A Framework for Path Sensitive Program Analysis

Vijayaraghavan Murali Joxan Jaffar

National University of Singapore
m.vijay@nus.edu.sg

Abstract

We present a framework that produces path-sensitive analyses with
different tradeoffs of accuracy and efficiency. The first component
is a program transformation that restructures a CFG in order to
encode path-sensitivity into it. The method consists of deleting
infeasible paths from the CFG while performing selective node
splitting based on information captured from infeasible paths. This
transformation is fully independent from the analysis and can be
built offline. Our initial experiments demonstrate that the size of
the resulting CFG increases by a reasonable factor and its use can
produce significant accuracy gains for several analyses.

The second component is a generic backward algorithm that
interleaves the above process with the computation of the analysis.
This synergy allows using analysis information in order to decide
whether a node should be joined or not. We use the concept of
witness that establishes the conditions, using some knowledge from
the analysis, to ensure that a node can be joined without incurring in
any loss of accuracy. We demonstrate that although more expensive
this concept can be implemented producing more precise results.

1. Introduction

Program analyses that directly use a Control Flow Graph (CFG)
or similar program representation often incur in two kind of loss
of accuracy: inclusion of infeasible paths, and merging of different
abstract states (via join operator) along incoming edges of a control
flow merge. Although these over-approximations are often precise
enough to reason about the property of interest, they may make
compiler optimizations unable to be applied or raise false alarms in
program verification and testing. In that case, the analysis designer
might need to modify the analysis which is often far from being
trivial.

We present a framework for constructing path-sensitive pro-
gram analyses. The first component of our framework consists of
a program transformation that given a CFG produces another CFG
with path-sensitiveness encoded into it, the Path Sensitive Control
Flow Graph (PSCFG). A PSCFG poses the following interesting
properties:

(1) it excludes infeasible paths, and

(2) merging points where the join operator may incur a loss of
precision are split and their successors are duplicated.

We will show that (1) and (2) can be achieved at the expense of a
reasonable increase in the size of the CFG.

[Copyright notice will appear here once ’preprint’ option is removed.]

Jorge A. Navas

National University of Singapore
{joxan,navas }@comp.nus.edu.sg

Andrew E. Santosa

University of Sydney, Australia
santosa@it.usyd.edu.au

There are two major features that make the PSCFG an object of
general interest for any analysis designer:

e it is independent of the analysis, and thus, it can be built offline

e it can be used to enhance an arbitrary program analysis, and
hence, does not impose any restriction on the analysis.

The second component of our framework is a generic algorithm
which may further improve the precision provided by the PSCFG.
The node splitting technique used during the construction of the
PSCFG may be refined if some information from the analysis is
known. Although this makes the algorithm dependent on the anal-
ysis, all steps are still generic (i.e., parameterized by the analy-
sis) and hence, it significantly eases the burden of writing a path-
sensitive analysis from scratch.

The main ingredients of our approach are a mix of symbolic
execution, automatic loop invariants, and interpolants.

Symbolic execution [17] uses symbolic values as inputs instead
of actual data and represents the values of program variables as
symbolic expressions and functions of the input symbolic values.
A path condition is maintained for each path and it is a formula
over the symbolic inputs formed by accumulating constraints which
those inputs must satisfy in order for execution to follow that path.
A path is infeasible if its path condition is unsatisfiable. Otherwise,
the path is feasible. A symbolic execution tree depicts all executed
(feasible) paths during the symbolic execution.

The central idea is to run symbolic execution on the CFG
while building a symbolic execution tree which resembles the final
PSCFG. There are two main challenges: infinite length of symbolic
paths and exponential number of symbolic paths. We follow [24] to
automatically compute loop invariants. Because invariants are, in
general, approximate our tree (which in fact is a graph due to loop
abstractions) cannot be exact. Nevertheless our results in Sec. 5
demonstrate that our approach can still produce significant accu-
racy gains.

Then, we mitigate the path explosion problem as follows.
Whenever an infeasible path is encountered we extract a Craig
interpolant [8] which is a formula that preserves the infeasibility
of the path. The purpose of an interpolant is to avoid the explo-
ration of any path whose formula associated with its symbolic state
entails an interpolant previously computed. We call this step the
subsumption test.

Whenever a subsumption test does not hold, symbolic execution
will naturally perform a node splitting and duplicate all its succes-
sors until the next merging point. Therefore, the key insight is that
we can rely on the outcome of the subsumption tests in order to
decide whether merging nodes should be split or not. Informally, if
a node is subsumed by another node then the set of feasible paths
reachable from the subsumed node is a subset of the set of feasible
paths reachable from the subsumer. Thus, for any analysis executed
on the PSCFG it is always safe for the subsumed node to reuse the
analysis answers from the subsumer, thereby avoiding node split-

2011/7/13

ting. This method prunes the search space keeping the size of the
tree manageable.

Nevertheless, this over-approximation can still lead to sources
of imprecision. Therefore, we introduce the second component of
our framework: a generic algorithm that interleaves the above sym-
bolic execution process with the execution of the analysis. The
main objective is to refine the subsumption test with information
from the analysis in order to avoid merging nodes when the anal-
ysis could lose precision, something that our analysis-independent
program transformation could not do before.

We then present the concept of a witness that represents the con-
ditions necessary to reuse analysis answers without any loss of pre-
cision. We claim that often the designer needs only to provide the
analysis-specific operations (e.g., join operator and transfer func-
tion). Therefore, it saves designers the laborious task of implement-
ing their path-sensitive analyzers from scratch. Although more ex-
pensive, this second component may pay off by producing more
precise results for analysis with special accuracy requirements.

An important property of this generic algorithm is that it pro-
duces exact results for loop-free programs. By “exact” we mean
the analysis cannot produce solutions from spurious (i.e., non-
executable) paths!. For programs with unbounded loops, symbolic
execution cannot be exact due to the use of loop invariants (and
hence, consideration of some infeasible paths). Note that the fact
that the concrete semantics cannot be inferred without computing
the best abstract transfer function is considered an orthogonal issue.
That is, our concept of exactness is independent from the precision
of the abstract transfer function.

Organization. The rest of this paper is organized as follows. Sec. 2
describes the related work. Sec. 3 describes the formalism and
definitions used in this paper. Sec. 4 presents the first component of
our framework: a transformation that converts CFG into PSCFG.
Sec. 5 demonstrates that our transformation can enhance several
program analyses building PSCFGs of manageable sizes. Sec. 6
presents the second component: a generic algorithm that uses the
concept of witness to improve further the precision of PSCFGs, its
implementation, and preliminary results. Finally, Sec. 7 concludes.

2. Related Work

We center our discussion here to the most relevant works that take
into account path-sensitiveness to enhance program analysis. We
also discuss uses of interpolation that might have influenced our
work.

Similar to [13, 19] our algorithm discovers invariant inter-
polants that preserve the infeasibility of the paths. This is where
the similarity ends. Those works focus on proving the unreachabil-
ity of certain error nodes while ours focuses on enhancing program
analyses in order to improve their accuracy.

[12] uses path-sensitiveness inherent in CEGAR to improve pre-
cision of certain kind of dataflow analyses. Other works with sim-
ilar spirit are ESP [9] and [10]. The former keeps track of some
branch correlations under the assumption that different branches
that produce different results should be treated differently. The lat-
ter improves ESP by adjusting the criterion at merge points where
dataflow analysis loses precision. We differ from this line of works
in a very clear way. Our framework does not use counterexamples
in order to achieve path-sensitiveness. However, these works must
have a target property to generate those counterexamples. As a re-
sult, our PSCFG, for instance, can be used for enhancing a richer
set of dataflow analyses that includes live variable analysis, alias
analysis, slicing, reaching definitions, constant propagation, etc.

1 Of course, limited by theorem prover technology which decides whether
a path condition is unsatisfiable or not.

Profiling techniques [2] identify those paths more frequently
visited during the execution of multiple tests ("hot paths”). Join
points in the CFG that belong to hot paths are split if the dataflow
analysis may incur in a loss of precision. This technique is dynamic
while ours is static. Hence, we could complement each other. Sim-
ilar to us [25] propose a method to restructure a given CFG into
one that is path sensitive, but there are two key differences with
our PSCFG: they do not deal with infeasible paths and their node
splitting is based on whether the merge is destructive or not (i.e., if
the analysis may lose information during the join operator), which
makes their approach dependent on the analysis.

The design of path-sensitive analyses has been and remains a
very active area of research. Bodik et al. [3-5] describe several
dataflow analyses improved by detecting infeasible paths through
branch correlation. [23] present an improved WCET analysis by
eliminating infeasible paths detected using conflict sets. [22] de-
scribe a backward slicer that refines a sliced PDG (Program De-
pendency Graph) [14] by eliminating dependencies between nodes
along infeasible paths. They use a different concept of path con-
dition. They keep track of necessary conditions for information
flow between two points in the PDG, that is, conditions that must
hold for information flow to occur between those two points. Thus,
their notion of path condition is already abstracted. Moreover, they
use Binary Decision Diagrams (BDDs) to overcome the potential
combinatorial explosion. BDDs and interpolation are orthogonal
concepts. BDDs may provide a more compact representation of
the symbolic execution tree. However, interpolation allows prun-
ing the search space which may provide more significant savings.
Trace Partioning [18] is an abstract domain to decide whether or
not merge the abstract states at the join points in the CFG. How-
ever, [18] is a theoretical description of the domain and hence, it
does not address practical issues.

