special case of the former. Our ob-
jective is to generalize the context of the memoed subproblem
such that more subproblems can be considered subcases and
hence enhance reuse. Toward this goal we propose a gener-
alization of context that 1) does not add better solutions than
the subproblem’s optimal, yet 2) requires that subsumed sub-
problems preserve the optimal solution. In addition, we also
present a general technique to search for at mostk ≥ 1 opti-
mal solutions. We provide experimental results on resource-
constrained shortest path (RCSP) benchmarks and program’s
exact worst-case execution time (WCET) analysis.

Introduction
Dynamic programming is a widely used technique to
solve combinatorial optimization problems exhibiting cer-
tain characteristics. One major characteristic of a dynamic
program is the existence of overlapping subproblems. This
allows for the reuse of a solution of a subproblem to solve
another subproblem. Therefore, essential to a dynamic pro-
gramming technique is the notion of memoization of sub-
problem solutions already solved. Essential to memoization
is the identificationof whether a solution can be reused or
not. Each subproblem is executed in acontext, which is an
abstraction of the computation history so far. Whenever the
same subproblem is encountered in asimilar context, the
previous solution can be reused.

A simple example of a problem that can be modeled as a
dynamic program is the shortest path problem. Assuming an
edge-weighted graph(V ,E ) of verticesV and edgesE , we
distinguish two elements ofV as thesourceanddestination.
A shortest path problem is finding a path from the source to
destination such that the sum of the edge weights is minimal.
As is usual in the literature this can be modeled using the
following dynamic program, wherecv,w denotes the weight
of the edge(v,w).

f (X) = if destination(X) then 0
elsemin{ f (Y)+cX,Y|(X,Y) ∈ E }

Dynamic programming very efficiently executes this pro-
gram using memoization, which results in a search tree size

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that is linear to|V |. In the above formulation, the solution
to a subproblemf (v) is computed when the subproblem is
encountered for the first time, and will be reused whenever
the same subproblemf (v) is subsequently encountered.

As an extension to our example, let us consider the
resource-constrained shortest path(RCSP) problem, which
is NP-complete. Here, we assume that there are a number
of resources with maximum values represented as the vector
ũ. We also assume that each edge(v,w) of a path consumes
the amount ˜rv,w of resources. The aim of this problem is to
find the shortest path whose traversal does not exceed the
maximum usage ˜u. The resource usage requirement is an in-
stance of anad-hoc constraintadded to the original shortest
path problem. An RCSP solution can be modeled by the
following dynamic program:

f (X,R̃) = if R̃> ũ then ∞
else ifdestination(X) then 0

elsemin{ f (Y,R̃+ R̃X,Y)+cX,Y|(X,Y) ∈ E }
(1)

We note that there are various ways of modeling this prob-
lem as a dynamic program, the earliest of which is provided
in (Joksch 1966). In the above program, we note the test
R̃ > ũ which stops the program if the ad-hoc constraint is
violated. Similar to the previous example, we would like to
reuse the solution to a subproblem whenever that subprob-
lem (or a more specific one) is encountered again. An obvi-
ous way to identify the opportunity for reuse is to check that
the current subproblemf (v, r̃) is the same as some previ-
ously encountered subproblemf (w, s̃). This can be achieved
by checking thatv = w and ˜r = s̃.

A less obvious, but more general way of finding opportu-
nities for reuse is to check thatv= w and ˜r ≥ s̃. Indeed, since
r̃ represents the amount of resources consumed before the
nodev has been reached, we can surely reuse the solution
to f (v, r̃) whenever we encounter the subproblemf (v, s̃),
where the amount of resources consumed before reaching
v is s̃≤ r̃. In other words, there is opportunity for reusing
a solution whenever there is a certain relationship between
the contexts̃ of the current subproblem, and the context ˜r
of a previously encountered subproblem. As we shall see
later, we can useconstraintsto express the context of a sub-
problem, andconstraint subsumptionto express the relation-
ship that allows sub-solution reuse.

In this paper we propose a more efficient way to de-
tect subproblem similarity based on the notion ofinter-
polants (Craig 1955) which generalize the context of a



solved subproblem such that more subproblems can be con-
sidered similar and can simply reuse the existing solution.
As an example, suppose thatf (v, r̃) returns no solution be-
cause ˜r ≤ ũ is violated. Here we can generalizev and
r̃ to the constraintΨ on the variablesX and R̃ such that
Ψ(X,R̃) ≡ X = v∧ R̃> ũ. Thus, we obtain a constraint that
indicates thelack of a solutionto a subproblem. This re-
sult can be reused when, say,f (w, s̃) is subsequently en-
countered, andΨ(w, s̃) holds. Then, we can infer imme-
diately thatf (w, s̃) has no solution. In other words, once we
have found the solution, or possibly the lack thereof, to a
sub-problem in a given context, we compute amore general
contextin which the solution is still valid. Since a more gen-
eral context may subsume a larger number of specific sub-
problem contexts, this approach may lead to an increased
number of new subproblems that would reuse the solution
to f (v, r̃), thus reducing the overall execution time of our
method.

