Introduction to Information Retrieval http://informationretrieval.org

IIR 6: Scoring, Term Weighting, The Vector Space Model

Hinrich Schütze

Institute for Natural Language Processing, Universität Stuttgart

2008.05.20

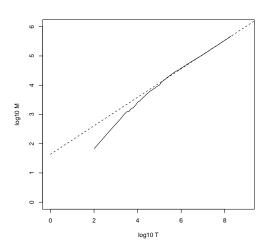
Overview

- Recap
- 2 Term frequency
- 3 tf-idf weighting
- 4 The vector space

Outline

- Recap
- 2 Term frequency
- 3 tf-idf weighting
- 4 The vector space

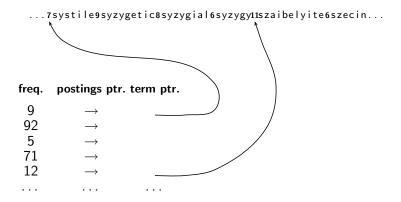
Heaps' law



Vocabulary size M as a function of collection size T (number of tokens) for Reuters-RCV1. For these data, the dashed line $\log_{10} M = 0.49 * \log_{10} T + 1.64$ is the best least squares fit. Thus, $M = 10^{1.64} T^{0.49}$ and $k = 10^{1.64} \approx 44$ and b = 0.49.

- Zipf's law: The ith most frequent term has frequency proportional to 1/i.
- cf_i $\propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has $cf_1/2$ occurrences, ...
- \bullet ... the third most frequent term (and) has ${\rm cf_1/3}$ occurrences etc.
- About half of all vocabulary terms occur only once in the collection. (hapax legomena)
- Zipf's law is an example of a power law.

Dictionary as a string with blocking



Variable byte (VB) code

- Dedicate 1 bit (high bit) to be a continuation bit c.
- If the gap G fits within 7 bits, binary-encode it in the 7 available bits and set c = 1.
- Else: set c = 0, encode high-order 7 bits and then use one or more additional bytes to encode the lower order bits using the same algorithm.

Gamma codes for gap encoding

- You can get even more compression with bitlevel code.
- Gamma code is the best known of these.
- Represent a gap G as a pair of length and offset.
- Offset is the gap in binary, with the leading bit chopped off.
- For example $13 \rightarrow 1101 \rightarrow 101$
- Length is the length of offset.
- For 13 (offset 101), this is 3.
- Encode length in unary code: 1110.
- Gamma code of 13 is the concatenation of length and offset: 1110101.

Outline

- 1 Recap
- 2 Term frequency
- 3 tf-idf weighting
- 4 The vector space

• Thus far, our queries have all been Boolean.

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
- Most users are not capable of writing Boolean queries (or they are, but they think it's too much work).

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
- Most users are not capable of writing Boolean queries (or they are, but they think it's too much work).
- Most users don't want to wade through 1000s of results.

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the collection.
- Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
- Most users are not capable of writing Boolean queries (or they are, but they think it's too much work).
- Most users don't want to wade through 1000s of results.
- This is particularly true of web search.

 Boolean queries often result in either too few (=0) or too many (1000s) results.

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" \rightarrow 200,000 hits

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" → 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" → 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "standard user dlink 650" \rightarrow 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
- With a ranked list of documents it does not matter how large the retrieved set is.

 We wish to return in order the documents most likely to be useful to the searcher.

- We wish to return in order the documents most likely to be useful to the searcher.
- How can we rank-order the documents in the collection with respect to a query?

- We wish to return in order the documents most likely to be useful to the searcher.
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document

- We wish to return in order the documents most likely to be useful to the searcher.
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

• We need a way of assigning a score to a query/document pair.

- We need a way of assigning a score to a query/document pair.
- Let's start with a one-term query.

- We need a way of assigning a score to a query/document pair.
- Let's start with a one-term query.
- If the query term does not occur in the document: score should be 0.

- We need a way of assigning a score to a query/document pair.
- Let's start with a one-term query.
- If the query term does not occur in the document: score should be 0.
- The more frequent the query term in the document, the higher the score

- We need a way of assigning a score to a query/document pair.
- Let's start with a one-term query.
- If the query term does not occur in the document: score should be 0.
- The more frequent the query term in the document, the higher the score
- We will look at a number of alternatives for doing this.

 Recall from IIR 3: A commonly used measure of overlap of two sets

- Recall from IIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets

- Recall from IIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets.
- Jaccard coefficient:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- Recall from IIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

• JACCARD(A, A) = 1

- Recall from IIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- JACCARD(A, A) = 1
- JACCARD(A, B) = 0 if $A \cap B = 0$

Take 1: Jaccard coefficient

- Recall from IIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- JACCARD(A, A) = 1
- JACCARD(A, B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.