Finally, our closest related work is [15]. They present an
interpolation-based dynamic programming algorithm to solve a
combinatorial optimization problem: the Resource-Constrained
Shortest Path (RCSP) problem. This work can be seen as an in-
stance of the second component of our framework (Sec. 6). More-
over, this problem is simpler in the sense it is defined for a finite
setting while our framework handles loops.

3. Background

Syntax. We restrict our presentation to a simple imperative pro-
gramming language 2, where all basic operations are either assign-
ments or assume operations, and the domain of all variables are
integers. The set of all program variables is denoted by Vars. An
assignment X := e corresponds to assign the evaluation of the ex-
pression e to the variable x. In the assume operator, assume(c), if
the boolean expression ¢ evaluates to true, then the program con-
tinues, otherwise it halts. The set of operations is denoted by Ops.
We model a program by a transition system. A transition system
is a quadruple (,1,—, O) where X is the set of states and / C X is
the set of initial states. —C X x X x Ops is the transition relation
that relates a state to its (possible) successors executing operations.
This transition relation models the operations that are executed
when control flows from one program location to another. We shall

use £ % ¢’ to denote a transition relation from £ € £ to £ € £
executing the operation op € Ops. Finally, O C X is the set of final
states.

Symbolic Execution. A symbolic state v is a triple (¢,s,IT). The
symbol ¢ € ¥ corresponds to the current program counter (with
special program counters for initial, {41, and final locations, fgng).
The symbolic store s is a function from program variables to terms

2Qur implementation supports most features of sequential C including
function calls and pointers.

2011/7/13

over input symbolic variables. Each program variable is initialized
to a fresh input symbolic variable. The evaluation [e]s of an arith-
metic expression e in a store s is defined as usual: [v]s = s(v),
[n]s =n, [e+€s = [els +[€]s, [e —€]s = [e]s — [[€] s, etc. The
evaluation of Boolean expression [b]s can be defined analogously.
Finally, IT is called path condition and it is a first-order formula
over the symbolic inputs and it accumulates constraints which the
inputs must satisfy in order for an execution to follow the particu-
lar corresponding path. The set of first-order formulas and symbolic
states are denoted by FO and SymStates, respectively. Given a tran-
sition system (X,1,—,0) and a state v = (¢,s,II) € SymStates,
the symbolic execution of ¢ P, ¢’ returns another symbolic state
V' defined as:

(¢, s, TIN[c]s) if op = assume(c) and I A [[c]s
v & is satisfiable (€8]

{0 spx— [e]s],IT) ifop=x:=e

Note that Eq. (1) queries a theorem prover for satisfiability
checking on the path condition. We assume the theorem prover is
sound but not complete. That is, the theorem prover must say a
formula is unsatisfiable only if it is indeed so.

Abusing notation, given a symbolic state v = (¢,s,IT) we
define [v] : SymStates — FO as the projection of the formula
(A, € Vars [vls) A []s onto the set of program variables Vars.
The projection is performed by the elimination of existentially
quantified variables.

A symbolic path T =vg - Vg - ... -V, is a sequence of symbolic
states such that Vie 1 < i < n the state v; is a successor of v;_1. A
symbolic state v/ = (¢, -,-) is a successor of another v = (¢, -,) if

. .. . op. o

there exists a transition relation { — ¢'. A pathT="vg-V; ... -V,
is feasible if v, = (¢, s,IT) such that [I1] is satisfiable. If £ € O and
v, is feasible then vy, is called ferminal state. Otherwise, if [I1]s is
unsatisfiable the path is called infeasible and v, is called infeasible
state. A state v = (¢,-,-) is called subsumed if there exists another
state v/ = (¢, -, -) such that [v] |= [V']. If there exists a feasible path
T ="V -...- U, then we say vy (0 < k < n) is reachable from vy
in k steps. We say v” is reachable from v if it is reachable from v
in some number of steps.

A symbolic execution tree depicts the execution paths followed
during the symbolic execution of a transition system by triggering
Eq. (1). The nodes represent symbolic states and the arcs represent
transitions between states. We say a symbolic execution tree is
complete if it is finite and all its leaves are either terminal, infeasible
or subsumed.

Abstract Interpretation. An abstract domain A4 is defined as a lat-
tice structure (£,C, L ,LI,M, T) partially ordered by (L,C) where
U is the least upper bound and 1 is the greatest lower bound op-
erators. The symbols L and T are the least and greatest element,
respectively. Additionally 4 can be equipped with widening V and
narrowing /\ operators. We assume 4 is Galois-connected [6] with
the powerset lattice of state sets, and the use of a and 7y for the
abstraction and concretization maps for this Galois connection.

Program Analyses. We define a program analysis by using the
classical Monotone Framework [1] which consists of:

e A lattice L partially ordered by T with _L of finite length and
an initial value Ginit€ L.

e A transfer function f 3 from £ to £. We demand each transfer
function is at least monotone (i.e., f(I UI') C f(I)Uf(!')). The
definition of this function depends on the direction of propaga-

3 The monotone framework defines a set of transfer functions such that
each different location or block may use a different transfer function. For
simplicity, we assume a single transfer function f.

Xx<=0

Figure 1. Deletion of Infeasible Paths and Node Splitting

tion of information: forward (post : L x Ops — L) or backward
(pre: L x Ops — L). Intuitively, pre(S post,0p) (post(Gpre,0p))
returns the pre-state (post-state) after executing backwards (for-
ward) the operation op on the lattice value G o5 (O pre)-

e A binary join # operation LI, on £, to represent the confluence
operator (i.e., combine information from different paths).

4. Path-Sensitive Control Flow Graph (PSCFG)

Analyses that use directly a Control Flow Graph (CFG) often incur
in two kind of loss of accuracy: consideration of infeasible paths,
and merging of different abstract states via confluence operator.
The first component of the framework is a program transformation
that restructures the original CFG> to alleviate those sources of
imprecision by:

(Rule 1) eliminating infeasible paths

(Rule 2) splitting explicitly merging points in case a loss of
precision was possible during the confluence (join) operator of
the analysis.

The result of this transformation is another CFG, the so called
PSCFG, with the following features:
e it is encoded with path-sensitivity which might make an ar-
bitrary off-the-shelf program analysis more precise. This is
demonstrated experimentally in Sec. 5.

e it is independent to the analysis, and thus, it can be built offline

e at the expense of a reasonable increase in the size with respect
to the original CFG (see also Sec. 5 for empirical demonstra-
tion).

The potential benefits of Rule 1 are quite obvious. The elim-
ination of spurious paths may eliminate some imprecision during
the execution of program analyses. Consider the CFG in Fig. 1(a).
The nodes are labeled with program locations and edges between
two locations labeled by the instruction that executes when control
moves from the source to the destination. The path 1 — 2 — 3
— 5 is not executable due to the unsatisfiability of the constraints
x =0Ax > 0. Therefore, we could transform the original CFG into
the one shown in Fig. 1(b), by removing the edge where unsat-
isfiability was detected and all its successors up to next merging
point (i.e., 5). Then, assume we would like to run an Andersen-like
pointer analysis on the program in Fig 1(a). The analysis will re-
port that ptr,&y, and &z may point to the same memory location.
However, it is straightforward to see that the same analysis on the
transformed CFG cannot infer that ptr and &y are aliased producing
a more accurate result.

4 Classical literature says often a “meet” operator. This is because classical
literature focus on analyses where LI is).

3 Here, and in the rest of the paper, a CFG and transition system as defined
in Sec. 3 are interchangeable terms since we can convert trivially one into
another.

2011/7/13

The logic behind Rule 2 is also related to the existence of infea-
sible paths but in a more elaborated way. Consider now the CFG in
Fig. 1(c). Note that this CFG also poses an infeasible path 1 — 2
— 4 — 5 — 6 due to the unsatisfiability of x = 0 Ax > 0. The dif-
ference here wrt to Fig. 1(a) is that we cannot eliminate the edges
4 — 5 and 5 — 6 since there is another path, 1 -3 -4 — 5 —
6, exploring those edges. However, we can split node 4, and sub-
sequently duplicate all its successors up to the next merging point
while deleting infeasible paths whenever possible as illustrated in
Fig. 1(d). Now, consider a live variable analysis (backward analysis
that over-approximates the set of variables that can be used in the
future before their next definition [1]). In Fig. 1(c), the set of live
variables at node 4 is {x,y}. In the PSCFG in Fig. 1(d) the set of
live variables is {x} at node 4 and {x,y} at new node 4’. Note what
happens now. After the execution of the transfer function pre® on
3 — 4’ the variable y is not alive anymore since it is defined. As a
result, the live variables at 3 in the PSCFG is only {x}. On the other
hand, the live variables at node 2 is simply {z}. Therefore, the final
set of live variables at node 1 is the set union {x,z}, as opposed
to the same analysis on the CFG in Fig. 1(c) where the final set is
{x,y,2}.