In general, when a solution to a subproblemf (X,R̃), with
the contextΨ(X,R̃) has already been computed, we want
another subproblemf (Y, S̃) with contextΨ′(Y, S̃) to reuse
the solution. The solution is reusable when the following
hold:

1. Ψ′(Y, S̃) ⇒ Ψ(Y, S̃). Here we want to generalize the con-
text Ψ(X,R̃) to someΨ(X,R̃) because it is then more
likely that Ψ′(Y, S̃) ⇒ Ψ(Y, S̃). We require that this gen-
eralizationdoes not add better solutionsthan the optimal
solutions of the subproblemf (X,R̃) with the original con-
textΨ(X,R̃). This holds when the generalization does not
add more solutions, which means that it has to preserve
all paths that violate ad-hoc constraints.

2. The optimal solution forf (X,R̃), with contextΨ(X,R̃)
also has to be applicable forf (Y, S̃), with context
Ψ′(Y, S̃), otherwise, an infeasible path may be taken to
be the overall optimal.

In this paper we provide a dynamic programming algorithm
with a more general subproblem similarity test based on the
above two conditions. For this algorithm we also provide a
mechanism to return not just one, but up tok≥ 1 solutions.

Our method is in fact designed toaugmentother search
algorithms. To demonstrate this, we have implemented two
well known algorithms for the RCSP problem (Beasley and
Christofides 1989): one that uses simple tabling, and one
that employs the branch-and-bound method. Then, we have
augmented these two algorithms with our opportunistic so-
lution reuse method. In our experimental evaluation sec-
tion, we report improvements in the running times of the
augmented algorithms, as compared to their corresponding
non-augmented version.

Our technique is related to variousformula cachingtech-
niques in CSP and SAT solving. The main difference be-
ing the use of interpolants to strengthen cached formulas to
achieve better reuse. Our use of interpolant can be consid-
ered as an on-the-fly method to better approximate thedom-
inance relation(Kohler and Steiglitz 1974) for better reuse
of memoed subproblems.

Formula caching also encompasses techniques known as
no-good learning in CSP (Frost and Dechter 1994) and
conflict-driven and clause learning in SAT solving (Bayardo
and Schrag 1997; Moskewicz et al. 2001; Silva and Sakallah

1996). In these techniques, learning occurs when an algo-
rithm encounters adead-end, where further search on a sub-
problem is impossible due to the given problem constraints.
For many optimization problems, the occurrence of dead-
ends are usually small or none at all, hence these techniques
are not generally effective for optimization problems. Our
work is related to these in the sense that we extract informa-
tion from any node where an ad-hoc constraint is violated.
A significant departure is that our algorithm still learns, even
when there are no dead-ends. This is important for the pur-
pose of efficient search for all solutions in the presence of
search paths that are infeasible (due to ad-hoc constraints)
but not forming dead-ends.

Instead of formula caching, (Kitching and Bacchus 2007)
employscomponent cachingtechnique commonly used in
CSP solving to solve optimization problems. Although the
technique also employs memoization, it is only effective for
problems with largely independent constraints, thereby ex-
cluding the RCSP problem considered here.

The use of interpolants has been widely known in the area
of computer program reasoning, notably forabstract inter-
pretation (Cousot and Cousot 1977), which is an efficient
approximate execution of programs to find errors, but often
results in many false positives. Interpolants are used to refine
the approximation upon encountering a false positive (Hen-
zinger et al. 2004; Jhala and McMillan 2005). Interpolation
is also employed to improve the completeness of SAT-based
bounded model checking (McMillan 2003).

We will start by explaining the basic idea of our algorithm
using an example in the next section. We will then formal-
ize our algorithm and provide experimental results on RCSP
benchmarks from the OR-library (Beasley and Christofides
1989) and also on WCET analysis of various programs from
Mälardalen benchmark suite (Mälardalen 2006).

The Basic Idea
This section provides an informal introduction to our ap-
proach. Consider finding the shortest path between nodes
a andz for the graph in Figure 1. In this graph, each edge
is labeled withc[r], wherec is the cost andr is the resource
consumed when the edge is included in a path. We require
that the total resource consumed in a path froma to zshould
not exceed 10.

An execution of a depth-first backtracking algorithm on
the dynamic program is illustrated in Figure 2. In this tree,
the symbolsRandC annotate nodes and paths, respectively.
The symbolR denotes the partial sum of the resource con-
sumed in reaching a node froma, whereasC denotes the
optimal value of the respective path. Note that noded is
visited in three different contexts:(α), (β), and(γ) (in that
order), where the partial sumsR of the resource consumed
are different. In traditional dynamic programming,(β) can-
not reuse the solutions of(α) since its context (R = 5) is
different from that of(α), which isR= 4. Also note that in
the subtree(α), the maximum resource usage is violated by
the edge(d,z), which consumes 7 resources, since at(α),
the resource consumed is already 4. At (α) any partial sum
greater than 3 would still violate this constraint. Insteadof
memoing(α) with partial sum 4, we memo the generalized
partial sumR > 3. This is the most general “interpolant”
that keeps the edge(d,z) infeasible. When(β) satisfies this
context, this implies that the solutions found under(β) are a



b

a d

c

3[2]
2[2]

