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ABSTRACT
We present a new graph representation of programs with speci-
fied target variables. These programs are intended to be processed
by third-party applications querying target variables such as testers
and verifiers. The representation embodies two concepts. First, it
is path-sensitive in the sense that multiple nodes representing one
program point may exist so that infeasible paths can be excluded.
Second, and more importantly, it is sliced with respect to the tar-
get variables. This key step is founded on a novel idea introduced
in this paper, called “Tree Slicing”, and on the fact that slicing is
more effective when there is path sensitivity. Compared to the tra-
ditional Control Flow Graph (CFG), the new graph may be bigger
(due to path-sensitivity) or smaller (due to slicing). We show that
it is not much bigger in practice, if at all. The main result however
concerns its quality: third-party testers and verifiers perform sub-
stantially better on the new graph compared to the original CFG.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—symbolic
execution

General Terms
Algorithms, Reliability, Verification

Keywords
Symbolic execution, program slicing, program transformation

1. INTRODUCTION
We present a new intermediate graph representation for C pro-

grams with specified target variables. These programs are intended
to be processed by third-party applications such as verifiers and
testers. The representation embodies two concepts. First, it is path-
sensitive in the sense that there may be multiple nodes representing
one program point so that infeasible symbolic execution paths can
be excluded. Second, and more importantly, the graph is sliced
with respect to the target variables.
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We begin with a promotional example: consider the C program
if(c) p = 1; else p = 0;
x = 0;
if(p > 0) x = 1;
if(x == 0) z = 1;
TARGET: {z}

Note that no static slicing is effective on this program because each
statement and variable affects the target z along at least one path.
However, we can transform this program into an equivalent one:

if (!c) z = 1;

which produces, on any given input, the same values for z as the
original program. Clearly this transformed program would be more
efficient when input to a verifier or tester which seeks properties of
z. We arrived at this transformation as follows. Let S denote the
program fragment comprising of all but the first if-statement of the
original program. Now consider slicing S in the context p = 1 (the
“then” body of the first if-statement). Clearly S would not modify
the variable z because only the statements x=0 and x=1 would
be executed in this context. Next consider the alternative context
p = 0 (the “else” body). Now S would execute the statements x=0
and z=1, from which the former can be sliced away. Hence we get
the transformed program.

In other words, we arrived at this new program by first consid-
ering path-sensitivity, and more specifically, the original program’s
symbolic execution (SE) tree. The general idea is that slicing of
a program fragment can be much more effective when it is done
with a given context. The SE tree in fact displays the context of a
program fragment as it unfolds through the various paths that bring
execution to this fragment. Now consider the example:

if(c) p = 1; else p = 0;
S
TARGET: {z}

where S now represents a program fragment which cannot be sliced
by restricting consideration of the values of z at the end of the pro-
gram. That is, all symbolic execution paths in S produce some
(different) output value in z at the end, regardless of the initial val-
ues of c or p. Here, by being path-sensitive, we would produce a
CFG that corresponds to the program:

if(c) { p = 1; S; }
else { p = 0; S; }

This new program is effectively twice the size of the original pro-
gram due to the duplication of S, and yet there is no benefit from
using this enlarged representation.

It is folklore that a fully path-sensitive representation of sym-
bolic execution is simply intractable, for the representation doubles



in size for each branch statement encountered. The only alternative
is to have some form of merging where, at some stages in the con-
struction of the graph, certain paths in the graph transition into the
same node. If the merging is performed at every opportunity, the
original CFG would be obtained. If not performed at all, the full,
possibly intractable, SE tree would be obtained. The big question
is, therefore, how much merging is needed?

In this paper, we present a method for producing a path-sensitive
CFG by constructing a SE tree but merging nodes exactly when the
merge does not hide any information that affects slicing. That is,
when our algorithm merges a node in the tree with another, it guar-
antees that had the node been symbolically executed instead, one
would obtain precisely the same slicing information as that of the
node it’s being merged with. A key step involved in the construc-
tion of our CFG, which we call the Path-Sensitively Sliced CFG
or PSS-CFG, is “Tree Slicing”, a powerful technique to merge and
slice arbitrarily different SE sub-trees under certain conditions.

Our main result is that the PSS-CFG, when “decompiled” (or
transformed) into regular programs that can be directly used by ap-
plications which query target variables (e.g., a concolic tester that
targets the program’s outputs, or a verifier with a safety property),
produces significant improvement in terms of time usage as com-
pared to using the original program. The strength of the PSS-CFG
is that it can be used “out-of-the-box” by a wide number of third-
party software engineering applications. We consider two main ap-
plications - program testing and verification, and show in Section 6
how they can benefit from the PSS-CFG to gain in performance.

2. RELATED WORK
With regards to performing an “offline” program transforma-

tion for general use, our closest related work is [3], performing
a path-sensitive transformation with an aim to “improve the path-
insensitive analysis used inside the F-SOFT tool to obtain the ef-
fects of path-sensitive analysis”. The main difference is that their
transformation only removes infeasible paths from the CFG with-
out performing slicing. As a result, it is not clear how the per-
formance of a verifier or tester could be improved because they
are themselves path-sensitive and would not consider the infeasible
paths anyway. Hence, their target application is a path-insensitive
analyser within F-SOFT that can benefit from the removal of infea-
sible paths, as it would spuriously consider them otherwise. Nev-
ertheless we share with them the high level goal of performing an
“offline” program transformation that helps an external application.

Since program transformation is a specific area, we also discuss
related work that do not perform transformation but still provide
benefits of path-sensitivity for external consumption. In this regard,
another related work is [6] that discards irrelevant tests in concolic
testing by tracking values read and written by executed program
statements. Then, when two states differing only in program val-
ues not subsequently read are visited, the exploration of the second
state can be pruned. The main difference is that they use live range
information of variables to make the decision about pruning paths,
which results in lesser pruning compared to our method that uses
slicing (specifically, dependency information). Moreover they do
not perform program transformation themselves, but work with the
concolic tester to discard certain tests during execution. Thus, they
are dependent on the external application, whereas we perform an
offline transformation that is independent of the application.

Another related work is [17] that performs slicing of paths, but
their goal is to reduce the size of the counterexample path generated
by CEGAR-based verifiers during their process. As a result, they
do not work with the entire program’s CFG and hence, they are not
concerned with splits and merges in the CFG. However a program

transformation algorithm like ours needs to work with the whole
CFG to decide where to split or merge. Slicing as a precursor to
model checking has also been shown to be effective in [12].

The recent work [18] performs dynamic state merging during
symbolic execution in order to combine paths. While reducing the
number of paths, the formulas corresponding to merged states are
more complicated. They showed that their chosen heuristic for de-
ciding which states are merged produced significant speedups. A
similarity to our paper here is that we also perform state merging
but we do so by learning when different states need not be explored.
Also, [18] does not consider slicing, but our algorithm merges only
when it can guarantee lossless-ness of slicing (dependency) infor-
mation. State merging in the context of dynamic symbolic execu-
tion has also been studied in a more recent work [2].

We will see in Section 5 that our method uses interpolation to
perform state merging. Interpolation has been used in program
testing and verification [19, 16, 20, 13] to reduce state space and
contain “path-explosion”. However the similarity with our paper is
only in the use of interpolation for state merging. Our method has
to additionally guarantee that the merging is lossless, something
that is inapplicable to these works. Also, in Section 6, we exper-
imentally evaluate the PSS-CFG using applications of testing and
verification, which may be another source of confusion with these
works. The fundamental difference is that these works involve di-
rectly performing the testing or verification process on the program.
We simply evaluate the PSS-CFG on third-party testing and verifi-
cation tools to show that they benefit in performance (in fact, [19]
is one of the verifiers we use). But the PSS-CFG is a much more
generic object not limited to just testing and verification.