At this point, one could be tempted to build a symbolic exe-
cution tree as defined in Sec. 3 from a given CFG, and then, to
perform the program analysis of interest on the symbolic execu-
tion tree rather than the original CFG. The benefits of using the
symbolic execution tree are easy to see: it does not pose infeasible
paths, and all merging points are explicitly split.

Unfortunately, the symbolic execution tree described so far can-
not be built, in general.

The first problem is the infinite length of the symbolic paths
due to the existence of unbounded loops. We overcome this funda-
mental problem following the approach of [24] which uses abstract
interpretation [6] to automatically compute approximate loop in-
variants. Because invariants are, in general, approximate our sym-
bolic execution tree cannot be exact. Nevertheless, our results in
Sec. 5 demonstrate that our approach can still produce significant
improvement for real programs.

Second, even if the symbolic execution tree is finite the num-
ber of symbolic paths is exponential in the number of program
branches. Therefore, a naive approach of splitting all merging
points is not tractable. A key observation is that it is not neces-
sary to split all the merging points since many symbolic paths have
the same impact on the property of interest. Since both Rules 1
and 2 describe transformations using only infeasibility information
(due to our desire of being independent from analysis) the knowl-
edge that we can extract from infeasible paths plays a key role in
the decision whether to split or not.

Whenever the symbolic execution encounters an infeasible path
it extracts a unsatisfiable core formula called interpolant [8] that
still explains the reason of infeasibility. The purpose of interpolants
is twofold:

A it mitigates the path explosion problem by halting the symbolic
execution of those paths that entail (are subsumed by) the inter-
polant, and

B Rule 2 (i.e., splitting nodes) is only applied at a given merging
point if the current symbolic state does not entail any interpolant
computed previously for that particular merging point.

In other words, interpolants control both the size of our PSCFG
and its shape. The rationale behind (A) is that an interpolant is a
formula that preserves the infeasibility of a set of paths. Then, if a
symbolic state entails that formula this means that the set of paths

6 pre(c,0p) = (o \ def(op)) Uuse(op), where def and use are the defined
and used variables in op.

PSTransf(vy, P)
INPUT: Vg symbolic state, P transition system /* CFG */
OUTPUT: Py transition system /* PSCFG */

let rec IntpSymExec(v, = (£, s,I1), P, M, E)
1: if [II]s is unsat then

let E' = E\{_—(:k} /* delete edge whose target is £ : k */

2

3 return (M U {(,k) : INTERP([v].false)}, E)

4: elseif (£ =/Leng) then

5: return (M U{{¢,k) : true}, E)

6: elseif 3 (0 k) :WeMs.t ({={)and ([vi] EP) then
7 return (M U{{L,k) : P}, EU{l:k — (' :K})

8: else if 3¢ — ¢ suchthat ¢ : k' is an ancestor in dfs then
9: Uy = INVARIANT(O;, 0/ — ... — ()

10: return (MU{{L,k): [0]}, EU{l:k — £ :K'})
11: else if ¢is aloop header then

12: v = INVARIANT(Vg, £ — ... = ()

13: goto 15
14: else
15: Y¥:= frue

16: foreach transition relation ¢ —% ¢/ € ? do

a { (€, s,TIN[c]s) if op = assume(c) (fresh k')

17:
v (0, s[x — [e]s],TT) if op = x := e (fresh k)

18: (M,E) = IntpSymExec(U;c,,iP, MEU{L: k22 0K}
5. o ~ </
190 F= YA g g PP T))

20: endfor

21: return (M U{({(,k): ¥}, E)
22: end

in

(-,E) = IntpSymExec(vy, P,0,0)
build a transition system P,,,; from £ /* trivial step */
return Poys

end

Figure 2. Program Transformation that Produces a PSCFG

emanating from that (subsumed) symbolic state cannot have less
infeasible paths (or equivalently, more executable paths). There-
fore, it is safe from the point of view of the program analysis if we
halt the symbolic execution at the subsumed symbolic state. (B) is
a by-product of (A). If a node (i.e., symbolic state) is subsumed by
the interpolant of another node in the tree we merge the two nodes.
Otherwise, we keep them separate forcing the node splitting.

We next formally introduce the two key concepts which will
decide when the symbolic execution can be halted and whether it
can split nodes or not.

DEFINITION 1 (Interpolant). Given two first-order logic formu-
las 11| and Il such that T} A1, is unsatisfiable a Craig in-
terpolant /8] is another first-order logic formula ¥ such that (a)
I, & Y, (b) W AT, is unsatisfiable, and (c) all variables in ¥ are
common variables in I1; and IT,.

We then augment symbolic execution of a program by annotat-
ing each symbolic state with its corresponding interpolant such that
the interpolant represents the sufficient conditions to preserve the
infeasibility of the paths. Then, the notion of subsumption can be
redefined as follows.

DEFINITION 2 (Subsumption with Interpolants). Given two sym-
bolic states v and V' such that v is annotated with the interpolant
W, we say that V' is subsumed by v if [V'] implies P (i.e., s.t.

'] E=¥).

2011/7/13

A full description of the algorithm that takes a CFG (i.e., a
transition system) and produces another CFG encoded with path-
sensitivity (PSCFQG) is given in Fig. 2. The input of the algorithm
is an initial symbolic state v € SymStates and the transition sys-
tem P. We use the key k to refer unambiguously to the symbolic
state v in the symbolic execution tree. The edges of this symbolic
execution tree are recorded in . In order to perform subsumption
tests our algorithm maintains the table A that stores entries of the
form (£,k) : ¥, where W is the interpolant at program location ¢
associated to a symbolic state k in the symbolic execution tree. The
interpolants are generated by a procedure Interp : FO x FO—FO
that takes two formulas and computes a Craig interpolant follow-
ing Def. 1.

Essentially, the algorithm builds a symbolic execution tree ex-
ecuting P given the initial symbolic state while computing inter-
polants to prune redundant symbolic paths and performing selective
abstractions via loop invariants in order to make finite the tree. Dur-
ing the symbolic execution of 2, Rule 1 and 2 are applied whenever
possible as follows. If an infeasible path is detected then the sym-
bolic execution is halted and hence, the rest of path is discarded
from consideration. Moreover, an interpolant to preserve the infea-
sibility of the path is computed. Then, whenever a merging point is
visited again by the symbolic execution we test whether the sym-
bolic state is subsumed by the interpolant of any previous state that
reached the merging point before. If yes, the symbolic execution
halts the exploration of the path and joins it with the merging point.
Otherwise, symbolic execution continues the execution of the path
which implicitly forces the splitting of the node and the duplication
of all its successors up to the next merging point. After termination,
the set contains the edges of the symbolic execution tree. This set
of edges induces, in fact, a graph (possibly with cycles due to loop
abstractions) which after some trivial post-processing can be used
to build the output transition system 2P, (i.e., PSCFG).

The algorithm PSTransf (Fig. 2) is defined in terms of the re-
cursive function IntpSymExec. The base cases for each kind of leaf
node in the symbolic tree are: infeasible, terminal, and subsumed.
The recursive case unwinds the tree one level by executing one
symbolic step. For clarity of presentation, let us omit the lines 8-13
for now, and assume programs do not have loops. Later, we shall
describe how to handle loops.

The algorithm starts by testing if the path is infeasible at line 1.
If yes, an interpolant is generated to avoid exploring again paths
which have the same infeasibility reason (line 3). Note that the last
(infeasible) edge is removed from E (line 2) and since symbolic
execution stops the rest of the path will not be included in E
(Rule 1). Next, the execution reaches the end of a path, line 4.
The algorithm simply adds an entry in the subsumption table whose
interpolant is true (line 5) since the symbolic path is feasible (i.e.,
there are no false paths to preserve) and returns the same E. The
main objective of lines 6-7 is to fully avoid path enumeration by
searching for another state whose interpolant ¥ is entailed by the
formula associated with current symbolic state v k- If the test holds,
it returns the interpolant associated with the subsuming node (i.e.,
¥), and since the entailment test was successful there is no reason
to split the current (subsumed) node. Therefore, a new unlabelled
edge, whose meaning is a no-op transition, from the subsumed state
to the subsuming is added into ‘E. This is how we join the two
states at the merging point. Otherwise, the symbolic execution must
continue the exploration of the path which implicitly produces the
split of the merging point (Rule 2), and the duplication of all its
successors up to at least the next merging point.

In the remaining case, the symbolic execution continues for-
ward one level in the symbolic execution tree. The foreach loop

(lines 16-20) executes one symbolic step for each successor node ’
and it calls recursively again to IntpSymExec with each successor
state (line 18). Once the recursive call returns the key remaining
step is to compute an interpolant that generalizes the symbolic ex-
ecution tree at the current node while preserving the infeasibility
conditions of its successor nodes. The procedure wp : Ops X FO —
FO computes ideally the weakest precondition (wp) [11] which is
the weakest formula on the initial state ensuring the execution of
an operation in a final state, assuming it terminates. In practice,
we approximate wp by making a linear number of calls to a the-
orem prover following the techniques described in [16]. The final
interpolant ¥ added in the subsumption table is a first-order logic
formula consisting of the conjunction of the result of wp on each
child’s interpolant (line 19).