5[3]
1[4]

e

f

g

1[2] 1[4]

z

1[7]

2[3]1[1]

3[2]
1[1]

2[5]

Figure 1: Graph Example

subset of the solutions of(α). However, this does not mean
that every solution found under(α) is also a solution un-
der (β). Indeed,(α) represents the situation where noded
has been reached under the contextR= 4, which means that
solutions under(α) have a potential ”slack” of 10-4=6 re-
sources. In contrast, by similar reasoning, solutions under
(β) have a potential slack of only 10-5=5 resources. Thus,
by taking a path segment that represents a solution under
(α), and transferring it under(β), we might in fact violate
the maximum usage requirement. If we simply assume that
(β) includes the optimal solution of(α), that is,〈d,e,z〉, the
result returned by(β) becomes approximate, since the actual
optimal path for(β) in the above example is〈d, f ,z〉.

In order to reuse the solution of(α) at (β), we also re-
quire that the context upon reaching(β) be subsumed by the
generalized context inferred for(α). Otherwise, the algo-
rithm may return an infeasible “solution.” To allow more
reuse, our algorithm may also record, ormemo, up tok ≥ 1
most optimal solutions in thememotable, from where they
can be retrieved whenever a similarity check is performed.
Now suppose thatk = 2, and for(α) we store both the first
optimal 〈d,e,z〉 and the second optimal〈d, f ,z〉. Here, the
solution〈d,e,z〉 cannot be reused for(β), but 〈d, f ,z〉 can,
and this becomes the optimal solution for(β). Note that by
checking that 1)(β) satisfies the generalized context of(α),
and ensuring that 2) some of the stored solutions for(α) are
feasible for(β), we avoid traversing the subtree of(β) re-
sulting in an optimized search space.

When the algorithm visits the node(γ), we test whether
we can reuse the solutions of(α). Remember that for(α),
we have memoed only two solutions:〈d,e,z〉 and〈d, f ,z〉.
The context of(γ) is R= 7, which keeps the edge(d,z) in-
feasible, and this partial sum satisfies the generalized context
of (α), which isR> 3. However, both the stored solutions
〈d,e,z〉 and〈d, f ,z〉 of (α) are not feasible at(γ). The algo-
rithm therefore expands the subtree of(γ) to search for so-
lutions. At(γ), the solutions〈d,z〉, 〈d,e,z〉, and〈d, f ,z〉 are
all infeasible. A generalization of the context of(γ) should
keep all these solutions infeasible. Notice that in order to
keep each of〈d,z〉, 〈d,e,z〉, and〈d, f ,z〉 infeasible, we can
generalize the context toR> 3, R> 4, andR> 6, respec-
tively. Our algorithm combines all these interpolants into
their conjunction, which isR> 6.

Now consider the problem of returning the bestk = 2 so-
lutions at the root node. Here we should not simply pick the
bestk solutions among all solutions returned by the children.
To see why, consider the smaller problem of returningk so-
lutions of only nodes(α) and(β). Recall that at(α) and(β),
respectively there are only two solutions, of which one was
memoed. Note that the best overall solution is〈a,d, f ,z〉,
which is one that visits(β). Here we cannot use the best so-
lution 〈a,b,d,e,z〉 of (α) as the second best overall because

(α) (β) (γ)

gfez

z z z z z z

z z

z z z

e f g e f g

c,R= 3

R= 9 R= 8R= 11R= 8 R= 7

R= 14R= 12

R= 11 R= 10

a,R= 0

R= 11

R= 13R= 10

d,R= 7d,R= 5

R=
9

R=
7

R= R=
76

R= R=
98

R= R= R=
6 5 6

b,R= 2

d,R= 4

C = 6

C = 7 C = 8 C = 9

C = 3

C = 4 C = 5C = 6

C = 7

C = 8 C = 9 C = 10

Figure 2: Search Tree Example

the second best overall is actually〈a,d,g,z〉, which is not
memoed. Here, when comparing the solutions of two chil-
dren, we may not pick a solution of a child as the next best
(such as〈a,b,d,e,z〉 of (α) for the second best) when it is
not comparatively better than the solutions returned by the
other child. As a result, the algorithm may return fewer than
k solutions. In our example, we only return〈a,d, f ,z〉 as the
optimal solution without a second optimal.

The Algorithm
A dynamic program induces astate transition systemthat
defines transformations from one context (state) to another.
For instance, a transition system for the RCSP dynamic pro-
gram would define its transitions as moves from a graph
vertex to one of its neighbors, while consuming certain re-
sources.

Important to the notion of context is the notion of astate
variable. We denote a context by a constraint on a setX̃
of state variables. Atransition in a state transition system
defines restriction and update of state variables. We would
denote a transition by a constraint calledtransition relation
between one versioñX of the state variables and another ver-
sionX̃′ with possibly different values. A state transition sys-
tem consists of a context called theinitial stateand a number
of transitions.