We finally mention the work [15] which performed static slicing.
The technical approach there was to first generate a path-sensitive
symbolic execution tree which then was used to determine which
primitive program statements could be sliced. It performed slicing
on the program, using the symbolic tree to slice a statement that
does not affect the target anywhere in the tree. In contrast, here we
perform slicing on the tree itself to transform it into a new tree us-
ing the transformation rules. Our method allows the same program
statement to be sliced form one part of the tree but not another, a
scenario in which [15] simply cannot slice the statement from the
program at all. This fundamental difference will be exposed in the
example in Section 3. Moreover, a key technical slicing step of our
method, called “Tree slicing”, involves slicing a compound state-
ment from a tree, a problem not relevant to [15]: in general, the
symbolic execution subtrees rooted at what corresponds to the end
of a compound statement may not be identical. A main theoret-
ical result of this paper, concerning the correctness of the trans-
formation (Theorem 2), is that under certain conditions formalised
in Theorem 1, we can correctly slice away the entire compound
statement, and merge the following subtrees even though they are
different, while still retaining the necessary equivalent behavior of
the original program on the target variables.

3. BASIC IDEA
Consider the program in Fig. 1, where a read call signals a

concolic tester to generate an input, and the target of interest is the
variable z in the end. The program has two inputs c and d which
decide the control flow and 8 paths to traverse. At the outset, note
that no static slicers, even path-sensitive ones like [15] or the well-
known Frama-C [8], are effective on this program because each
statement along some path affects the target.

Our algorithm has two steps: first, it performs symbolic execu-
tion to generate the SE tree annotated with dependency information
at each node (Fig. 1(b)). The goal here is to be as path-sensitive



if(read(c)) flag=1
else flag=0

x=2
if(read(d)) y=4
else y=5

if(flag) z=y+x
else z=x+1

TARGET(z)

c

flag=1
x=2

d

y=4

flag

z=y+x

!d

y=5

!flag

!c

<flag=1, {y,x}>

<flag=1, {d,x}>

flag=0
x=2

d !d

y=4 y=5

flag !flag

z=x+1

<flag=0
{x}>

<flag=0
{x}>

<true,{z}> <true,{z}>

<false, { }>

c

x=2

d

y=4

z=y+x

!d

y=5

!c

x=2

z=x+1

if(read(c)) {
x=2
if(read(d))
y=4

else
y=5

z=y+x
}
else {

x=2
z=x+1

}

Figure 1: (a) A program (b) its symbolic execution tree (c) its PSSCFG and (d) the corresponding decompiled program

as possible since it makes dependency information more precise.
However since path-sensitivity also makes the SE tree exponential
in the number of branches, we try to keep its size in check by merg-
ing while ensuring this does not cause imprecision of dependencies.
In the second step, transformation rules are applied on the SE tree
to get the final PSS-CFG (Fig. 1(c)). These rules take advantage of
the precise dependency information obtained in the first step.

In Fig. 1(a), our algorithm first encounter a branch on c. To
be path-sensitive, it splits symbolic execution into two – one with
context c and the other with context !c. In a DFS fashion, it
first explores the context c, symbolically executing the statements
flag=1 and x=2 and as usual, carrying these path constraints in
a logic formula. Upon reaching the next branch, it again splits into
two – with context d and !d. Continuing along the context d it
executes y=4 and reaches the final branch. Again it splits into two
– with context flag and !flag, following the former and finally
executing z=y+x before reaching the terminal point.

At this point the path formula is represented by the constraints:
c∧flag = 1∧x = 2∧d∧y = 4∧flag∧z = y+x1 which is satisfi-
able, meaning the path is feasible. Our algorithm now generates the
backwards dependency information for this feasible path, resulting
in the dependency set {z}, the target at the terminal point. This
is then propagated back to the branch point on flag by applying
Weiser’s formulas [23], resulting in the set {y, x}. In addition to
the dependency set, our algorithm also computes the witness path
for each variable in the set. A witness path for a variable at a par-
ticular node in the SE tree is a path from that node along which the
variable affects the target in the end, i.e., it is a “witness” for the
variable affecting the target. The witness path for the set {y, x} is
the path executing flag and z=y+x, corresponding to the formula
flag ∧ z = y+x. To avoid cluttering, we do not show the witness
paths in Fig 1(b). Witness paths are needed to ensure there is no
loss of dependency information when we merge two nodes later.

Next, our algorithm backtracks and explores the other context
from the last split point: !flag. The path formula c ∧ flag =
1 ∧ x = 2 ∧ d ∧ y = 4 ∧ ¬flag is unsatisfiable, hence the path is
infeasible. Now it computes an interpolant, a formula that captures
the essence of infeasibility of the path at the branch point. The
purpose of the interpolant is to exclude irrelevant information per-
taining to the infeasibility so that merging of another node with the

1We omitted the read calls, which only the tester understands.

current one is more likely to happen in future. For the above path,
one possible interpolant at the branch point is flag = 1 which is
enough to capture the inconsistency with ¬flag. There are numer-
ous methods to compute interpolants (e.g., weakest preconditions)
and the quality of the interpolant will affect the amount of merging
performed by our algorithm. The interpolant at a terminal node is
true and the interpolant at an infeasible node is false, as shown.

In summary, our method computes at each node in the SE tree:
(a) the dependency sets (b) witness paths from feasible paths (c)
interpolants from infeasible paths. At the branch point on flag,
these are {y, x}, flag ∧ z = y + x and flag = 1, respectively.
The astute reader might have noticed that our algorithm did not
include the variable flag in the dependency set, whereas a tradi-
tional slicer such as [8, 15] would have included it due to control
dependency. The reason is that along this particular path only one
branch, the one where flag is true (non-zero), is feasible and the
other is infeasible. That is, flag is always true at this point along
this path. Hence the value of flag does not affect the execution
of the statement z=y+x, therefore it is not control-dependent on
flag. However, flag being true is needed to preserve the infea-
sibility of that branch and this is captured in the interpolant.

Next our algorithm backtracks again to the previous split point
to explore the other branch: !d. It executes the statement y=5 and
reaches the branch on flag, this time under the different context
!d. Now, the most important step of checking whether the current
context of the branch can be merged with the previously explored
context is performed. First, our algorithm makes sure the merging
is correct by checking if current path formula c ∧ flag = 1 ∧ x =
2 ∧ ¬d ∧ y = 5 implies the interpolant flag = 1. This check
succeeds, meaning that this context can be merged soundly with the
previous one2. Next it makes sure the merging will incur no loss of
precision by checking if the witness path from the previous context
flag ∧ z = y + x is feasible in the current context. Indeed it is,
as the current path formula is consistent with the witness formula.
Therefore, the current context of the branch on flag is merged
with the previous context without any loss of precision. This is
formalised in Theorem 1, that says if both checks succeed, then by
exploring the current context of the node one would obtain exactly
the same dependency information as the node it’s being merged
with. The merging is denoted by the green dashed arrow in Fig 1(b).

2The concept of soundness is formalised later in Lemma 1.