Loops. We continue describing our algorithm by discussing
how it handles loops. The main challenge is to produce a finite
symbolic execution tree. We use abstract interpretation to estimate
loop invariants with the purpose of achieving finiteness. Here, we
follow [24] in order to compute the least fixed point of the program
using a numerical abstract domain and then, produce the desired
loop invariants. Based on our initial experiments and our reduced
set of benchmarks, a simple domain such as interval analysis has
been enough.® Thus, we focus here on the interval analysis but
same ideas can be easily applied to other abstract domains. We
describe interval domain as usual: 7 = {1}U{[a,b] | (a,b € IntU
{—e0,00}) Aa < b} and computing the least fixed point employing
wFix, on the lambda function:

F=Ml e {d |3cel el 2 (" and &' = post ;(c,0p)}

letap = L and a,1 = a,V(F a,)

by = Upay and b1 = by A(F by)
in M, b,
to estimate the range by an integer interval®. As also described
in [24], those ranges must be translated into first-order logic for-
mulas. The function trst translates an abstract state into a formula:

tst(oy) £ A\ tr(o7(x),x)
xeVars
tr([a,b],x) 2 (a <x)A(x < b) tr(L,x) 2 false

Here, and in the rest of this paper, we will assume that when
PSTransf is called, the input transition system has been previously
preprocessed. This preprocessing consists of annotating the orig-
inal CFG in such a way that program locations are labelled with
the invariants inferred automatically by the abstract interpreter. We
assume the abstract interpreter provides a function getAssrt which
given a program counter ¢, returns an assertion, in form of a first-
order logic formula via trst, and renamed accordingly. Note that
getAssrt already returns a loop invariant. However, we would like
to strengthen it using the constraints propagated from the symbolic
execution. The function INVARIANT performs this task as follows:
INVARIANT((£,5,T1), 01— ... —0,) 2

lets’ := HAVOC(s,MODIFIES({]—...—{y))

IT := getAssrt(¢) ATl
0,8 T0)

wFix F £

in (

7 Note that the rule described in line 17 is slightly different from the one
described in Sec. 3 because no satisfiability check is performed. Instead,
this check is postponed and done by line 1.

8 Of course, reasoning about other programs may need more refined analysis
. + + .
such as octagon for relations of the form — v; — v; < ¢;j, non-relational

bitfield domain to infer for each bit of an integer variable if its value is 0, 1
or may be either, and so on.

9 We refer to [24] for definition of the narrowing and widening operators
required for wFix and the rest of the details.

2011/7/13

subsumed

Figure 3. A CFG, Its Naive Symbolic Tree, Its Interpolation-Based Symbolic Tree, and Its PSCFG

where HAVOC(s, Vars) £ Vv € Vars e s[v +— S;] where S is a fresh
symbolic variable, and MODIFIES(¢] — ... — £,) takes a sequence
of transitions and it returns the set of variables that may be modified
during its symbolic execution.

Let us now come back to the description of the function
IntpSymExec. We first identify all the entry points (i.e., loop
header [1]) of the loops. If we reach a loop header (line 11) then
we abstract the current symbolic state by calling the procedure
INVARIANT (line 12) and continue with the exploration of the paths
(line 13). The key difference is that the remaining symbolic exe-
cution will be performed with the (possible weaker) loop invariant
computed by INVARIANT rather than with the original (possibly
stronger) symbolic state. The other important case is when sym-
bolic execution encounters a loop-back edge at line 8. Here, we
also need to produce an interpolant. For simplicity, we use the loop
invariant as an interpolant (line 9). By doing this, it is straightfor-
ward to see that the symbolic state at the loop-back edge entails
the state of the ancestor achieving child-parent subsumption in a
straightforward manner. In practice, we attempt to first produce
the interpolant from the exit paths of the loop and use them as the
interpolants at the loop-back edges. This solution often produces
weaker interpolants. Note that we also add a cycle in £ by adding
an unlabelled edge from the child to its parent.

To conclude with the explanation of our algorithm PSTransf
we show how it executes symbolically the CFG in Fig 3(a) while
producing the PSCFG of Fig 3(d).

EXAMPLE 1. For comparison, we first show the naive symbolic
execution tree in Fig. 3(b). This tree can be obtained simply by
executing exhaustively Eq.1 in Sec. 3. Since there is no loops, this
process will terminate. Feasible transitions are denoted by (black)
solid edges, and (red) infeasible transitions by zigzag edges. Now,
consider the symbolic execution tree in Fig. 3(c) constructed by
PSTransf.

Say we execute first the path 0 —1 —3 —4 —6 —7. The sym-
bolic execution detects that the path condition at 7 is inconsistent
since the symbolic state is of the form ({7,[z+— 1,x—0,b—1,..],
false=0>0). At this point, the set ‘E is {0—1,1—3,3—4,4—6}10
after removal of the infeasible edge 6 —7. In addition, we generate
the interpolant x < 0 at location 6 by weakest precondition. Then,
we continue exploring two other paths through location 5 (i.e., 5
—6 —7 =8 and 5 —6 —8) which both are feasible. Note that we
attempted unsuccessfully to halt the exploration of these paths at

10 For simplicity, we omit the labels.

location 6, since the symbolic state at 6 did not entail the formula
x < 0. As a consequence, the symbolic execution splits the node 6
and duplicates all its successors.

The algorithm then backtracks while generating interpolants
and updating the set ‘E until it explores the path 0 —2 —3. Here
again, we try to halt the symbolic execution. The interpolant for
location 3 is true since wp(b=z,x=0,x <= 0) = true. Therefore,
we can stop the symbolic execution since any formula entails true.
As a result, symbolic execution joins the subsumed node 3 from
0 —2 with the subsuming one from 0 —1 avoiding splitting. We
denote subsumed nodes in Fig. 3(c) by (green) dotted edges and
the label ”subsumed”. The resulting path-sensitive CFG is shown
in Fig. 3(d) after some trivial postprocessing. []

We now state the correctness of the program transformation
performed by PSTransf based on the trace semantics of our labelled
transition system. Given a transition system (X,1,—>,O), we use
F (%) for the set of all finite non-empty sequences of states. A frace
of a transition system is an element of the set P 1 £ {s0...sn €
FE)|soel,Vi es; — s;11}. Note that P 1 is the prefix-
closed set of all finite traces of the program 2. Note that a particular
execution of a program is a possible infinite path starting from sy
such that there is no possible transition from the final state. We
represent executions by the set of finite prefixes to avoid dealing
with infinite paths.

PROPOSITION 1. Let ‘P be a transition system and v an initial
state. Let Exact be the set of all finite non-empty, executable pre-
fixes starting from v in P. Then, if P = PSTransf(v, P) then the

following holds: Exact CPH1CP1

Note that Prop. 1 also states that the transition system P returned
by PSTransf cannot be less precise than the original transition
system P since it will generally expose fewer sequences to the
analysis.

Remark. Although our transformation is sound in approximating
the concrete trace semantics of the original program, it does not en-
sure the preservation of certain properties related to the block struc-
ture of the original CFG. For instance, consider again the CFG in
Fig. 3(a). Assume we would like to compute the postdominators!!
of the node 3. It is easy to see that the node 6 is a postdominator
of 3 since all paths from 3 must pass through 6. Note that neither 4
and 5 postdominate 3. Now, let us look at the PSCFG in Fig. 3(d).

1'We say a node u in a CFG postdominates another node v if all paths from
v to the exit node pass through u.

2011/7/13

Benchmark LOC CFG Nodes | PSCFG Nodes | Ratio Time
cdaudio 10245 2556 3041 1.19 3.9s
diskperf 5792 756 966 1.28 0.9s

fcron 6585 4473 8811 1.97 18.8s
floppy 7758 2803 3721 1.33 4.7s
kbfiltr 5685 533 711 1.33 0.6s
mpeg 2330 1447 2306 1.59 4.1s
pfinger 3595 1514 1785 1.18 2.1s
serial 9538 2650 3339 1.26 4.5s

statemate 1441 856 16720 19.53 144.0s
stunnel 7549 4698 7914 1.69 16.7s
tlan 3331 1672 2299 1.38 2.4s

Geom. Mean 1.78

Average 18.4s

Figure 4. Size Growth and Construction Time of PSCFG

The original node 6 does not postdominate 3 anymore due to the
existence of a duplicated node 6'. Nevertheless, it is worth men-
tioning that this kind of anomalous behavior also arises in other
node-splitting based program transformations such as in [25].

Fortunately, this does not preclude our transformation to be used
by analyses in which dominance matters assuming some special
considerations are taken into account. As an example, we focus on
program slicing to illustrate how we can overcome this limitation.
Weiser [27] defined a backward slice of a program wrt to a program
point ¢ and a set of variables as all statements of the program
that might affect the value of those variables at /. To compute the
slice, we need to keep track of two kind of dependencies: data
and control. Data dependencies can be defined for a statement s
by the dataflow equations IN(s) = (OUT(s) \ def(s)) Uuse(s) if
def(s) NOUT # 0. Otherwise, IN(s) = OUT (s). The functions
def and use refer to the set of defined and used variables in s. A
statement s is in the slice if IN(s) Ndef(s) # 0. In addition, we need
to propagate control dependencies. A guard g is included in the
slice if any statement defined in any path from g up to its nearest
postdominator is already in the slice.