Given our RCSP problem in Figure 1 and our dynamic
program formulation (1), we have as state variablesX,
whose value is any of the graph verticesa, b, c, . . . , andR,
whose value is the amount of resources consumed so far.
We have as initial stateX = a∧R= 0, and one of the transi-
tion relations induced by the graph isX = a∧X′ = b∧R≤
10∧R′ = R+5. HereR≤10 manifests the ad-hoc constraint.

Every node in the search tree corresponds to atrace,
which is the sequence of constraints along the path from the
root to the node. Formally, asymbolic trace of length m(or
simply trace) is the formula

Θ(X̃0)∧
m−1̂

i=0

ρi+1(X̃i , X̃i+1),

whereΘ(X̃0) is the initial state, and eachρi+1(X̃i , X̃i+1) is a
transition relation. We call the variablesX̃i as thelevel-i state
variables. We useΠ to denote a trace. We say that a trace is
infeasibleif it is unsatisfiable (note that a trace is a formula).
Otherwise, we call itfeasible. A solutionis a feasible trace
Π of lengthm which entails afinal conditionϕ(X̃m), that is,



Π ⇒ ϕ(X̃m). For example, the final condition of the RCSP
problem is that the destination vertex is reached. Asuffix
trace is a trace without the initial state, that is, the formula
Vm−1

i=l ρi+1(X̃i , X̃i+1) for somel andm. We use variants ofπ
to denote a suffix trace. Given a suffix traceπ with state vari-
ablesX̃l , . . . , X̃m, we denote byπ(t, f ) the renamed formula
π[X̃t/X̃l , . . . , X̃t+m−l/X̃m], where f = t + m− l . We also de-
noteπ(t, f ) as simplyπ(t) when we are not concerned about
its highest-level state variables. A suffix traceπ(m, f ) is a
subsolutionwhen there is a traceΠ of lengthm such that
Π∧π(m, f ) is a solution.

A dynamic programming problem exhibits the property of
optimal substructure, where the optimal subsolutions of sub-
problems can be used to construct the optimal solutions of
the overall problem. Therefore in a dynamic programming
setting we can speak about not just optimal solutions, but
also about optimal subsolutions. We assume that every sub-
solutionπ has acostattached to it, denotedcost(π), which
we assume to belong to a total order(O,�) (e.g.,(N,≤) in
case of RCSP). Whencost(π1) � cost(π2) we say thatπ1 is
more optimal thanπ2. It is therefore unambiguous to men-
tion the first (or most), second, or in general thet-th optimal
subsolution of a finite setSof subsolutions.

The search tree traversal constructs traces. Each trace is
possibly extended into solutions and after these have been
found, the algorithm constructs asummarizationfor the
trace, which contains thek-most optimal solutions, as well
as themost general contextΨ w.r.t. the constraint language
at hand, under which these solutions are valid. This gen-
eral contextΨ is a generalization of the specific context un-
der which the current sub-problem was encountered. More-
over, the solutions to the current sub-problem may be reused
whenever we encounter a new subproblem whose context is
subsumed byΨ. Summarizations are stored in amemo ta-
ble, from which they will be retrieved whenever a similarity
check is attempted. When a new trace is encountered dur-
ing the search, we want to avoid further traversal by using
summarizations already stored in the memo table whenever
possible.

Definition 1 (Summarization) Given a bound k≥ 1, a
summarizationis a triple (Ψ,S,C), whereΨ is a constraint
on some state variables̃Xi , S a set of subsolutions (where
0≤ |S| ≤ k), and C is a boolean flag.

Given a formulaΨ on state variables̃Xi, we denote byΨ(m)
the formulaΨ[X̃m/X̃i]. Suppose thatT is the set of all sub-
solutions that extendΠ into solutions and suppose thatU is
the set of all subsolutionsπ such thatΨ(m)∧π(m) is satis-
fiable. We say that(Ψ,S,C) is a summarizationof a traceΠ
of lengthm when:

1. Ψ is a generalization ofΠ that does not add more solu-
tions, that is,Π ⇒ Ψ(m) andT = U.

2. S⊆ T, T is nonempty iffS is nonempty, and ifπ is t-th
optimal inS, it is alsot-th optimal inT.

3. C denotes whether all subsolutions ofΠ is included inS
or not, formally,C = true iff S= T.

During search, the algorithm would encounter four kinds of
traces: infeasible traces, solutions, traces that aresubsumed
by a memoed summarization, and traces that are extended
to other traces by transition relation. In Propositions 1 to4

below, we consider how we may produce a summarization
for each of them.

We start with infeasible traces:

Proposition 1 (false, /0, true) is a summarization of an in-
feasible traceΠ.

The construction of summarizations of other traces re-
quire the concept ofinterpolants(Craig 1955).

Definition 2 (Interpolant) If F and G are formulas such
that F entails G, then there exists aninterpolantH which
is a formula such that F entails H and H entails G, and
each parameter of H is a parameter of both F and G.