Our algorithm now propagates backwards the dependency sets,
interpolants and witness paths to the previous branch on d, re-
sulting in the set {d, x}, interpolant flag = 1, and witness path
d ∧ y = 4 ∧ flag ∧ z = y + x. Note that this time, it consid-
ered the control-dependence of y on d as both paths from the d
branch were feasible, thus adding d to the dependency set. It then
backtracks to the first split point on c and explores the other branch
!c. Upon reaching the branch on d again, it tries to merge with
the previous context of the branch by checking if the current path
formula ¬c∧ flag = 0∧ x = 2 implies the interpolant flag = 1.
It does not, so the merging cannot be performed and so it proceeds
to explore the rest of the tree under the node, resulting in the fi-
nal SE tree as shown in Fig. 1(b). We do not explain the process
again as it is very similar to the left half of the SE tree. How-
ever there are a few important things to note in the final tree. The
branch on d is duplicated due to the split at the previous branch
on c. However under the context !c, the dependency set at the
branch point on flag is only {x} as opposed to {y, x} under the
context c, because here there is no data-dependency of z on y.
This is the advantage of path-sensitivity – we have obtained a more
precise dependency information at a different context of the same
program point by considering the contexts separately, although at
the price of duplication of the d branch. However we will see soon
that because of the more precise information, the duplication can
be controlled by slicing.

In phase two of our algorithm, we apply three transformation
rules that will process the SE tree annotated with dependency infor-
mation to transform it into the final PSS-CFG. We give an informal
description of each rule here, as they are formalised in Section 5.2.

• Rule 1, the traditional slicing rule, states if the LHS of an
assignment statement does not occur in the dependency set
after it, the statement can be removed.

• Rule 2 states that if a branch point has only one feasible path
arising from it, the branch point can be removed. The rea-
soning is that if a branch point has only one feasible path
from it, then in that particular context the branch condition
can be deterministically evaluated to true (or false). Thus it
can simply be replaced with the “then” (or “else”) body.

• Rule 3 (called “Tree Slicing”), which is more powerful in
reducing the PSS-CFG’s size, states that an entire branch is
irrelevant to the target and can be removed if both the “then”
and “else” bodies contain no statement that is included in the
slice. This rule is more complicated than it seems at first
because working with trees, a problem arises when we re-
move a branch point: conceptually there could be two sub-
trees whose parent, the branch point, is about to be removed.
The two sub-trees could be arbitrarily different because of
the different contexts leading into them. Which one should
be linked to the branch point’s parent? The rule guarantees
that regardless of which sub-tree is picked, the transforma-
tion is still sound, provided that our algorithm declared the
sub-trees to be merged. This important non-trivial result is
formalised in Section 5.2, and is one of the many fundamen-
tal differences between our transformation method and static
slicing methods, that slice on the program, not the tree.

Note that in general, the rules are not limited to the above three, and
one can indeed formulate more sophisticated rules. For instance,
amorphous slicing [11] can be applied to further elide statements
from the SE tree, where it is more likely to be useful compared
to applying on the original CFG, as the SE tree exposes different

symbolic paths leading to a program point. For our benchmarks,
however, the above three rules were sufficient to provide benefit.
These rules are applied on the SE tree until none of them can be
applied any more, and the resultant graph is the PSS-CFG.

In our example, applying Rule 1 on the SE tree removes the state-
ments flag=1 and flag=0. Applying Rule 2 removes the two
branches on flag that have an infeasible path. More interesting
is the application of Rule 3. It cannot be applied on the d branch
under the context c because in that context, y=4 and y=5 are in-
cluded in the slice (the dependency set after the branch is {y, x}).
However, it can indeed be applied on the d branch under the con-
text !c because neither y=4 nor y=5 is included in the slice (the
dependency set after the branch in this context is only {x}), and our
algorithm had merged the symbolic state after its “then” and “else”
body. Thus, Rule 3 removes the d branch under the context !c but
not in the context c, to get the final PSS-CFG in Fig. 1(c). This re-
duction of the graph due to slicing complements the blow-up due to
path-sensitivity, and is critical to maintaining the PSS-CFG’s size.
Finally, note that Rule 3 cannot be applied on the top-level c branch
because the two subtrees after its “then” and “else” body have not
been merged. This means the split due to the c branch is causing
some differences in the two subtrees related to the target, and so re-
moving the branch could make the PSS-CFG incorrect. Indeed, the
c branch assigns different values to flag which ultimately causes
different values to be assigned to the target z. Thus the branch must
be kept to preserve the original program’s semantics.

Finally, as a third step of our algorithm, we produce an equiva-
lent C program from the PSS-CFG by “decompiling” it. The de-
compilation process is quite straightforward so we do not detail it
here. It is done primarily so that external off-the-shelf applications
can be executed on the PSS-CFG. The decompiled program for our
example is shown in Fig. 1(d). At the outset, one can notice that the
decompiled program has only 3 paths compared to 8 paths in the
original program. Moreover, information that cannot be captured
from the original program can be captured by the decompiled pro-
gram. For instance, a concolic tester on the original program will
always generate a value for d regardless of the value generated for
c. However in the decompiled program, if the value of c was gen-
erated to be 0, the tester would not generate the value of d because
it will not affect the target z. It can also be seen that the variable
flag, which was mainly used for control flow between different
parts of the code, is not even present in the decompiled program.
This information cannot be captured by static slicers like [8, 15],
which cannot statically remove the assignments to flag or the
branch on flag from the program without becoming unsound.

Remark. One might wonder if our complete algorithm to pro-
duce the PSS-CFG is equivalent to simply expanding the paths of
the original program producing a semantically equivalent program,
deleting the infeasible paths, and applying standard slicing wrt the
target. Even though conceptually it may be similar, there are many
practical differences with our method. Without the merging per-
formed by our algorithm, one would run into exponential blowup of
paths during symbolic execution, before even producing the seman-
tically equivalent program. Even if a merging mechanism is used
to contain the blowup, without the guarantee of lossless merging
provided by our algorithm, one could obtain imprecise dependency
information thereby keeping irrelevant statements in the new pro-
gram. However, our algorithm provides the right balance between
precision and performance of such a target-based transformation.
Thus, the process of constructing the SE tree and the process of de-
pendency computation are closely intertwined and cannot be sepa-
rated and outsourced to an external slicer.



4. BACKGROUND
Syntax. We restrict our presentation to a simple imperative pro-
gramming language where all basic operations are either assign-
ments or assume operations, and the domain of all variables are
integers. The set of all program variables is denoted by Vars. An
assignment x := e corresponds to assign the evaluation of the ex-
pression e to the variable x. In the assume operator, assume(c), if
the boolean expression c evaluates to true, then the program contin-
ues, otherwise it halts. The set of operations is denoted by Ops. We
then model a program by a transition system. A transition system is
a quadruple 〈Σ, I,−→, O〉 where Σ is the set of states and I ⊆ Σ
is the set of initial states. −→⊆ Σ × Σ × Ops is the transition
relation that relates a state to its (possible) successors executing
operations. This transition relation models the operations that are
executed when control flows from one program location to another.
We shall use `

op−−→ `′ to denote a transition relation from ` ∈ Σ to
`′ ∈ Σ executing the operation op ∈ Ops. We shall also use a simi-
lar notation υ

op−−→ υ′ to denote a transition from the symbolic state
υ to υ′ corresponding to their program locations. Finally, O ⊆ Σ
is the set of final states.