Backward slicing can be done using PSCFG, the transition sys-
tem returned by PSTransf, assuming we have also access to CFG,
the original transition system. Data dependencies are computed on
PSCFG. Since PSCFG may have multiple instances of the same
statement s, we say that s is in the slice if at least one of the its in-
stances is included. Although tedious, it is straightforward to keep
relationships between any statement in CFG and any of its dupli-
cates in PSCFG. Then, the remaining step is to propagate control
dependencies by performing postdominance queries on CFG and
then mapping back the results to PSCFG.

As a proof of concept, we have implemented a backward slicer
’a la’” Weiser to demonstrate that our program transformation can
also provide path-sensitiveness to static slicers in spite of the re-
quirement of computing postdominance relationships. Moreover,
our experimental evaluation in Sec. 5 shows that the use of PSCFG
can significantly reduce the size of slices for real programs.

5. Experimental Evaluation of PSCFG

The main objectives of our experimental evaluation is to demon-
strate, for a set of medium-size real programs, that:

(1) the size of the path-sensitive CFG (PSCFG) is often manage-
able. Our results show around a reasonable increasing of 78%
wrt to the size of the original CFG.

(2) the use of PSCFG can improve significantly the results of sev-
eral off-the-shelf program analyses. The accuracy gains vary
from 10% to around 16%.

For our experiments, we used several device drivers which have
previously been used in the verification and testing community:

cdaudio, diskperf, floppy, kbfiltr, serial, and tlan. In ad-
dition we also used fcron, a cron daemon, statemate, a program
generated by the STAtechart Real-time-Code generator STARC,
mpeg, the mpeg-1 algorithm for compressing video, stunnel, a
multiplatform SSL tunneling proxy and pfinger, a daemon for the
standard finger protocol. All our experiments were carried out on
an Intel 3.2GHz with 2Gb of memory.

We implemented a prototype of the program transformation de-
scribed in Sec. 4 that produces PSCFGs. We model the heap as an
array. A flow-insensitive pointer analysis is used to partition up-
dates and reads into alias classes where each class is modeled by
a different array. A theorem prover is used to decide linear arith-
metic formulas over integer variables and array elements in order
to check the satisfiability and entailment of formulas, and comput-
ing interpolants. The program is first annotated with approximate
loop invariants produced by an abstract interpreter running the in-
terval analysis [7]. Functions are analysed intraprocedurally, and
hence, we do not perform function inlining. External functions are
modeled as having no side effects and returning an unknown value.

Third party analyses generally take as inputs C programs rather
than taking the CFG directly. Hence, in order for us to compare
CFG and PSCFG, we decided to produce an equivalent C program
from PSCFG, the so called decompiled program, and then, run
the third party analyses on both the decompiled and original C
programs for a fair comparison.

The decompilation process is quite straightfoward. Assignments
and guards can be directly translated to C. Loops are decompiled
using if-then-else and gotos. Functions are also straightforward
since they are analyzed only once in an intraprocedural manner.
Finally, joined nodes (subsumed nodes) are decompiled via gotos.

5.1 Size Growth and Construction Time of PSCFG

The main objective here is to evaluate the growth factor and total
time in order to build a PSCFG. Our results are shown in Fig 4. The
second column (LOC) represents the lines of code without com-
ments in the benchmark. The third and fourth columns represent
the number of nodes in the CFG and PSCFG, respectively. Note
that these may not exactly correspond to the number of lines in
the program because our prototype encodes blocks of consecutive
assignments into a single node in the CFG.

The fifth column (Ratio) shows the ratio of PSCFG Nodes to
CFG Nodes. This represents the size increase of PSCFG wrt CFG.
The last column is the total time taken to produce the PSCFG.
In general, the size increase ranges anywhere from 1.2 to 2 times
the original CFG (that is, an increase of 20-100%). The geomet-
ric mean of the ratio is roughly 1.78 (an increase of 78%). The
statemate program is an extreme case and deserves special men-
tion as its PSCFG is comparatively large and takes much longer
time to generate. This is mainly caused by the huge number of in-
feasible paths which is due to the fact that the program is synthe-
sized automatically by the STAtechart tool. As a result, the node-
splitting rule is triggered very frequently and hence, the PSCFG
grows more significantly. Finally, we observed that the average
time to build the PSCFG is around 18 seconds with a median of
4.1 seconds.

5.2 Effectiveness of PSCFG with Several Analyses

Our main second experiment aims at demonstrating that PSCFG
can often enhance program analyses by producing important accu-
racy gains. We use three widely used program analyses: live vari-
able analysis, alias analysis, and static backward slicing.

Our experiments take either the decompiled program (e.g., live
and alias) or directly a PSCFG (e.g., slicing) and run the analysis
of interest on it. Subsequently, we run the same analysis on the
original C program or CFG and finally, compare results. We would
like to clarify that the PSCFG ’per se’ is not of our interest. We use

2011/7/13

[LIVE VARIABLE ANALYSIS

ALIAS ANALYSIS

[BACKWARD SLICING]

Benchmark P1 P2 Benchmark | Original | Decompiled | Ratio Benchmark | N1 N2 Diff
cdaudio 6.0% | 46.2% cdaudio 1833312 1722451 0.94 cdaudio 1968 | 1227 741
fcron 9.1% 10.9% fcron 526158 477261 0.91 diskperf 514 325 189
floppy 135% | 8.7% floppy 1640510 1523693 0.93 fcron 2594 | 1744 850
Kbfiltr 9.7% | 21.9% Kbfiltr 18629 15747 0.85 floppy | 1794 | 1486 | 308
statemate 66.9% 1.8% pfinger 625325 569329 091 mpeg 1389 | 1331 58
stunnel 13.2% | 49.3% tlan 588252 556182 0.95 serial 1616 | 1325 292
tlan 4.2% | 16.7% Geom. Mean 0.91 [Weighted Avg. [16.6% |
Weighted Avg. | 12.4% Improv. 9%
Geom. Mean 14.6 %
(@ (b) ©

Figure 5. Effectiveness of PSCFG Using Live Variable Analysis, Alias Analysis and Backward Slicing

it in order for us to run the analysis on it and then, infer (hopefully)
more precise information which can be applied to the original CFG
for optimization or any other purpose. That is, we do not intend a
PSCFG to be used in replacement of the original CFG. Therefore,
for all the experiments we first describe how to “translate” the
analysis information inferred on a PSCFG in order to be applied
on the original CFG and then, we compare with the information
inferred by running the analysis directly on the CFG.

Finally, we do not include the timing of running the off-the-shelf
analyses on the PSCFG since the numbers are negligible compared
with the construction time.

Live Variable Analysis. Live variable analysis [1] is a backward
dataflow analysis that calculates for each program location the
set of variables that may be potentially used before their next
definition. Each variable of this set is called a live variable.

For comparison, we consider the number of live variables at
each program location. Note that due to node splitting performed
by our program transformation, each program location in the orig-
inal program could potentially have multiple instances in the de-
compiled program. Hence we define the following rule in order to
measure improvement at a program location. Let L(¢) be the set of
live variables at program location ¢. Then, we run the live variable
analysis on the original and decompiled program. In the original
program, L(¢) is computed by extracting directly the results of the
analysis at /. From the decompiled program, since there are multi-
ple instances of ¢: ¢y,...,¢,, we extract first the live variables for
each instance L(¢;) (1 <i < n) and then, perform the union of all
such sets (i.e..L(£) = U1<j<, L(4i)).

Fig 5(a) shows the results of the live variable analysis using the
analysis tool CIL [20]. The second column P1 shows the percentage
of program points in which the decompiled program produced
a more precise (smaller) set of live variables. The third column
P2 shows, for those program points, the percentage of reduction
using the decompiled program wrt the original. The percentage of
reduction is obtained from the formula = x 100 where n and
m are the number of live variables in the program point in the
original and decompiled programs respectively. In summary, our
evaluation demonstrates that inferring live variable information on
our decompiled program can remove 14.6% more live variables
from 12.4% of the program points.

Alias Analysis. Alias analysis is concerned with whether two or
more variables may point to the same memory location [1]. Two
variables are said to be aliased to each other if they point to
the same location. It is usually computed in a flow insensitive
manner. That is, the order of statements in the program (the flow)
is not considered. If two variables are aliased at some point in the
program, then they are said to be in the same equivalence class.
We used the analysis tool Crystal [21] for this experiment. The
concrete semantics of an equivalence class in Crystal is a set of

the Cartesian product of all its elements. That is, if E is an equiva-
lence class and |E| its cardinality, then the total number of possible

alias relationships in E is % This is the measure used to
compare the effectiveness of the original CFG wrt to PSCFG. In
Fig 5(b), we present the results for alias analysis. The second and
third columns, Original and Decompiled, represent the total number
of possible alias relationships for the original and decompiled pro-
grams, respectively. The ratio of Decompiled to Original is shown
in the last column. The geometric mean of the ratio is 0.91, which
concludes that the decompiled program shows, on average, an im-
provement of 9% (i.e., there are 9% less alias relationships).