Take 1: Jaccard coefficient

- Recall from IIR 3: A commonly used measure of overlap of two sets
- Let A and B be two sets
- Jaccard coefficient:

$$JACCARD(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

- JACCARD(A, A) = 1
- JACCARD(A, B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

• What is the query-document match score that the Jaccard coefficient computes for:

- What is the query-document match score that the Jaccard coefficient computes for:
 - Query: "ides of March"

- What is the query-document match score that the Jaccard coefficient computes for:
 - Query: "ides of March"
 - Document "Caesar died in March"

- What is the query-document match score that the Jaccard coefficient computes for:
 - Query: "ides of March"
 - Document "Caesar died in March"
 - ?

• It doesn't consider term frequency (how many occurrences a term has).

- It doesn't consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard doesn't consider this information.

- It doesn't consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard doesn't consider this information.
- We need a more sophisticated way of normalizing for length.

- It doesn't consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard doesn't consider this information.
- We need a more sophisticated way of normalizing for length.
- Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$ (cosine) . . .

- It doesn't consider term frequency (how many occurrences a term has).
- Rare terms are more informative than frequent terms. Jaccard doesn't consider this information.
- We need a more sophisticated way of normalizing for length.
- Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$ (cosine) . . .
- ...instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization.

Recall: Binary incidence matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

. . .

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$.

Recall: Binary incidence matrix

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra						
Anthony	1	1	0	0	0	1	
Brutus	1	1	0	1	0	0	
Caesar	1	1	0	1	1	1	
Calpurnia	0	1	0	0	0	0	
CLEOPATRA	1	0	0	0	0	0	
MERCY	1	0	1	1	1	1	
WORSER	1	0	1	1	1	0	

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$.

From now on, we will use the frequencies of terms

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra		•				
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

. . .

Each document is represented by a count vector $\in \mathbb{N}^{|V|}$.

From now on, we will use the frequencies of terms

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra		•				
Anthony	157	73	0	0	0	1	
Brutus	4	157	0	2	0	0	
Caesar	232	227	0	2	1	0	
Calpurnia	0	10	0	0	0	0	
CLEOPATRA	57	0	0	0	0	0	
MERCY	2	0	3	8	5	8	
WORSER	2	0	1	1	1	5	

. . .

Each document is represented by a count vector $\in \mathbb{N}^{|V|}$.

• We do not consider the order of words in a document.

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.

- We do not consider the order of words in a document.
- John is quicker than Mary and Mary is quicker than John are represented the same way.
- This is called a bag of words model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

• The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.
- A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.
- A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.
- But not 10 times more relevant.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.
- A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.
- But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.
- A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.
- But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores.
- But how?
- Raw term frequency is not what we want.
- A document with 10 occurrences of the term is more relevant than a document with one occurrence of the term.
- But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

• The log frequency weight of term t in d is defined as follows

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathsf{tf}_{t,d} & \mathsf{if} \ \mathsf{tf}_{t,d} > 0 \\ 0 & \mathsf{otherwise} \end{array}
ight.$$

• The log frequency weight of term t in d is defined as follows

$$w_{t,d} = \left\{ \begin{array}{ll} 1 + \log_{10} tf_{t,d} & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

ullet 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, etc.

• The log frequency weight of term t in d is defined as follows

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{otherwise} \end{array}
ight.$$

- ullet 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, etc.
- Score for a document-query pair: sum over terms t in both q and d:

matching-score
$$=\sum_{t\in a\cap d}(1+\log \mathsf{tf}_{t,d})$$

• The log frequency weight of term t in d is defined as follows

$$\mathbf{w}_{t,d} = \left\{ egin{array}{ll} 1 + \log_{10} \mathrm{tf}_{t,d} & \mathrm{if} \ \mathrm{tf}_{t,d} > 0 \\ 0 & \mathrm{otherwise} \end{array}
ight.$$

- ullet 0 \rightarrow 0, 1 \rightarrow 1, 2 \rightarrow 1.3, 10 \rightarrow 2, 1000 \rightarrow 4, etc.
- Score for a document-query pair: sum over terms t in both q and d:

 matching-score = $\sum_{t \in q \cap d} (1 + \log \mathsf{tf}_{t,d})$
- The score is 0 if none of the query terms is present in the document.

Outline

- 1 Recap
- 2 Term frequency
- 3 tf-idf weighting
- 4 The vector space

Document frequency

• Rare terms are more informative than frequent terms.

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC)

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC)
 - A document containing this term is very likely to be relevant.

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC)
 - A document containing this term is very likely to be relevant.
 - → We want a high weight for rare terms like ARACHNOCENTRIC.