Symbolic Execution. A symbolic state υ is a triple 〈`, s,Π〉. The
symbol ` ∈ Σ corresponds to the current program location. We
use special symbols for initial location, `start ∈ I , and final lo-
cation, `end ∈ O. The symbolic store s is a function from pro-
gram variables to terms over input symbolic variables. The eval-
uation JcKs of a constraint expression c in a store s is defined as:
JvKs = s(v) (if v is a variable), JnKs = n (if n is an integer),
Je op e′Ks = JeKs op Je′Ks (where e, e′ are expressions and op is
a relational or arithmetic operator).

Finally, Π is called path condition, a first-order formula over
the symbolic inputs that accumulates constraints which the inputs
must satisfy in order to follow the corresponding path. The set of
first-order formulas and symbolic states are denoted by FOL and
SymStates, respectively. Given a transition system 〈Σ, I,−→, O〉
and a state υ ≡ 〈`, s,Π〉 ∈ SymStates, the symbolic execution of
`

op−−→ `′ returns another symbolic state υ′ defined as:

υ′ ,

 〈`
′, s,Π ∧ JcKs〉 if op ≡ assume(c) and

Π ∧ JcKs is satisfiable
〈`′, s[x 7→ JeKs],Π〉 if op ≡ x := e

(1)

Note that Equation (1) queries a constraint solver for satisfiability
checking on the path condition. We assume the solver is sound but
not necessarily complete. That is, the solver must say a formula is
unsatisfiable only if it is indeed so.

Abusing notation, given a symbolic state υ ≡ 〈`, s,Π〉we define
JυK : SymStates → FOL as the formula (

∧
v ∈ Vars JvKs) ∧ Π

where Vars is the set of program variables.
A symbolic path π ≡ υ0 · υ1 · ... · υn is a sequence of symbolic

states such that ∀i•1 ≤ i ≤ n the state υi is a successor of υi−1. A
symbolic state υ′ ≡ 〈`′, ·, ·〉 is a successor of another υ ≡ 〈`, ·, ·〉 if
there exists a transition relation `

op−−→ `′. A path π ≡ υ0 ·υ1 ·...·υn
is feasible if υn ≡ 〈`, s,Π〉 such that JΠKs is satisfiable. If ` ∈ O
and υn is feasible then υn is called terminal state. Otherwise, if
JΠKs is unsatisfiable the path is called infeasible and υn is called
an infeasible state. If there exists a feasible path π ≡ υ0 ·υ1 · ... ·υn
then we say υk (0 ≤ k ≤ n) is reachable from υ0 in k steps.

We also define a (partial) function MergePoint : SymStates →
SymStates × SymStates that, given a symbolic state υ ≡ 〈`, ·, ·〉 if
there is an assume statement at υ (i.e., ` corresponds to a branch
point), returns a tuple 〈υ1 ≡ 〈`′, ·, ·〉, υ2 ≡ 〈`′, ·, ·〉〉 such υ1 and
υ2 are reachable from υ, and `′ is the nearest post-dominator of

`. In other words, υ1 and υ2 are the symbolic states at the merge
point reached through the “then” and “else” body respectively.

A symbolic execution tree contains all the execution paths ex-
plored during the symbolic execution of a transition system by trig-
gering Equation (1). The nodes represent symbolic states and the
arcs represent transitions between states.

Dependency computation via Abstract Interpretation. The back-
ward dependency computation process starts from `end with a set of
“target variables” V ⊆ Vars, for which the program transformation
is being performed. To compute the dependencies, we follow the
dataflow approach described by Weiser [23] reformulated as an ab-
stract domainD ≡ {⊥}∪P (Vars) (whereP (Vars) is the powerset
of program variables) with a lattice structure 〈v,⊥,t,u,>〉, such
that v≡⊆, t ≡ ∪, and u ≡ ∩ are conveniently lifted to consider
the element ⊥.

We say συ ∈ D is the approximate set of variables at the sym-
bolic state υ that may affect variables in V . Backward data de-
pendencies can then be formulated as follows. Given a transition
relation υ

op−−→ υ′ we define def (op) and use(op) as the sets of vari-
ables written to and read during the execution of op, respectively.
Then,

συ ,

{
(συ′ \ def(op)) ∪ use(op) if συ′ ∩ def(op) 6= ∅
συ′ otherwise (2)

where συ′ = V if υ′ ≡ 〈`end, ·, ·〉. In the first case of Eqn. 2, we
say that υ

op−−→ υ′ is “included in the slice”.

Backward control dependencies can also affect variables in V . A
transition relation δ ≡ υ

op−−→ υ′ where op ≡ assume(c) is in-
cluded in the slice if any transition relation from δ to its nearest
post-dominator is included in the slice3. Then,

συ , συ′ ∪ use(op) (3)

Finally, a function p̂re(συ′ , op) that returns the pre-state συ after
executing backwards the operation op with the post-state συ′ is
defined using Eqs. (2,3).

Tree transformation rules. The SE tree produced by our algo-
rithm, together with the dependency information of each symbolic
state, is represented using the set S of facts of the following types:

• edge(υ
op−−→ υ′), denoting a feasible edge from υ to υ′

• inf_edge(υ
op−−→ υ′), denoting an infeasible edge from υ to

υ′

• merged(υ, υ′), denoting that υ has been merged with υ′

(will be formalised later)

• in_slice(υ
op−−→ υ′), denoting that the transition from υ to υ′

is included in the slice due to Eqs. 2,3.

Note that we do not explicitly store the dependency information
at each state, but rather just the fact whether a transition from the
state is included in the slice or not (denoted by the in_slice fact).
In Section 5.2, the transformation of the SE tree into the final PSS-
CFG will be modelled using certain rules that act upon these facts.

3We assume a function INFL (δ) that returns the set of transitions
from δ to its nearest post-dominator – the set of transitions “influ-
enced” by δ.



5. ALGORITHM
We describe our algorithm in two phases: in phase one (Sec-

tion 5.1), we explore symbolic paths in the program to generate
the symbolic execution (SE) tree annotated with dependencies. In
phase two (Section 5.2), we transform this tree by removing edges
and sub-trees, to finally produce the PSS-CFG.

At a high level, our algorithm performs forward symbolic execu-
tion in a depth-first manner interleaved with backward dependency
computation. Symbolic execution avoids the exploration of infeasi-
ble paths, thus increasing the precision of the computed dependen-
cies. However, it allows multiple copies of the same program point
to exist as different symbolic states, along different symbolic paths.
Thus an important challenge to overcome is to avoid this inherent
exponential blowup of symbolic execution.

Our solution is to merge different symbolic states provided cer-
tain conditions are met. These “merging conditions” guarantee that
the merge does not incur any loss of slicing information. To for-
malise these conditions, we define two key concepts:

DEFINITION 1 (INTERPOLANT). Given a pair of first order
logic formulasA andB such thatA∧B is false, an interpolant [7]
is another formula Ψ such that (a) A |= Ψ, (b) Ψ∧B is false, and
(c) Ψ is formed using common variables of A and B.

Interpolation has been prominently used to reduce state space blowup
in program verification [20, 16] and testing [13]. Here we use it for
a similar purpose – to merge states and thereby avoid redundant
exploration. However, in addition to merging states, we must also
guarantee lossless merging. Thus, we define:

DEFINITION 2 (WITNESS PATHS & FORMULAS). Given a sym-
bolic state υ ≡ 〈`, ·, ·〉 annotated with the set of dependency vari-
ables συ , a witness path for a variable v ∈ συ is a feasible sym-
bolic path π ≡ υ · ... · υend such that υend ≡ 〈`end, ·, ·〉 and there
exists v1 ∈ V such that v1 is control- or data-dependent on v along
the path π. We call JυendK the witness formula of v, denoted ωv .