It is worth mentioning that although the accuracy gains obtained
can be considered sufficiently relevant, the flow-insensitive nature
of the analysis limits our PSCFG to produce more precise results.
A flow-insensitive analysis can benefit only from the removal of
infeasible paths but not from the splitting of nodes, thus reducing
the amount of precision that can be gained from the use of PSCFG.

Static Backward Slicing. The backward slice [27] of a program
wrt to a program point £ and a set of variables ¥/ is defined as all
statements of the program that might affect the value V at £. As
we illustrated at the end of Sec. 4, slicing relies on the computa-
tion of postdominators which are not preserved by PSCFG. Due
to this limitation, we cannot decompile the PSCFG and feed it di-
rectly into an off-the-shelf slicer. Instead, we have implemented a
static backward slicing following [27]'2 which works directly on
a PSCFG. The only modification done is that we perform all post-
dominator queries on the original CFG and then we map back the
results to our PSCFG. For space reasons, we omit the details here
because although trivial are tedious. We measure the improvement
provided by PSCFG as follows: a transition in the original CFG is
included in the slice if any of its instances in the PSCFG is included
in the slice.

For the slicing criteria, we consider variables that may be of
interest during debugging tasks. For the software model checking
programs, we choose as slicing criteria the set of variables that
appear in the safety conditions used for their verification in [13].
In the case of mpeg we choose a variable that contains the type of
the video to be compressed. Finally, in fcron we choose all the file
descriptors opened and closed by the application.

Fig 5(c) compares our slicer on the original CFG (column la-
belled with N1) against the same slicer on PSCFG (labelled with
N2). Note that the measure used in both columns is the same, which
is the number of nodes in the original CFG included in the slice: we
map the results obtained from the PSCFG back to the CFG using

12 Clearly, we could have implemented a more state-of-the-art program
slicer (e.g., [14]). For simplicity, we decided to implement [27]. Neverthe-
less, we believe same conclusions apply, for instance, to [14].

2011/7/13

Figure 6. Subsumption May Hide Most Precise Results

the rule mentioned above. In the final column (Diff), we summarize
the difference between the previous two columns.

The weighted average of the Diff column with respect to the
number of nodes in each benchmark (obtained from Fig. 4) is about
16.6%. This shows that on an average, there are 16.6% less number
of nodes in the slice of the CFG if the slicer is actually run on the
PSCFG and has its results mapped back. The mpeg program is an
exception since the number of lines sliced away in both columns is
small compared to the other benchmarks. The reason is that in mpeg
the size of the slices themselves is big because all computations in
the program depend on the type of video to be compressed which
is our slicing criteria.

Conclusions about Experiments of PSCFG. We have thus shown
empirical evidence that PSCFG can be built in a reasonable amount
of time with an affordable size of generally twice the size of the
CFG using a set of real, medium-size programs. We have also
demonstrated that the use of PSCFG generally pays off and it can
improve in a range of 10% to 16% the results of three widely
used program analyses: live variable analysis, alias analysis and
backward slicing.

6. Backward Analysis with Witnesses

The soundness of our program transformation in Sec. 4 relies on the
fact the set of traces of the PSCFG remains a superset of the exact
traces of the original program. Moreover, the set of traces in the
PSCFG is always a subset of the traces represented by the CFG.
However, these conditions do not ensure that our transformation
(PSCFG) produces the most precise results as the next example
illustrates.

EXAMPLE 2. Let us consider again the CFG in Fig. I(c). Say
symbolic execution explores first now the feasible path 1 —3 —4
—5 —6. Then, we backtrack and explore 4 —6. Since both paths
arising from 4 are feasible the interpolant computed at 4 is true.
As a consequence, the path 1 —2 —4 can be subsumed. The
interpolation-based symbolic tree is depicted in Fig. 6(a), and the
transformed CFG is in Fig. 6(b). Note that the transformed CFG is
equivalent to the original one. Therefore, a live variable analysis
on it will not be able now to eliminate the variable y at 1. []

This example has illustrated once again that the consideration
of infeasible paths is essential in order to obtain the most precise
results. Moreover, this example discovers that the search order of
the symbolic execution matters due to the asymmetric behavior of
subsumption. That is, the fact that a node is subsumed if its set
of reachable paths is simply a subset, and not identical, of the
reachable set of another node. Therefore, in order to avoid this
non-deterministic behavior we need somehow to strengthen the
condition that decides whether the symbolic execution can stop the

BackAna 4(IT)
INPUT: II, a set of (possibly cyclic) sequences of transitions
OUTPUT: analysis, an array of locations with the analysis results

1: foreach £ in nodes(I1) do

2 if € feng then analysis[(] := L
3 else analysis[l] = Ginit,

4: end

5: while no change in analysis do
6 foreach ¢ — ¢' € T1 do

7 analysis[l] = analysis[l]| |4 pre 4 (analysis[¢'],0p)
8 end

9: end

10: return analysis

Figure 7. Backward Program Analysis [1]

exploration of a path and join symbolic states. In order to achieve
this, we present the second component of our framework.

In this section, we present the second component of our frame-
work which is a generic algorithm that interleaves the symbolic
execution process described in Sec. 4 with the computation of the
analysis so that the symbolic execution can use information from
the analysis in order to decide better whether a symbolic state
should be joined or not. The algorithm is generic in the sense that
it is parameterized by the analysis. This means that in principle the
only information provided by the designer is the analysis-specific
operations (join operator, transfer function, ...). For efficiency rea-
sons that we shall explain later, this algorithm only makes sense
for backward analyses. Although more expensive, our preliminary
results in Sec 6.2 indicate that this algorithm could be implemented
efficiently and obtain some extra benefits.

We start by showing in Fig. 7 the classical algorithm to perform
backward analysis on a set of (possibly cyclic) sequence of transi-
tions by computing an iterative fixpoint algorithm [1]. Of course,
the fact that we use as the input a set of paths makes sense if all
these paths have a common starting point. The subscript 4 em-
phasizes the fact the algorithm is parameterized by the particular
analysis 4. Now, we introduce the concept of witness that will be
used to establish the conditions to ensure that a node can be joined
without incurring in any loss of precision.

DEFINITION 3 (Witness Path). Let P be a transition system and
I1 the set of reachable paths'3 from a state s in P. Given that
a € BackAnag(I1)[s] then we say Q, is a wimess of the value a
l‘f.
1 Q. CIland
2 a € BackAnaz(Q4)|s]

Note hence that the notion of witness path Q, is associated with
a particular state s (and its set of reachable paths II) and with
a particular lattice value a which is part of the analysis solution.
Thus, each value of the solution may have a different witness path
although in practice, they share many of the witness paths.

DEFINITION 4 (Minimal Witness Path). We say Q, C Q) if a €
BackAnaz(Q,)[s] N BackAnaz (,)[s] and Q4 C . Then, a wit-
ness €, is minimal if there does not exist another witness €., such
that Q; C Q. Note that a minimal witness always exists but it is
not, in general, unique.

Given a witness Q we can construct a quantifier-free first-order
logic formula, called witness formula, as follows. From each se-
quence of the set Q, we built a conjunctive formula with all the

13 Here, a path is simply a sequence of transitions. It should not be confused
with a symbolic path which is a sequence of symbolic states.

2011/7/13

constraints along the sequence. Then, the witness formula is the
disjunction of each formula associated with each sequence. Note
that the size of this formula can be, in general, exponential in the
number of paths. In practice, we have observed that not too many
paths contribute to the analysis in different ways. As a result, the
size of the witness formulas is tractable.

EXAMPLE 3 (Witness Paths and Formulas). Consider the CFG in
Fig. 6(a). Let us focus on node 4. The set of live variables at 4
is {x,y}. A minimal witness path Qy for the variable x is either
{4—5—6} or {4—6}. Note that the set {4—5—6,4—6} is also
a witness path but not minimal. It is easy to see that the backward
analysis of any of these two paths will infer that x is live at 4. On
the other hand, the witness path Qy for y can be only {4—5—6}
since y is only live when the path 4—5—6 is analyzed. Assume that
we choose Q, = {4—5—6} as the witness for x. Then, its witness
formula associated is simply the conjunction of the constraints
along the path x > 0 Ax = y. Note that in this example y has the
same witness path (and hence, same witness formula) than x. []

We now present the overall process, described in Fig. 8, that
takes advantage of the witness formulas in order to further improve
the accuracy of the analysis enhanced by the use of PSCFG. The
algorithm starts with an initial transition system P and symbolic
state V. The loop repeat in lines 3-19 executes the following steps
until there is no change:

1 PSTransf generates P (i.e., a PSCFG) from a given state.

2 The foreach loop (lines 5-9) computes for every node in P:
(a) its analysis solution via BackAna 4 (line 7), and

(b) set of minimal witness formulas for each value of the anal-
ysis solution (line 8) at the given node

3 The foreach loop (lines 10-17) identifies each node ¢ in Pt
which was joined to another node ¢'. For termination, we con-
sider only sibling-to-sibling joins between nodes. A sibling-to-
sibling join is when the two joined nodes refer to the same pro-
gram location and they are connected through a back-edge'*.
Then, the set of witness formulas %[¢'] is used as follows:

For every node ¢, we assume that we can obtain a formula @,
that represents the symbolic state at the time ¢ was joined during
the execution of PSTransf. This is easy to obtain by modifying
PSTransf to annotate each node of the output transition system
with that information. For any witness formula ¢ € ¢[¢'] if the
conjunction @y A ¢ (so called reuse condition) is unsatisfiable
(line 12) then it means that some feasible path reachable from
¢’ from which one analysis value was inferred, is now infeasible
from ¢. As a result, if ¢ would reuse the analysis solution from
¢ directly, we may incur in some loss of precision. Therefore,
if any of the reuse conditions is unsatisfiable, we refine P+ by
unfolding the node ¢ and goto 1.