WhenF ⇒G, we denote any interpolantH such thatF ⇒H
andH ⇒ G asint(F,G).

We now state the summarization of a solution:

Proposition 2 (int(Π,ϕ(X̃m)),{true}, true) is a summa-
rization of a solutionΠ of length m.

In Proposition 2, the interpolantint(Π,ϕ(X̃m)) is a formula
Ψ(X̃m) such thatΠ ⇒ Ψ(X̃m) andΨ(X̃m) ⇒ ϕ(X̃m). That is
int(Π,ϕ(X̃m)) is a generalization ofΠ that still implies the
final condition.

When subsumptionholds, we guarantee that instead of
searching for all subsolutions extending a trace, we could
use the results memoed in a summarization.

Definition 3 (Subsumption) A traceΠ of length m is sub-
sumed by a summarization(Ψ,S,C) whenΠ ⇒ Ψ(m) and
either C= true, or, C = false, S is not empty, and there is
π ∈ S such thatΠ∧π(m) is a solution.

When a traceΠ of length m is subsumed by a summa-
rization(Ψ,S,C), we want to generate another summariza-
tion (Ψ′,S′,C′) of Π without having to search for solutions
among the extensions ofΠ.

Proposition 3 Suppose thatΠ is subsumed by(Ψ,S,C).
Define a set F= {π|π ∈ S andΠ∧ π(m) ⇒ false}. When
Ψ′ ≡Ψ∧

V

π∈F int(Π,π(m)⇒ false), S′ = S−F, andC′ =C,
then (Ψ′,S′,C′) is a summarization ofΠ provided when
C′ = false, then S′ 6= /0.

In Proposition 3,int(Π,π(m) ⇒ false) is a formulaΨ(X̃m)
such thatΠ ⇒ Ψ(X̃m) andΨ(X̃m)⇒ (π(m)⇒ false), that is,
a generalization ofΠ that preserves the infeasibility of the
subsolutionπ.

We now consider the last kind of traces: those that are
extended into other traces.

Proposition 4 Suppose that there are l transition relations
and that a traceΠ of length m is extended to traces
Π1, . . . ,Πl of length m+ 1 by all transition relations where
Πi ≡ Π∧ρi

m+1(X̃m, X̃m+1). (Ψ′,S′,C′) is a summarization of
Π when the following conditions hold:

• (Ψi ,Si ,Ci) is a summarization ofΠi , for all i, 1≤ i ≤ l.

• Ψ′(m) ≡
Vl

i=1 int(Π,ρi
m+1(X̃m, X̃m+1) ⇒ Ψi(m+1)).

• For every set Si where1≤ i ≤ l , construct a set Ti such
that π ∈ Si iff (ρi

m+1(X̃m, X̃m+1)∧π(m)) ∈ T i . Now con-
struct a set T such thatπ∈ T if π∈ T i for some i such that



func summarize(Π of lengthm) do
if (Π ⇒ false) then return (false, /0, true)
else if(Π ⇒ ϕ(X̃m)) then

return (int(Π,ϕ(X̃m)),{true}, true)
else if(There is(Ψ,S,C) ∈ Tables.t.Π ⇒ Ψ(m)) then

Ψ′(X̃m),S′,C′ := Ψ(m), /0,C
foreach(π ∈ S) do

if (Π∧π(m) ⇒ false) then
Ψ′(X̃m) := Ψ′(X̃m)∧ int(Π,π(m) ⇒ false)

else
S′ := S′∪{π}

endif
endfor
if (S 6= /0 and¬C andS′ = /0) gotoRecurse
return (Ψ′(X̃m),S′,C′)

else
Recurse:

(Ψ′,S′,C′) := (true, /0, true)
foreach(Transition relationρ(X̃m, X̃m+1)) do

(Ψ(m+1),S,C) := summarize(Π∧ρ(X̃m, X̃m+1))
Ψ′ := Ψ′∧ int(Π,ρ(X̃m, X̃m+1) ⇒ Ψ(m+1))
Replace allπ ∈ Swith ρ(X̃m, X̃m+1)∧π(m+1)
S′,C′ := combinesubsolutions(S,C,S′,C′)

endfor
Table:= Table∪{(Ψ′,S′,C′)}
return (Ψ′,S′,C′)

endif
endfunc

Figure 3: The Algorithm

1≤ i ≤ l and for all T j such that1≤ j ≤ l , if C j = false
then there isπ′ ∈ T j such that cost(π) � cost(π′). Now
S′ is a subset of T (where|S′| ≤ k for some bound k≥ 1)
such that T is nonempty iff S′ is nonempty, andπ is t-th
optimal in S′ only if π is t-th optimal in T.

• C = true when S′ = T and for all i such that1 ≤ i ≤ l ,
Ci = true.