Intuitively, a witness path for a dependency variable at a symbolic
state is a path arising from it along which the dependency variable
affects the target variables at the end. The witness formula is the
path condition of its witness path.

To accommodate witness formulas in our abstract domain D we
redefine it as follows: D , {⊥}∪P (Vars× FOL), i.e., set of pairs
of the form 〈x, ωx〉 where x is a variable and ωx is its witness for-
mula. The abstract operations t and v still stand for ∪ and ⊆,
but the pre-operator p̂re is slightly modified to propagate back wit-
ness formulas: the dependency variable x is still computed using
Eqs. 2,3 as before, while the pre-state witness formula for x is the
computed as the conjunction of the post-state witness formula for
x with the logical constraint from the transition operation op. We
now formalise our merging conditions:

DEFINITION 3 (MERGING CONDITIONS). Given a current sym-
bolic state υ ≡ 〈`, s,Π〉 and an already annotated symbolic state
υ′ ≡ 〈`, s′,Π′〉 such that Ψυ′ is the interpolant generated for υ′

and συ′ are the dependencies at υ′, we say υ is merged with υ′ if
the following conditions hold:

(a) JυK |= Ψυ′

(b) ∀〈x, ·〉 ∈ συ′• ∃〈x, ωx〉 ∈ συ′ s.t
JυK ∧ ωx is satisfiable

(4)

Note importantly that both υ and υ′ must correspond to the same
program point ` in order to be merged. The condition (a) affects

soundness and it ensures that the set of feasible symbolic paths
reachable from υ is a subset of those from υ′. This is a necessary
condition for two states to be merged.

LEMMA 1. Given states υ ≡ 〈`, s,Π〉 and υ′ ≡ 〈`, s′,Π′〉, let
Ψυ′ be the interpolant for υ′. If JυK |= Ψυ′ , the set of feasible
paths from υ is a subset of those from υ′.
PROOF. (By contradiction). Assume there exists a feasible path π,
with path condition Ππ , from υ but π is infeasible from υ′. If π is
infeasible from υ′ then Jυ′K∧Ππ is unsatisfiable, and by definition
of interpolant, Ψυ′ ∧ Ππ is unsatisfiable. Since JυK |= Ψυ′ , it
follows that JυK∧Ππ is unsatisfiable. However, since π is feasible
from υ, JυK ∧Ππ cannot be unsatisfiable.

The intuition is that the interpolant Ψυ′ represents the reason of
infeasibility of all infeasible paths arising from υ′. If JυK |= Ψυ′ ,
any infeasible path under υ′ is also infeasible under υ. In other
words, any feasible path under υ is also feasible under υ′.

The condition (b) is the witness check which essentially states
that for each variable x in the dependency set at υ′, there must be
at least one witness path with formula ωx that is feasible from υ.
This affects accuracy and ensures that the merging of two states
does not incur any loss of precision. This is formalised as follows.

THEOREM 1. Given states υ ≡ 〈`, s,Π〉 and υ′ ≡ 〈`, s′,Π′〉,
let συ′ be the dependencies and witness formulas associated with
υ′. If υ can be merged with υ′ then by exploring υ there cannot be
produced a set of dependencies συ such that συ 6= συ′ .
PROOF. Assume that although υ can be merged with υ′ (i.e., both
conditions of Eqn. 4 are satisfied), it is instead symbolically ex-
plored and a dependency set συ is obtained.

Proof that συ′ ⊆ συ: Since υ can be merged with υ′, by con-
dition (b) of Eqn. 4, ∀〈x, ·〉 ∈ συ′ , there is a witness path, say πx,
with formula ωx such that JυK ∧ ωx is satisfiable. That is, πx is
feasible from υ. By the definition of a witness path (Definition 2),
∃v1 ∈ V s.t v1 is control- or data-dependent on x along the path
πx, which is feasible from υ. Therefore x must be in συ .

Proof that συ ⊆ συ′ : (by contradiction) Assume ∃x ∈ συ s.t
x /∈ συ′ . Then, the witness path for x, πx with formula ωx must
be such that JυK ∧ ωx is satisfiable but Jυ′K ∧ ωx is unsatisfiable
(otherwise from the definition of a witness path, x would have been
included in συ′ ). That is, πx is feasible from υ but infeasible from
υ′. From Eqn. 4 condition (a) and Lemma 1, this is impossible.

5.1 Generating the SE Tree Structure with De-
pendencies

The purpose of our main algorithm, GENPSSCFG (Fig. 2), is
to generate a finite symbolic execution tree annotated with depen-
dency information at each symbolic state. As mentioned in Sec-
tion 4, the tree is represented using a set of facts that are added
to the set S, which is assumed to be a global variable to the al-
gorithm. GENPSSCFG requires the program to have been trans-
lated to a transition system 〈Σ, I,−→, O〉 in SSA form, and ac-
cepts a symbolic state as argument. It is initiated with the state
υ ≡ 〈`start, ε, true〉. GENPSSCFG implements a mutually recur-
sive algorithm with a few other procedures.

First, the most important decision of whether to merge a sym-
bolic state with another is taken by GENPSSCFG at line 1. It at-
tempts to find another symbolic state υ′ such that υ and υ′ satisfy
the two merging conditions in Equation 4. If yes, it merges υ with
υ′ by calling the procedure MERGE at line 2. If such a υ′ does
not exist, GENPSSCFG decides whether to split the symbolic ex-
ecution of υ or not by checking if υ corresponds to a branching



GENPSSCFG (υ ≡ 〈`, s,Π〉)
1: if ∃ υ′ ≡ 〈`, s′,Π′〉 s.t. υ and υ′ satisfy Eqn. 4
2: then MERGE (υ, υ′)
3: else if υ is at a branch point then
4: SPLIT(υ)
5: else
6: SYMEXEC (υ)

MERGE (υ, υ′)
1: Ψυ := Ψυ′

2: συ := συ′

3: S:=S ∪merged(υ, υ′)

SPLIT (υ ≡ 〈`, s,Π〉)
1: Ψυ := true

2: foreach transition `
assume(c)−−−−−−→ `′ do

3: if (υ is a loop header) then
4: υ′ , 〈`′, ·, invariant(υ) ∧ JcKs〉
5: else
6: υ′ , 〈`′, s,Π ∧ JcKs〉
7: if υ′ is infeasible state then
8: S:=S ∪ inf_edge(υ

assume(c)−−−−−−→ υ′)
9: Ψυ′ := false, συ′ := ∅
10: else
11: S:=S ∪ edge(υ

assume(c)−−−−−−→ υ′)
12: GENPSSCFG (υ′)
13: Ψυ := Ψυ ∧ ŵlp (Ψυ′ , assume(c))
14: συ := συ t p̂re (συ′ , assume(c), s)

15: if δ ≡ υ assume(c)−−−−−−→ υ′ satisfies Eqn. 3 then
16: S:=S ∪ in_slice(υ

assume(c)−−−−−−→ υ′)

SYMEXEC (υ ≡ 〈`, s,Π〉)
1: if @ transition relation ` x:=e−−→ `′ then
2: Ψυ :=true, συ := V
3: else
4: υ′ , 〈`′, s[x 7→ JeKs],Π〉
5: S:=S ∪ edge(υ

x:=e−−→ υ′)
6: if υ′ is not a loop header
7: GENPSSCFG (υ′)
8: Ψυ := ŵlp (Ψυ′ , x:=e)
9: συ := p̂re (συ′ , x:=e)
10: if υ x:=e−−→ υ′ satisfies Eqn. 2 then
11: S:=S ∪ in_slice(υ

x:=e−−→ υ′)

Figure 2: Symbolic execution interleaved with dependency computation to produce the SE tree

point in the program (line 3). If yes it calls the procedure SPLIT
at line 4 which, as we will see, forks the symbolic execution of
different branches from υ. If both the above cases do not match,
GENPSSCFG simply continues the symbolic execution by calling
the procedure SYMEXEC with υ. GENPSSCFG is in essence the
high level backbone of our method.