It is important to notice that the fact we decide to split more nodes
from a given PSCFG using witness formulas does not affect the
soundness of the analysis but only its accuracy. A discussion about
the termination of BackAnaWitness 4 is necessary. At each iteration
it is straightforward to see that the two foreach loops terminate
since the number of nodes of a given PSCFG is always finite. The
termination of the repeat loop is ensured because it is executed until
either:

1 we reach a fixpoint, and hence, the reuse conditions are satisfied

by all joined nodes, or

2 there are no more joined nodes which means that we did split all
nodes. The number of splits is finite, exponentially bounded by

14 An edge from node u to v is called back-edge if v dominates u.

BackAnaWitness 4 (¢, P)
INPUT: 0, initial symbolic state
P, transition system
OUTPUT: analysis, array of locations with the analysis results

P = P, Vjpip = 0
change = false
repeat
P = PSTransf(Vjir, PT)
foreach ¢ € nodes(?™) do
let ITy be the set of paths reachable from £ in Pt
analysis = BackAnag(ITy)

endfor
0: foreach £ € nodes(P™) s.t.
{ is sibling-to-sibling subsumed by ¢’ do

SRR n w2

11: let @, be the formula of the symbolic state at ¢

12: it 30 € x[¢'] @ Dy A ¢ is unsatisfiable then

13: Vinit = ({,590,Ilp) /* sp and [1g are built from & */
14: change = true

15: goto L

16: endif

17: endfor

18: L:

19: until not change
20: return analysis

Figure 8. Backward Program Analysis with Witnesses

the number of branches of the program. Note that we only split
sibling-to-sibling joined nodes, and hence, we cannot unwind
loops. "

EXAMPLE 4 (Use of Witnesses To Improve Precision). Suppose
we execute the algorithm BackAnaWitness g on the CFG in Fig. 1(c).

In the first iteration of the repeat loop, after line 4 we obtain
the PSCFG of Fig. 6(a). The foreach loop (lines 5-9) computes
the analysis values for each node and builds their corresponding
witness formulas. Let us focus again on node 4. Recall that in
Example 3 we computed the set of witness formulas {{x = ¢, =
x> 0Ax =y} for the set of live variables {x,y}. The foreach loop
(lines 10-17) identifies all points where we joined nodes during
the construction of PSCFG. We notice that the path 1—2—4 was
Jjoined with the other paths that pass through 1—3—4. Then, we
test if 30 € {0x,0y} @ O A (x = OA b = z) is unsatisfiable. The
formula x = 0 \b = z is obtained from the symbolic execution of
the path 1—2—4. Note what happens now. This test succeeds since
0y Ax = 0A b = z is unsatisfiable. Then, we refine the PSCFG and
continue with the execution of the path 1—3—4 forcing a node-
splitting at 4. In the second iteration of the repeat loop, we obtain
the PSCFG of Fig 6(c) which cannot be further modified, producing
the most precise answer (i.e., the live set {x,z} at 1). []

6.1 Implementation

The algorithm BackAnaWitness 4 is non-constructive in the sense
that it does not explain how the witnesses formulas can be built
more efficiently. Moreover, it is very inefficient since whenever a
new node-splitting is done the whole process is repeated. To fill
these gaps, we outline now a more realistic implementation of this
algorithm. The central idea consists of augmenting the symbolic
execution process performed by function IntpSymExec in Fig. 2
for computing the analysis answers using BackAnag in Fig. 7 on
the symbolic tree while synthesizing its witness formulas which in

15 For some specific analysis (e.g.,[26]) we allow unrolling loops a finite
number of times.

2011/7/13

x] = {94 | a € analysis[l], ¢, is a minimal witness formula of a}

PSCFG+Slicing]| BackAnaWitnesssiicing
Benchmark T(s) T(s)
mpeg 60 628
diskperf 14 94
floppy 90 263
cdaudio 35 301
serial 92 395
fcron 133 832
[Average | 70 sec [418 sec]

Figure 9. A Backward Slicing on PSCFG vs BackAnaWit-
NeSSsticing

turn are used by the symbolic execution in order to decide whether
to join nodes or not.

Recall IntpSymExec returns for a given initial symbolic state v

its interpolant ¥ and the set of edges ‘E that represent the symbolic
execution tree built so far. We modify IntpSymExec to return the
analysis answer ¢ € L as well and its corresponding set of witness
formulas x, € FO. We also modify the format of each entry in the
subsumption table in order to store for each state v the analysis
answer ¢ and formulas y. The interpolants and the set E are
computed exactly as before. We now describe how to compute the
two new output arguments of the algorithm. As we did before, let
us omit the discussion about loops for now.
We have three base cases for each kind of leaf node in the tree. If
an infeasible path is encountered we return L and its set of witness
formulas is 0. If the path is feasible we return G;,;;, and its set
{(v,true) | v € Gjnir, }. For convenience, we represent a witness
formula as a pair of a lattice element v € 4 and its corresponding
witness formula ¢. The key step is during the subsumption test.
Before, we simply applied Def. 2 in order to decide if the symbolic
execution could halt and hence, join nodes. Now, we redefine Def. 2
for making use of witness formulas.

DEFINITION 5 (Subsumption with Interpolant and Witness Formulas).

Given two symbolic states v and V' such that v is annotated with
the interpolant ¥ and its set of witness formulas is 5. We say that
v is subsumed by v if: .

1 [V'] implies ¥ (i.e., s.t. [V'] = P) (as before)

2 Y{v,0) € y o [V'] A is satisfiable

If the two conditions of Def. 5 hold, then the symbolic execution
stops and the nodes are joined. In addition, we return the answer
and witnesses from the subsumer node (v).

Finally, we explain the recursive case. The forward symbolic
execution remains the same. During the backtracking, we compute
the answer ¢ from the children’s answers ¢’ using the classical

equation: o =| |prea(d’.op))
G/

A new step is to produce the witness formulas associated with

6. Assume recursively we have already computed %’ (the witness

formulas of ¢’). Then

1= Q{0 op]) | (v0) €X'} ©)
v

where) is the join operator of witness formulas defined as:

R8s = {<v7¢1 \/(])2) | <V7¢l> €S, <Va¢2> € S}U
{01) [(v,01) € Ss.t. A{v,¢2) € S}

where S =| |Ss. Thus, the join of witness formulas is quite straight-
forward. First, it applies the set union | |. Then, whenever there are
two candidate witness formulas (e.g., ¢; and ¢7) for the same value
v, we join them by introducing a disjunction.

In our current prototype we limit the number of disjunctions
to keep smaller the witness formulas. Note that this limitation is
always sound and more importantly, it does not affect the accuracy

of the analysis. However, it may hamper subsumption (i.e., we may
introduce unnecessary node-splitting). Certainly, this is a topic for
future research. One clear possibility would be to represent the
set of witness formulas via Binary Decision Diagrams (BDDs).
By doing so, we may benefit from sharing which we have already
observed is very common and we may also have an efficient way
of handling disjunctive formulas without any limit.

We now discuss how we handle loops. Since we are interleaving
the symbolic execution process and the execution of the analysis,
whenever we have loops the analysis side runs a fixpoint computa-
tion. In practice, it is very important to avoid redundant work being
incremental. That is, paths for which their analysis answers have
not changed from one fixpoint iteration to another should not be
re-executed by the symbolic execution.

Regarding witness formulas there are two main scenarios to
consider. The first one, when the symbolic execution encounters
a back-edge. Assuming that we have executed and analyzed all the
loop exits first then we can simply return the set of witness formulas
built from them. The other case is during a fixpoint computation
which is a bit more elaborated. In the first iteration of fixpoint, the
set of values are computed using Eq. 2 while their witness formulas
are updated using Eq. 3. If the analysis stabilizes then, we return
those formulas. Otherwise, we start a new iteration. The main idea
is to respect all the witness formulas computed before and only add
new ones if new values are added. It is also important to notice that
witness formulas must respect the loop invariants. That is, in Eq. 3 a
witness formula is updated by conjoining ¢, the witness formula of
its descendant, with the formula associated to [op]. Within a loop
the formula [op] is abstracted to trueif it is not invariant through
the loop. This suffices to produce invariant witness formulas.