Note that in all summarizations(Ψ′,S′,C′) of Π men-
tioned in Propositions 1 to 4, we maintain the property that if
π∈S′ is the first optimal subsolution such thatΨ′(m)∧π(m)
is satisfiable, then it is also the first optimal subsolution
of Π. This ensures that the generalizationΨ′(m) does not
add a better optimal. This is easy to see in Propositions
1 and 2. For Proposition 3, this follows from the fact that
Ψ′(m)∧π(m) is also unsatisfiable for the optimal solutions
π whereΠ∧π(m) is unsatisfiable. For Proposition 4, this
follows from the fact thatS′ ⊆ T, whereT is the set of the
most optimal subsolutions ofΠ.

The pseudocode of our algorithm is shown in Figure 3.
The proceduresummarizereceives as an input a traceΠ and
returns a summarization ofΠ. We assume the existence of a
global variableTablerepresenting the memo table, which is
initialized to /0. The body of the functionsummarizeincludes
as the first statement anif conditional which has four cases.
The first case is when the inputΠ is an infeasible trace. Here
we generate the summarization ofΠ according to Propo-
sition 1. The second case is whenΠ is a solution, where

func combinesubsolutions(S,C,S′,C′) do
S′′, i := /0,1
while (((S 6= /0 andS′ 6= /0) or

(S 6= /0 andS′ = /0∧C′) or
(S′ 6= /0 andS= /0∧C)) andi ≤ k) do

Let π be the first optimal inS
Let π′ be the first optimal inS′

if (S 6= /0 andS′ 6= /0) then
if (cost(π) � cost(π′′) for all π′′ ∈ S′) then

S,S′′ := S−{π},S′′∪{π}
else if(cost(π′) � cost(π′′) for all π′′ ∈ S) then

S′,S′′ := S′−{π′},S′′∪{π′}
endif

else if(S 6= /0 andS′ = /0 andC′) then
S,S′′ := S−{π},S′′∪{π}

else if(S′ 6= /0 andS= /0 andC) then
S′,S′′ := S′−{π′},S′′∪{π′}

endif
i := i +1

endwhile
if (S= /0 andC andS′ = /0 andC′) thenC′′ := true
elseC′′ := falseendif
return S′′,C′′

endfunc

Figure 4: Combining Two Sets of Subsolutions

we produce the summarization according to Proposition 2.
The third case is whenΠ is subsumed by a summarization
in Table. Here the algorithm performs the test of subsump-
tion where it iterates over all subsolutionsπ contained in
the summarization, and test the satisfiability ofΠ∧ π(m).
A summarization is produced according to Proposition 3.
When subsumption does not hold, we need to recurse deeper
and hence thegoto jump to the fourth case, which is the case
whenΠ has to be extended by transition relations into other
traces. Here we extendΠ with all the transition relations,
and recursively callsummarizewith the extended trace as
the argument. The recursive calls then return summariza-
tions, which are then combined to construct the summariza-
tion (Ψ′,S′,C′) of Π which satisfies Proposition 4. This is
then stored inTableand returned by the procedure. In com-
putingΨ′ we incrementally construct a conjunction of all in-
terpolants returned by the recursive call and for computingS′

andC′ we employ another procedurecombinesubsolutions,
which processes the combining of two up-to-k most optimal
subsolution sets.

The procedurecombinesubsolutions(see Figure 4) pro-
duces the componentsS′ andC′ of Proposition 4. Whereas
in Proposition 4 we are consideringl setsT1, . . . ,T l , here
we consider only two setsS andS′, given as inputs to the
procedure together with their respective completeness flags
C andC′. The procedure produces an outputS′′ which sat-
isfies the condition forS′ in Proposition 4, and its flagC′′,
which satisfies the condition forC′ in Proposition 4.

We conclude this section with a statement of correctness
which follows from the fact thatsummarize(Θ(X̃0)) pro-
duces a summarization of the initial stateΘ(X̃0).

Theorem 1 Suppose P is a dynamic program which induces



Memoization Only Branch-and-Bound Convex Hull (Custom)
Prob. DP DP+I (k = 1) DP+I (k = 2) DP+I (k = 10) DP+BB DP+BB+I (k = 1) Relaxation Closing Gap