The procedure MERGE, given a current symbolic state υ and an
already explored state υ′, merges the former with the latter by set-
ting the interpolant and dependency set of υ to those of υ′. Recall
that Theorem 1 guaranteed such a merge to have no loss of preci-
sion. That is, had υ been explored instead of being merged with υ′,
the resulting dependency set at υ would be exactly συ′ . Finally the
procedure adds the fact merged(υ, υ′) to S to record the merge
between the two states.

The procedure SPLIT is used to fork the symbolic execution of
a state from which multiple transitions are possible (typically a
branch point). Given a symbolic state υ with program point ` and
path condition Π, it first initialises its interpolant Ψυ to true at
line 1. At line 2 it iterates its main body over each transition pos-
sible from υ. Now there is an issue: if the current state is a loop
header (line 4), then symbolically executing the loop could result
in an unbounded tree, which we want to avoid. Therefore, we need
to execute the loop with a loop invariant to make the tree finite.

Our method to compute a loop invariant is simple but effective:
from the loop header’s symbolic state υ, we only keep the con-
straints that are unchanged through the loop, and delete the rest.
For instance, if x > 5 holds at the loop header and x is only incre-
mented in the loop, then x > 5 is unchanged through the loop. This
widened state at υ ultimately forms a loop invariant. This technique
provides a balance between getting the strongest invariant – which

is needed to maximise path-sensitivity – and efficiency. We found
experimentally that this technique preserves most of the important
information through the loop. Nevertheless, we remind the reader
that no matter what the invariant is, it does not affect the guaran-
tee of lossless-ness of dependency information during our merging,
and the correctness of our transformation as stated by Theorem 2.

We assume a function invariant that given a symbolic state υ,
returns a FOL formula representing the loop invariant. With this
invariant, the next state is constructed by augmenting it with JcKs
where c is the branching condition of the assume statement (line 4).
If not, υ′ is constructed (line 6) by augmenting the path condition
Π with JcKs. At line 7 an important check is performed: if υ′ is an
infeasible state (i.e., the augmented path condition is unsatisfiable),
it means symbolic execution has encountered an infeasible path.
Therefore it adds to S the fact that the transition from υ to υ′ is
infeasible (line 8), and sets the interpolant and dependency set of
υ′ to false and ∅ respectively (line 9) to signify that the state is
unreachable. Otherwise it adds a normal edge to S at line 11 and
(mutually) recursively calls GENPSSCFG with υ′.

In either case, υ′ would have been annotated with an interpolant
Ψυ′ and dependency set συ′ . Now it computes the same informa-
tion for υ at lines 13-14. The interpolant Ψυ is supposed to gen-
eralise the SE tree below υ while preserving its infeasible paths.
For this, the procedure ŵlp : FOL × Ops → FOL is called that
ideally computes the weakest liberal precondition [9], the weakest
formula on the initial state ensuring the execution of assume(c)
results in the state Ψυ′ . In practice we approximate wlp by making
a linear number of calls to a theorem prover following techniques
described in [16], usually resulting in a formula stronger than the
weakest liberal precondition. The dependency set συ is computed



RULE 1 (STRAIGHT LINE SLICING)

E1 ≡ edge(υ0
op−−→ υ1) ∈ S E2 ≡ edge(υ1

x:=e−−→ υ2) ∈ S in_slice(υ1
x:=e−−→ υ2) /∈ S

S:=S \ {E1, E2} ∪ {edge(υ0
op−−→ υ2)}

RULE 2 (INFEASIBLE PATH REMOVAL)

E1 ≡ edge(υ0
op−−→ υ1) ∈ S E2 ≡ edge(υ1

assume(c1)−−−−−−→ υ2) ∈ S E3 ≡ inf_edge(υ1
assume(c2)−−−−−−→ υ3) ∈ S

S:=S \ {E1, E2, E3} ∪ {edge(υ0
op−−→ υ2)}

RULE 3 (TREE SLICING)

edge(υ0
op−−→ υ1) ∈ S edge(υ1

assume(c1)−−−−−−→ υ2) ∈ S edge(υ1
assume(c2)−−−−−−→ υ3) ∈ S υ2 6= υ3

in_slice(υ1
assume(c1)−−−−−−→ υ2) /∈ S in_slice(υ1

assume(c2)−−−−−−→ υ3) /∈ S 〈υk, υ′k〉 ≡ MergePoint(υ1) merged(υk, υ
′
k) ∈ S

S:=S \ {edge(υ′
op−−→ υ′′) | υ′ op−−→ υ′′ ∈ INFL(υ1

assume(c1)−−−−−−→ υ2) ∨ υ′ op−−→ υ′′ ∈ INFL(υ1
assume(c2)−−−−−−→ υ3)} ∪ {edge(υ0

op−−→ υk)}

Figure 3: Transformation rules to produce the final PSS-CFG

by applying the pre-operation p̂re on συ′ and joining with any ex-
isting set (across different iterations of the main loop).

Finally, in lines 15-16 of SPLIT, it checks if any transition from
δ to its nearest postdominator is included in the slice (Eqn. 3). If
yes, it adds an in_slice fact to S with the transition from υ to υ′.

The final procedure SYMEXEC is called by GENPSSCFG when
the current symbolic state υ corresponding to program point ` can-
not split (typically an assignment statement). Initially, at line 1, it
checks if there exists a program transition from ` to any other `′.
If not, symbolic execution has reached the end of a (feasible) path
whose final state is υ. In other words, it has reached a terminal
node. Hence it sets the interpolant Ψυ to true and its dependency
set συ to V (recall that the target variables are specified at `end) at
line 2.

If there exists a transition from ` to say `′ with the assignment
x:=e, it constructs the next symbolic state (line 4) υ′ by setting in
the store s the value of x to JeKs and adds to S the appropriate
edge fact (line 5). Then, if υ′ is not a loop header, it recursively
calls GENPSSCFG with υ′ (line 7). If υ′ is a loop header, then
there is no need to explore it again since it would have already been
explored with the loop invariant (at SPLIT line 4). Our algorithm
thus makes the symbolic execution finite. In SYMEXEC line 8 and
9, it sets the interpolant (and dependency set) of υ by calling ŵlp
(and p̂re) on the interpolant (and dependency set) of υ′. Finally, at
lines 10-11, if x contains a variable in συ′ (Eqn. 2) it adds to S the
fact that the transition from υ to υ′ is included in the slice.

To perform the fixpoint computation at the highest level, we keep
making calls to GENPSSCFG until there is no change in S. This is
the simplest way to describe the fixpoint computation but in prac-
tice we can optimise it by calling GENPSSCFG with the symbolic
state of the loop header in which the change was detected.