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC)
 - A document containing this term is very likely to be relevant.
 - ullet \to We want a high weight for rare terms like ARACHNOCENTRIC.
- Consider a term in the query that is frequent in the collection (e.g., HIGH, INCREASE, LINE)

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC)
 - A document containing this term is very likely to be relevant.
 - \bullet \rightarrow We want a high weight for rare terms like ARACHNOCENTRIC.
- Consider a term in the query that is frequent in the collection (e.g., HIGH, INCREASE, LINE)
 - A document containing this term is more likely to be relevant than a document that doesn't, but it's not a sure indicator of relevance.

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC)
 - A document containing this term is very likely to be relevant.
 - → We want a high weight for rare terms like ARACHNOCENTRIC.
- Consider a term in the query that is frequent in the collection (e.g., HIGH, INCREASE, LINE)
 - A document containing this term is more likely to be relevant than a document that doesn't, but it's not a sure indicator of relevance.
 - For frequent terms, we want positive weights for words like HIGH, INCREASE, and LINE, but lower weights than for rare terms.

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC)
 - A document containing this term is very likely to be relevant.
 - We want a high weight for rare terms like ARACHNOCENTRIC.
- Consider a term in the query that is frequent in the collection (e.g., HIGH, INCREASE, LINE)
 - A document containing this term is more likely to be relevant than a document that doesn't, but it's not a sure indicator of relevance.
 - For frequent terms, we want positive weights for words like HIGH, INCREASE, and LINE, but lower weights than for rare terms.
- We will use document frequency to factor this into computing the matching score.

- Rare terms are more informative than frequent terms.
- Consider a term in the query that is rare in the collection (e.g., ARACHNOCENTRIC)
 - A document containing this term is very likely to be relevant.
 - ullet \to We want a high weight for rare terms like ARACHNOCENTRIC.
- Consider a term in the query that is frequent in the collection (e.g., HIGH, INCREASE, LINE)
 - A document containing this term is more likely to be relevant than a document that doesn't, but it's not a sure indicator of relevance.
 - For frequent terms, we want positive weights for words like HIGH, INCREASE, and LINE, but lower weights than for rare terms.
- We will use document frequency to factor this into computing the matching score.
- The document frequency is the number of documents in the collection that the term occurs in.

df_t is the document frequency, the number of documents that t occurs in.

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

• idf is a measure of the informativeness of the term.

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

- idf is a measure of the informativeness of the term.
- We use $\log N/\mathrm{df}_t$ instead of N/df_t to "dampen" the effect of idf.

- df_t is the document frequency, the number of documents that t occurs in.
- df is an inverse measure of the informativeness of the term.
- We define the idf weight of term t as follows:

$$\mathsf{idf}_t = \mathsf{log}_{10} \, \frac{\mathsf{N}}{\mathsf{df}_t}$$

- idf is a measure of the informativeness of the term.
- We use $\log N/\mathrm{df}_t$ instead of N/df_t to "dampen" the effect of idf.
- So we use the log transformation for both term frequency and document frequency.

Examples for idf

Compute idf_t using the formula: $\mathrm{idf}_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$

term	df _t	idf _t
calpurnia	1	
animal	100	
sunday	1000	
fly	10,000	
under	100,000	
the	1,000,000	

Examples for idf

Compute idf_t using the formula: $\mathrm{idf}_t = \log_{10} \frac{1,000,000}{\mathrm{df}_t}$

term	df_t	idf_t
calpurnia	1	6
animal	100	4
sunday	1000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

• idf affects the ranking of documents only if the query has at least two terms.

- idf affects the ranking of documents only if the query has at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.

- idf affects the ranking of documents only if the query has at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.
- idf has no effect on ranking for one-term queries.

- idf affects the ranking of documents only if the query has at least two terms.
- For example, in the query "arachnocentric line", idf weighting increases the relative weight of ARACHNOCENTRIC and decreases the relative weight of LINE.
- idf has no effect on ranking for one-term queries.
- Questions about idf?

Word	Collection frequency	Document frequency
INSURANCE	10440	3997
TRY	10422	8760

• The collection frequency of *t* is the number of tokens of *t* in the collection where we count multiple occurrences.

Word	Collection frequency	Document frequency
INSURANCE	10440	3997
TRY	10422	8760

- The collection frequency of *t* is the number of tokens of *t* in the collection where we count multiple occurrences.
- Why these numbers?

Word	Collection frequency	Document frequency
INSURANCE	10440	3997
TRY	10422	8760

- The collection frequency of *t* is the number of tokens of *t* in the collection where we count multiple occurrences.
- Why these numbers?
- Which word is a better search term (and should get a higher weight)?