# Nodes T Nodes T Nodes T Nodes T Nodes T Nodes T T T

1 55044 94 25021 78 19765 297 19765 281 17950 63 13030 15 16 16
2 47484 46 22648 31 17724 110 17724 125 13075 16 9655 15 16 16
3 11448 16 7980 15 8308 32 7659 47 6195 0 5429 0 16 0
4 9777 16 7237 16 7497 31 7055 47 5982 0 5613 0 32 0
5 ∞ 1239214 111623 878879 55804 878879 55640 10393 16 8480 15
6 ∞ 556583 20922 379342 10508 379342 10516 9751 32 8047 0
7 178372 687 43888 172 103722 423 103722 454 9978 31 7565 15
8 49193 172 18390 94 31759 94 31759 108 39560 94 17380 31
9 492 15 459 0 459 0 459 0 498 15 432 0 16 0
10 347 0 321 16 321 0 321 0 345 0 307 0 16 0
11 40346 78 18020 47 26251 93 16941 110 15525 31 14309 0 46 0
12 35432 62 18973 47 25465 109 17535 110 15439 16 14425 16 31 0
13 9699 47 7708 16 7266 16 7266 32 4678 16 4094 0
14 3678 16 3208 0 3187 32 3187 16 3678 32 3208 0
15 111890 375 56273 188 86036 266 86036 281 20162 31 15482 31
16 28881 94 20073 62 23698 78 23698 78 26416 62 19094 31
17 858743 2234 281101 1031 247821 1110 247821 1234 1218781 1312 562562 500 46 16
18 752241 1988 255952 922 226414 954 226414 1106 1034608 984 512734 422 47 48
19 76215 180 42221 93 56806 250 42072 219 36789 31 29735 16 78 0
20 63592 130 40255 94 47860 204 39684 172 44402 31 37463 47 62 0
21 590257 2204 60619 266 64461 266 64461 250 21730 78 16677 15
22 131905 485 33176 125 35779 110 35779 157 17381 47 12943 15
23 3744373 15516 991298 10610 2670921 10258 2670921 10203 100440 610 71837 110
24 603421 2234 283042 1203 486856 1673 486856 1625 145546 859 103502 157

Table 1: RCSP Experimental Results

a state transition system with initial stateΘ(X̃0). Suppose
that summarize(Θ(X̃0)) returns a summarization(Ψ,S,C).
Then if S= /0, P has no solution. Otherwise, letπ be the i-th
optimal subsolution in S. ThenΘ(X̃0)∧π(0) is also the i-th
optimal solution of P.

Experimental Evaluation
We now demonstrate the interpolation method in augment-
ing three classes of algorithms. The first is a basic depth-first
search with memoization (DP). The second is a refinement
of this, using branch-and-bound (DP+BB). Both of these are
applied to an underlying RCSP problem benchmark. The
third class is from WCET, and we demonstrate the inter-
polation method augmenting a symbolic trace traversal of
straight-line programs, in search for the “longest” path.

Table 1 shows the experimental results using the 24 OR-
library RCSP benchmarks (Beasley and Christofides 1989).
In the table “DP” denotes runs with basic memoization,
“I” denotes runs augmented with the interpolation method,
“BB” denotes runs with branch-and-bound, andk = α de-
notes the limitα on the number of stored subsolutions. The
“Nodes” column displays the number of nodes visited in the
search tree while the “T” column displays the running time
of the experiments in milliseconds. The algorithms were im-
plemented in Java (JDK 1.5.0) and ran on 1.86 GHz Pentium
4 machine with 1.5GB RAM.

As seen, interpolation (DP+I) improves DP significantly.
When comparing runs withk= 1, k= 2, andk= 10, the per-
formance seems to degrade fromk = 1 to k = 2, yet k = 10
has the smallest search space. The runs withk = 2 and
k = 10 seems to reduce the search space of benchmarks 5
and 6 significantly. Similarly, interpolation (DP+BB+I) im-
proves DP+BB significantly.

In other words, while interpolation results in a uniformly

better search space, our experiments show that the time
penalty is not significant.

It is interesting, thoughorthogonal, to compare the algo-
rithms DP+I and DP+BB, that is, interpolation vs branch-
and-bound. As can be seen, the results are mixed. On
problems 5 and 6 for example, interpolation performs much
worse because the trees contain deep regions that are pruned
early using branch-and-bound. On problems 8, 17, and 18
on the other hand, interpolation performs much better.

Finally for Table 1, we include some timing results for
two state-of-the-artcustom algorithms. Based on con-
vex hull construction (Ziegelmann 2001), the “Relaxation”
column concerns the time solving relaxation method, and
the “Closing Gap” column concerns the time closing gap
method. We note that our general-purpose algorithm is in
fact sometimes competitive with these custom RCSP algo-
rithms.

Next we consider a completely different class of prob-
lems, that of worst-case execution time (WCET) analysis
of finite-looping programs. We seek the maximum number
of statements among all of the paths of the program. Ob-
viously, some execution paths are infeasible due to the in-
terplay of assignments and conditional statements. These
would correspond to the ad-hoc constraints of our search
problem. In this experiment, wedelete constraintsinduced
by program statements that do not contribute to the infea-
sibility of a path. This then is the basic step which imple-
ments our interpolant. Note that we are consideringexact
WCET here, whereas typical WCET analyzers such as the
integer linear programming approach described in (Li and
Malik 1995) obtain only an upper bound.

Our prototype is implemented in CLP(R ) (Jaffar et al.
1992) programming language and run on Pentium 4 2.8 GHz
CPU with 512 Mb RAM. The advantage of using constraint
logic programming technology is easy formulation of dy-



DP DP+I
Program Nodes Time (s) Nodes Time (s)
bsort(5) 2233 11.22 58 0.05
bsort(10) ∞ 218 0.96
bsort(15) ∞ 478 7.04
binary(4) 381 0.70 169 0.30
binary(6) 2825 27.47 873 6.54
decoder 344 0.31 132 0.19

sqrt 923 4.25 253 1.43
qurt 1104 14.47 290 2.60

jannecomplex 1517 17.93 683 4.36
Table 2: WCET Analysis Results

namic programs with ad-hoc constraints and efficient algo-
rithm for projection of formulas onto a limited set of vari-
ables which simplifies the generation of interpolants.