5.2 Transformation of the Annotated SE Tree
The algorithm described so far produces a symbolic execution

tree represented as a set of facts S. Now we present certain rules
in Fig. 3 that act upon S to modify it, in essence modelling the
transformation of the SE tree into the final PSS-CFG. The rules
are presented in a declarative fashion and can be implemented con-
veniently in a rule-based programming language (e.g., Constraint
Handling Rules).

STRAIGHT LINE SLICING states that if there is a transition (or
edge) from state υ0 to υ1 and an assignment transition from υ1

to υ2 such that the latter is not included in the slice, then both tran-

sitions can be removed and replaced with one linking υ0 directly to
υ2. This is the typical rule for slicing assignment statements using
dependencies.

INFEASIBLE PATH REMOVAL states that if there is a transition from
state υ0 to υ1, and υ1 is a branch point such that there is branch-
ing edge (edge) from υ1 to υ2 and an infeasible branching edge
(inf_edge) from υ1 to another υ3, then all three edges can be re-
moved and υ0 can be directly linked to the feasible state υ2.

TREE SLICING is more complicated and the most powerful in terms
of reducing the symbolic state space of the PSS-CFG. It states that
if there is a transition from υ0 to υ1, and υ1 is a branching point
with branching transitions to υ2 (with condition assume(c1)) and
υ3 (with condition assume(c2)) such that neither transition is in-
cluded in the slice, then we can remove all transitions υ′

op−−→ υ′′

that occur either in the dynamic range of influence (given by INFL)
of υ1 −−→ υ2 or υ1 −−→ υ3. In other words, we can remove all
transitions that occur in the “then” or “else” body of the branch at
υ1. But there is a problem: since we are working on a symbolic
tree, removing the branch point υ1 would conceptually leave two
different subtrees “hanging” without a parent. The question arises
as to which subtree should we link to the node υ0. TREE SLIC-
ING guarantees that if the symbolic states at the end of the branch
〈υk, υ′k〉 (as returned by MergePoint(υ1)) are merged by our al-
gorithm (i.e., merged(υk, υ

′
k) exists), the differences in the trees

do not affect the target variables. Hence it simply adds a transition
directly linking υ0 to one of the symbolic states υk.

We explain the reasoning behind the above rules by defining our
correctness statement for the transformation of the SE tree into the
PSS-CFG and providing a proof outline for it. First let two CFGs
be defined equivalent wrt target variables V if for any input, the
programs corresponding to both CFGs produce the same values for
all variables in V .

THEOREM 2. (Correctness of transformation) An application
of RULE 1, RULE 2 or RULE 3 to a CFGG produces a transformed
CFG G′ such that G′ is equivalent to G wrt target variables V .

PROOF OUTLINE. The correctness of STRAIGHT LINE SLICING
follows directly from the correctness of slicing assignment state-
ments using dependency information, formalised in Eqn. 2. As for
INFEASIBLE PATH REMOVAL, for any input that executes a path
in G leading to the state υ1, the condition c1 will evaluate to true



Benchmark Lines of code Blow PSS #Rule Triggers
Orig St.slice PSS up Time Rul1 Rul2 Rul3

cdaudio 1817 1599 4452 2.78 24s 2685 1101 169
diskperf 937 706 2967 4.20 18s 1594 1132 73
floppy 1005 766 2086 2.72 7s 1062 651 99
floppy2 1513 1250 3507 2.81 16s 1514 819 120
kbfiltr 549 275 170 0.62 1s 111 46 7
kbfiltr2 782 492 410 0.83 1s 249 69 23
tcas 286 227 311 1.37 2s 138 204 47

Testing Time Speed #Solver calls
St.slice PSS up St.slice PSS

1m30s 43s 2.1 16k 7k
900m 34m 26.5 26mil 1mil
9m6s 24s 22.8 260k 4k
525m 429m 1.2 613k 479k

2s 1s 2 63 52
22s 6s 3.7 7k 2k

4s 1s 4 1.5k 188
23h56m 7h44m 3.1 26.9mil 1.5mil

(a) (b)

Table 1: (a) Statistics about the PSS-CFG (b) Experiments on the PSS-CFG for concolic testing

and c2 will evaluate to false. Moreover, an assume statement does
not modify any variable in the program state. Thus, both checks
assume(c1) and assume(c2) are useless because we determin-
istically know their outcomes, and hence can be replaced with a
transition linking υ0 to the next feasible state υ2 to produce G′.

The correctness proof of TREE SLICING is as follows. Assume
that some input executes a path in G starting from υstart to υ0 and
then reaches υ1. W.l.o.g, assume that the condition c1 holds at υ1,
therefore it chooses to follow υ2, reaches the merged point υk and
continues to eventually reach the terminal state υend. Let us call this
executed path πG. In G′, obtained by applying TREE SLICING on
G, thereby removing the entire branch at υ1, the same input would
follow a path, say πG′ , such that πG′ is the exact same path as πG
starting from υstart till υ0, thus having the same symbolic state at
υ0. At this point, πG′ differs from πG by implicitly “skipping” the
execution of the branch at υ1 and instead directly reaches υk.

Since υk and υ′k were merged, the dependency sets at both points

are the same. Now, since the transition υ1
assume(c1)−−−−−−→ υ2 in G was

not included in the slice, it means that no statement “skipped” by
πG′ affected the dependency information at υk. This implies that
the symbolic state of the path πG′ at υk is the same as the sym-
bolic state of the path πG at υk as far as the dependency variables
at υk are concerned. To be precise, the values of the dependency
variables at υk are the same in both πG and πG′ . Since these are
the only variables affecting the target variables V at υend, it is suf-
ficient to preserve their values to ensure that πG′ will produce the
same values for V as πG. Of course πG′ may produce different
values than πG for variables not in V , but we are not interested in
those variables.

The three rules are applied until fixpoint is reached (i.e., none of
them can be applied anymore). Termination of rule applications is
guaranteed from the initial finiteness of the set S and the fact that
all three rules remove more edges from S than they add. Sound-
ness of individual rule applications is guaranteed from Theorem 2.
Transitiveness of the rules is also guaranteed by Theorem 2 since
each new CFG is equivalent to the previous CFG. Once fixpoint is
reached, the final PSS-CFG structure can be extracted from S.

Thus, Theorem 2 guarantees that the PSS-CFG is equivalent to
the original program wrt the target variables V . Therefore, any
analysis of the original program concerned only with V can be ap-
plied on the PSS-CFG instead to take advantage of its benefits. We
will see two such applications: program testing and verification.

6. EXPERIMENTAL EVALUATION
We evaluate the PSS-CFG using applications of program testing

and verification to show considerable increase in their performance.

We implemented the algorithm on the TRACER [14] framework for
symbolic execution. Our proof-of-concept implementation models
the heap as an array. A flow-insensitive pointer analysis provided
by Crystal [22] is used to partition updates and reads into alias
classes where each class is modelled by a different array. Given
the statement *p=*q the set def contains everything that might be
pointed to by p and the set use includes everything that might be
pointed to by q. This coarse modelling of heaps does introduce im-
precision in the analysis, but it is orthogonal to our main contribu-
tion. Functions are inlined during symbolic execution and external
functions are modelled as having no side effects and returning an
unknown value.

We used device drivers from the ntdrivers-simplified category
of SV-COMP 2013 [4] and a traffic collision avoidance program
called tcas as benchmarks, and chose the target variables from the
safety properties of the programs. All programs had multiple target
safety properties on several variables, all of which were included
in our slicing criteria. For practically applying external tools on the
PSS-CFG structure, we used its equivalent decompiled program.
Since both the original and decompiled programs are in C, we can
easily measure how external tools benefit from our transformation.