Remark. Finally, we explain why our analysis algorithm with wit-
nesses in Sec. 6 is only suitable for backward analyses in spite of
that the description given in BackAnaWitness 4 can take also, in
principle, forward ones. The central idea for a sensible implementa-
tion relies on the fact that the exploration of a path can be avoided if
some knowledge (i.e., reuse conditions) about the future is known.
The only way to know about the future is to explore other paths,
compute their analysis answers together with their witness formu-
las and then use them to prune other paths. This process is inher-
ently backward, and in fact, it can be modeled in a elegant way
using a dynamic programming setting as in [15].

6.2 Preliminary Results

We extended the prototype built for the experiments in Sec. 5 in
order to implement the main ideas of BackAnaWitness 4 following
the implementation details described in Sec. 6.1. The main objec-
tive of these experiments was to demonstrate that a sensible imple-
mentation is plausible and that, under certain conditions, the use
of witnesses can produce more accurate results than using only
PSCFGs.

For our first experiment, we augmented the backward slicer
that we implemented in Sec. 5 with witnesses formulas (called
BackAnaWitnesssyicing). Since the lattice of slicing is avars e
keep for each variable in the answer its corresponding witness
formula. Therefore, for a given node in the symbolic execution
tree the number of witnesses tracked is bounded by the number
of program variables. The main result of this experiment is that
using witnesses we could not improve the precision provided by
the PSCFGs. Analysis times are shown in Fig. 9 to illustrate the
extra cost of building and testing witness formulas. Nevertheless,
this may indicate that although the accuracy provided by a PSCFG
is hard to predict, in general, due to the asymmetric behavior of
subsumption, in practice, it may not be the case.

We then implemented a second analysis with witnesses Back-
AnaWitnesswcgr, Which is a simplified version of Worst-Case Ex-

2011/7/13

PSCFG+WCET BackAnaWitnessycer

Benchmark B N T(s) B N T(s)

cdaudio 443 5657 10 443 5657 13
diskperf | 483 | 3931 | 84 || 483 | 3931 11
kbfiltr 154 | 1239 | 1.6 154 | 1239 2.4
floppy 457 | 2804 7 457 | 2804 9
mpeg 802 | 3927 | 6.4 || 802 | 4634 | 10.8 || 463
gpmouse | 392 | 1018 1 392 | 1490 5 820
statemate | 265 | 53102 | 254 || 261 | 94134 | 1021 || 10°
tlan 737 | 3917 5 729 | 10547 | 42.2 76

cocoos

Figure 10. A WCET Analysis on PSCFG vs BackAnaWitnesswcer

ecution Time (WCET) analysis. WCET analysis aims to compute
the worst possible execution time of a program. Here, we focus
on high-level analysis which aims at characterizing all possible ex-
ecutable paths excluding hardware effects. We implement a very
simple timing model: programs are instrumented with a dedicated
timing variable which is incremented after the execution of each
statement. As usual, upon encountering a loop, it separately com-
putes the WCET of the loop body and multiplies that value with a
manually given number of loop iterations. The lattice members are
of the form Vars — Nat | where T is an infinite bound and G;,;; = 0.
The transfer function is pre(c’,0p) = {r +cost(op) | t € 6’} where
cost returns a positive number. The join operator is the maximum
function between two positive numbers. Witness formulas are com-
bined by selecting the witness associated with the maximum bound.
Note that for WCET we need to keep track only of one witness for-
mula corresponding to the dedicated timing variable at each node
of the tree.

The results are shown in Fig. 10. Columns labelled by B show
the constant upper bounds inferred (WCET). The columns N repre-
sent the number of nodes in PSCFG and in the case of BackAnaW-
itnesswcer, the number of nodes in the symbolic execution tree.
Columns T(s) shows the time for constructing the PSCFG (the time
for running the WCET analysis on PSCFG is not included since
it is on the magnitude of milliseconds) and running BackAnaWit-
nesswcer. Finally, the column W is the number of times a witness
formula was not preserved (i.e., Cond 2, Def. 5 did not hold), and
hence, node splitting was performed.

Interestingly, there are two programs statemate and tlan
where the use of witnesses improved the bound inferred (i.e., the
upper bound was lower) compared with running the WCET analy-
sis on the PSCFG. With the exception of statemate the analysis
times running BackAnaWitnessycgr show very little overhead wrt
running the WCET analysis on the PSCFG. The reason why is the
existence of only one witness formula at a given node.

7. Conclusions

We presented a framework for path-sensitive analysis, in two parts.
The first and main part is a transformation for systematically con-
verting a CFG into its path-sensitive counterpart PSCFG. The es-
sential idea is that PSCFG exhibits fewer execution paths than the
original CFG, and therefore produces more accuracy when subject
to any analysis. Experiments then showed that the critical mea-
sure of size blowup from CFG to PSCFG is in fact modest, for
medium-size programs. They also confirmed the folklore that con-
sidering path-sensitivity in program analysis generally produces
significantly better results.

In the second part of this paper, we presented a generic back-
ward algorithm that interleaves the construction of the PSCFG with
the execution of the analysis. It uses the concept of witnesses which
could now be augmented to the analysis so that subsumption is now
conditional on the witnesses. Although more expensive this algo-
rithm can produce more accurate results than the transformation of
the first part. It is also not yet clear how much the witness con-

cept helps across a range of analyses. But certainly it is crucial for
analysis demanding a very high level of accuracy (e.g., WCET).

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: prin-
ciples, techniques, and tools. Addison-Wesley Longman Publishing
Co., Inc., 1986.

[2] G. Ammons and J. R. Larus. Improving data-flow analysis with path
profiles. In PLDI ’98, pages 72-84, 1998.

[3] R. Bodik, R. Gupta, and M. L. Soffa. Interprocedural conditional
branch elimination. In PLDI "97, pages 146-158.

[4] R. Bodik, R. Gupta, and M. L. Soffa. Refining data flow information
using infeasible paths. FSE’97, pages 361-377.

[5] R. Bodikv and S. Anik. Path-sensitive value-flow analysis. In POPL
'98, pages 237-251, 1998.

[6] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis. In 4th POPL, pages 238-252. ACM Press,
1977.

[7] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Re-
straints Among Variables of a Program. In POPL’78.

[8] W. Craig. Three uses of Herbrand-Gentzen theorem in relating model

theory and proof theory. Journal of Symbolic Computation, 22, 1955.

[9] M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verifi-
cation in polynomial time. In PLDI ’02, pages 57-68, 2002.

[10] Dinakar Dhurjati, Manuvir Das, and Yue Yang. Path-Sensitive

Dataflow Analysis with Iterative Refinement. In Static Analysis Sym-
posium, 2006.

[11] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Series in
Automatic Computation. Prentice-Hall, 1976.

[12] J. Fischer, R. Jhala, and R. Majumdar. Joining dataflow with predi-
cates. In ESEC/FSE-13, pages 227-236, 2005.

[13] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Ab-
stractions from proofs. In 31st POPL, pages 232-244. ACM Press,
2004.

[14] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI ’88, pages 35-46.

[15] J. Jaffar, A. E. Santosa, and R. Voicu. Efficient memoization for
dynamic programming with ad-hoc constraints. In 23rd AAAI, pages
297-303. AAAI Press, 2008.

[16] J. Jaffar, A. E. Santosa, and R. Voicu. An interpolation method for
CLP traversal. In 15th CP, volume 5732 of LNCS. Springer, 2009.

[17] James C. King. Symbolic Execution and Program Testing. Com.
ACM’ 76, pages 385-394.

[18] L. Mauborgne and X. Rival. Trace partitioning in abstract interpreta-
tion based static analyzers. In ESOP’05, pages 5-20, 2005.

[19] K. L. McMillan. Lazy abstraction with interpolants. In CAV ’06, pages
123-136.

[20] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Inter-
mediate Language and Tools for Analysis and Transformation of C
Programs. In CC’02.

[21] Radu Rugina, Maksim Orlovich, and Xin Zheng. Crystal: A program
analysis system for C. http://www.cs.cornell.edu/projects/crystal,
2007. [Online; accessed 09-July-2011].

[22] Gregor Snelting, Torsten Robschink, and Jens Krinke. Efficient path
conditions in dependence graphs for software safety analysis. vol-
ume 15, pages 410-457, 2006.

[23] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. Efficient detec-
tion and exploitation of infeasible paths for software timing analysis.
In DAC 06, 2006.

[24] Sunae Seo, Hongseok Yang, and Kwangkeun Yi. Automatic construc-
tion of hoare proofs from abstract interpretation results. In APLAS 03,
pages 230-245.

[25] A. Thakur and R. Govindarajan. Comprehensive path-sensitive data-
flow analysis. In CGO 08, pages 55-63, 2008.

2011/7/13

[26] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise wcet
prediction by separated cache and path analyses. Real-Time Syst.,
18:157-179, 2000.

[27] M. Weiser. Program slicing. In ICSE 81, pages 439-449, 1981.

13 2011/7/13