We show the results in Table 2. The “DP” denotes runs
with standard dynamic programming, “DP+I” denotes the
runs that employs our algorithm. The “Nodes” columns in
the table contain the numbers of nodes in the search tree,
and “Time” is the running time in seconds.∞ denotes cases
when the execution ran out of resources. We are consid-
ering several array sizes for bubble sort program “bsort”
with unrestricted array elements, as well as the “binary”
case when the array elements are binary (i.e. restricted to
two values only). As is known, the complexity of bubble
sort is quadratic to the array size, hence also the search tree
depth. In the case when the array elements are unrestricted,
the search tree would have very few infeasible traces. For
these problems, our algorithm has a linear spatial perfor-
mance to the tree depth. When the array elements are re-
stricted to binary values, the number of infeasible traces is
far larger. The more the infeasible traces, the less generalthe
summarizations since we need to keep the componentΨ of
a summarization restrictive enough to preserve the infeasi-
bility, therefore here memoization is less effective. Other
programs are obtainable from the Mälardalen benchmark
suite (Mälardalen 2006), where the experiments also show
a significant amount of reduction. The amount of reduc-
tion lessens in some cases when the control flow increases in
complexity thus increasing the number of infeasible traces.

Conclusion
We addressed the problem of effective reuse of subproblem
solutions in dynamic programming. We proposed a gener-
alization of the context of subproblems using interpolants,
and store these generalizations and the optimal solutions of
the subproblems as summarizations in the memo table for
later reuse when a subproblem with similar context is en-
countered in the search tree. We also presented a general
technique to search for at mostk≥ 1 optimal solutions. We
provide experimental results on RCSP benchmarks, where
we showed that our general algorithm is competitive to state-
of-the-art custom algorithms, and also experimental results
on program’s exact WCET analysis.

Acknowledgment
We thank Chu Duc Hiep for running the experiments. This
work is supported by Singapore Ministry of Education Aca-
demic Research Fund No. R-252-000-234-112.

References
Bayardo, Jr., R. J., and Schrag, R. 1997. Using csp look-
back techniques to solve real-world sat instances. In14th
AAAI/9th IAAI, 203–208. AAAI Press.
Beasley, J. E., and Christofides, N. 1989. An algorithm for
the resource-constrained shortest path problem.Networks
19(3):379–394.
Cousot, P., and Cousot, R. 1977. Abstract interpretation:
A unified lattice model for static analysis. In4th POPL,
238–252. ACM Press.
Craig, W. 1955. Three uses of Herbrand-Gentzen theo-
rem in relating model theory and proof theory.Journal of
Symbolic Computation22.
Frost, D., and Dechter, R. 1994. Dead-end driven learning.
In 12th AAAI, 294–300. AAAI Press.
Henzinger, T. A.; Jhala, R.; Majumdar, R.; and McMillan,
K. L. 2004. Abstractions from proofs. In31st POPL,
232–244. ACM Press.
Jaffar, J.; Michaylov, S.; Stuckey, P. J.; and Yap, R. H. C.
1992. The CLP(R ) language and system.ACM TOPLAS
14(3):339–395.
Jhala, R., and McMillan, K. L. 2005. Interpolant-based
transition relation approximation. In Etessami, K., and Ra-
jamani, S. K., eds.,17th CAV, volume 3576 ofLNCS, 39–
51. Springer.
Joksch, H. C. 1966. The shortest route problem with con-
straints. Journal of Mathematical Analysis and Applica-
tions14(2):191–197.
Kitching, M., and Bacchus, F. 2007. Symmetric compo-
nent caching. In Veloso, M. M., ed.,20th IJCAI, 118–124.
Kohler, W. H., and Steiglitz, K. 1974. Characteriza-
tion and theoretical comparison of branch-and-bound al-
gorithms for permutation problems.Journal of the ACM
21(1):140–156.
Li, Y.-T. S., and Malik, S. 1995. Performance analysis of
embedded software using implicit path enumeration. In
2nd LCT-RTS, 88–98. ACM Press. SIGPLAN Notices
30(11).
2006. Mälardalen WCET research group bench-
marks. URLhttp://www.mrtc.mdh.se/projects/wc-
et/benchmarks.html.
McMillan, K. L. 2003. Interpolation and SAT-based model
checking. In W. A. Hunt, J., and Somenzi, F., eds.,15th
CAV, volume 2725 ofLNCS, 1–13. Springer.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an efficient SAT
solver. In38th DAC, 530–535. ACM Press.
Silva, J. P. M., and Sakallah, K. A. 1996. GRASP—a new
search algorithm for satisfiability. InICCAD 1996, 220–
227. ACM and IEEE Computer Society.
Ziegelmann, M. 2001.Constrained Shortest Paths and
Related Problems. Ph.D. Dissertation, University of Saar-
landes, Saarbrücken.