For all our experiments we compare the PSS-CFG4 with a static
slice of the benchmark program on the target variables. Comparing
with a static slice is more challenging as some statements would
have already been sliced away from the original program. We ob-
tained the static slice through the well-known state-of-the-art slicer
Frama-C [8, 1]. Frama-C is a path-sensitive static slicer that can
detect infeasible paths through techniques such as constant prop-
agation, constant folding and abstract interpretation. Also, before
the target variables are provided and our algorithm is initiated, we
process the program and store an intermediate representation (IR).
This processing involves computing information about infeasible
paths in the program and is completely independent of the target
variables. Then, when the target variables are provided, our algo-
rithm is invoked and it uses information from this IR. All experi-
ments were run on an Intel 3.2 Ghz system with 2GB memory.

Now, we provide statistics about the PSS-CFG and its construc-
tion in Table 1(a). The Lines of code column shows the number
of non-commented lines of code in the original (Orig) program, its
static slice (St.slice) and its decompiled program (PSS) respec-
tively. In the column Blowup we show the ratio of the LOC of
PSS-CFG compared to the static slice. The blowup is a result of the
balance between the splits introduced by path-sensitivity, and the
merges and slicing from our algorithm. It is clear that the blowup
is manageable, sometimes even smaller than the program, being
on average around 2. In the column PSS Time we show the time

4We use “decompiled program” and “PSS-CFG” interchangeably.



IMPACT ARMC CPA-CHECKER

Benchmark

cdaudio
diskperf
floppy
floppy2
kbfiltr
kbfiltr2
tcas
Total

Verification Time Speed
St.Slice PSS up

95s 14s 6.8
146s 18s 8.1

34s 8s 4.3
39s 13s 3.0

4s 1s 4.0
8s 2s 4.0
3s 1s 3.0

329s 57s 5.8

Verification Time Speed
St.Slice PSS up

T/O 21s N/A
T/O 6s N/A

259s 6s 43.17
T/O 17s N/A

3s 1s 3.00
13s 2s 6.50

3s 1s 3.00
T/O 54s N/A

Verification Time Speed
St.Slice PSS up

26s 14s 1.86
7s 6s 1.17
6s 5s 1.20

10s 8s 1.25
3s 2s 1.50
4s 2s 2.00
2s 1s 2.00

58s 38s 1.53
(a) (b) (c)

Table 2: Experiments on the quality of PSS-CFG for verification times of different verifiers

taken in seconds for our algorithm to produce the PSS-CFG given
the target variables, which is modest. In the final column #Rule
Triggers we show the number of times each transformation rule
was triggered during PSS-CFG construction. Although RULE 3
is shown to be triggered fewer number of times than RULE 1 or
RULE 2, it is the most powerful rule in reducing the search space
of the PSS-CFG. In tcas we see RULE 2 triggering more frequently
than RULE1 due to its large number of infeasible paths.

Note that the PSS-CFG construction is only performed once for
a given set of target variables. The resulting program can however
be subjected to an innumerable number of properties to be verified
or tested. For example, using the same PSS-CFG, one can verify
different bounds on a target variable depending on different pre-
conditions to the program.

6.1 Testing (white-box)
We consider software testing an important application for the

PSS-CFG to be used. For this, we consider the typical DART [10]
methodology that performs concolic testing, i.e., executing the pro-
gram with both concrete and symbolic inputs and symbolically
negating branches to explore new paths. We chose the publicly
available concolic tester CREST, an implementation of DART for C
programs. Since the statically sliced and decompiled programs are
in C, the experiment was simply to run the concolic testing process
on both programs and measure the time taken to complete, i.e., time
taken to test all feasible paths in the program.

In Table 1(b), we show the measures of the experiment. The sec-
ond and third columns (St.slice and PSS) show the time taken to
complete the concolic testing process on the statically sliced and
decompiled programs respectively. The third column shows the
Speedup obtained by using the PSS-CFG, i.e., the ratio of the
columns St.slice and PSS. It is immediately apparent that the PSS-
CFG provides speedup in all benchmarks. In programs diskperf
and floppy the speedup is exceptionally high around 22-26, re-
ducing the concolic testing time from, for instance, 900 minutes
(15 hours) to just 34 minutes. On the other hand, in floppy2 the
speedup of 1.2 is not that high, but still the absolute benefit in time
can be seen – around 96 minutes or 1.5 hours. Ultimately, the to-
tal time taken for concolic testing to run on all our statically sliced
programs was almost 24 hours, whereas it took less than 8 hours
to run on the decompiled programs, providing a net benefit in time
of a magnitude of 3.1. Although it is understood that in practice
concolic testing may not terminate by exploring all paths, we gave
a huge timeout (24 hours) for the process to terminate simply to see
how much benefit the PSS-CFG can provide in timing. From the
table, it is clear that the PSS-CFG can make the difference between
termination and timing-out of the concolic testing process.

In addition to time, we also measured the number of calls made
by CREST to its underlying solver. This measure, shown in the col-
umn #Solver calls, gives an idea of how the PSS-CFG would still
benefit the concolic tester even if a different, faster solver was used.
Again we see several magnitudes of less solver calls for all bench-
marks when CREST was run on the PSS-CFG. The maximum bene-
fit is in diskperf where 26 million calls were made for the statically
sliced program, compared to only 1 million for the decompiled pro-
gram. This is in-line with the speedup in time for diskperf, around
26. This indicates that even if a faster solver is used, the relative
speedup in time for this benchmark would still be around 26, al-
though the absolute timings may be faster. Ultimately, this table
shows that concolic testing would definitely benefit by using the
PSS-CFG instead of the statically sliced program.

6.2 Verification
Another important application for the PSS-CFG is program veri-

fication. In Table 2 we compare the verification times of the bench-
marks across three different state-of-the-art verifiers: IMPACT [19],
ARMC [21] and CPA-CHECKER [5]. We chose this set of veri-
fiers because they come from different approaches to verification –
interpolant-based, CEGAR-based and SMT-based. Since IMPACT is
not publicly available, we use CPA-CHECKER’s implementation of
the IMPACT algorithm. In each table, the second and third columns
show the verification time (in seconds) of the statically sliced pro-
gram (St.Slice) and the PSS-CFG (PSS), respectively. In the third
column Speedup, we show the ratio of St.slice to PSS.

For all three verifiers, it can be clearly seen that the PSS-CFG is
verified in a much faster time than the static slice. For IMPACT, ver-
ifying all statically sliced programs in our suite took 329 seconds
whereas verifying the respective PSS-CFGs took only 57 seconds.
Thus, the speedup across all programs on aggregate is 5.8. As for
ARMC, it was unable to terminate its verification of the statically
sliced programs for cdaudio, diskperf and floppy2 with a time-
out of 10 minutes, whereas it was able to verify each of their re-
spective PSS-CFGs in less than 30 seconds, thus providing a huge
benefit to ARMC. For CPA-CHECKER, the benefit was relatively
smaller, providing on average a speedup of 1.5. The reason is be-
cause CPA-CHECKER is a more sophisticated verifier than the other
two, but still the fact that the PSS-CFG provides a speedup for CPA-
CHECKER is to be considered noteworthy. Thus, we believe that the
PSS-CFG is quite a useful object in general for verification.
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