Word	Collection frequency	Document frequency
INSURANCE	10440	3997
TRY	10422	8760

- The collection frequency of *t* is the number of tokens of *t* in the collection where we count multiple occurrences.
- Why these numbers?
- Which word is a better search term (and should get a higher weight)?
- This example suggests that df is better for weighting that cf.

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log rac{\mathit{N}}{\mathsf{df}_t}$$

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

• Best known weighting scheme in information retrieval

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_t}$$

- Best known weighting scheme in information retrieval
- Note: the "-" in tf-idf is a hyphen, not a minus sign!

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

•

$$w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{\mathsf{N}}{\mathsf{df}_t}$$

- Best known weighting scheme in information retrieval
- Note: the "-" in tf-idf is a hyphen, not a minus sign!
- Alternative names: tf.idf, tf x idf

• Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_{t}}$

- Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_{t}}$
- N: total number of documents

- Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_{t}}$
- N: total number of documents
- Increases with the number of occurrences within a document.

- Assign a tf-idf weight for each term t in each document d: $w_{t,d} = (1 + \log \mathsf{tf}_{t,d}) \cdot \log \frac{N}{\mathsf{df}_{\bullet}}$
- N: total number of documents
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Term, collection and document frequency

Quantity	Symbol	Definition
term frequency	$tf_{t,d}$	number of occurrences of t in
		d
document frequency	df_t	number of documents in the
		collection that t occurs in
collection frequency	cf_t	total number of occurrences of
		t in the collection

Term, collection and document frequency

Quantity	Symbol	Definition
term frequency	$tf_{t,d}$	number of occurrences of t in
		d
document frequency	df_t	number of documents in the
		collection that t occurs in
collection frequency	cf_t	total number of occurrences of
		t in the collection

• Relationship between df and cf?

Term, collection and document frequency

Quantity	Symbol	Definition
term frequency	$tf_{t,d}$	number of occurrences of t in
		d
document frequency	df_t	number of documents in the
		collection that t occurs in
collection frequency	cf_t	total number of occurrences of
		t in the collection

• Relationship between tf and cf?

Outline

- 1 Recap
- 2 Term frequency
- 3 tf-idf weighting
- 4 The vector space

$\mathsf{Binary} \to \mathsf{count} \to \mathsf{weight} \ \mathsf{matrix}$

	Anthony and	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
	Cleopatra	-					
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
Caesar	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

. . .

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

$\mathsf{Binary} \to \mathsf{count} \to \mathsf{weight} \ \mathsf{matrix}$

	Anthony and	Julius	The	Hamlet	Othello	Macbeth	
	Cleopatra	Caesar	Tempest				
Anthony	5.25	3.18	0.0	0.0	0.0	0.35	
Brutus	1.21	6.10	0.0	1.0	0.0	0.0	
Caesar	8.59	2.54	0.0	1.51	0.25	0.0	
Calpurnia	0.0	1.54	0.0	0.0	0.0	0.0	
CLEOPATRA	2.85	0.0	0.0	0.0	0.0	0.0	
MERCY	1.51	0.0	1.90	0.12	5.25	0.88	
WORSER	1.37	0.0	0.11	4.15	0.25	1.95	

. . .

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

• Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine

- Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
- So we have a |V|-dimensional real-valued vector space.
- Terms are axes of the space.
- Documents are points or vectors in this space.
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- This is a very sparse vector most entries are zero.

• Key idea 1: do the same for queries: represent them as vectors in the space

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity \approx negative distance

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity \approx negative distance
- Recall: We're doing this because we want to get away from the you're-either-in-or-out Boolean model.

- Key idea 1: do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query
- proximity = similarity
- proximity \approx negative distance
- Recall: We're doing this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

• First cut: distance between two points

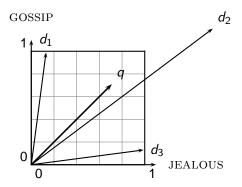
- First cut: distance between two points
- (= distance between the end points of the two vectors)

- First cut: distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?

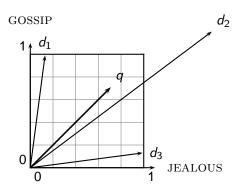
- First cut: distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .

- First cut: distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- ... because Euclidean distance is large for vectors of different lengths.

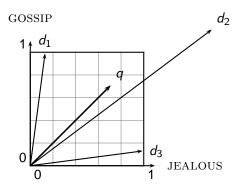
Why distance is a bad idea



Why distance is a bad idea



The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.



The Euclidean distance of \vec{q} and \vec{d}_2 is large although the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

Questions about basic vector space setup?

Use angle instead of distance

• Rank documents according to angle with query

Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'.

Use angle instead of distance

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content.

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity.

- Rank documents according to angle with query
- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically" d and d' have the same content.
- The angle between the two documents is 0, corresponding to maximal similarity.
- The Euclidean distance between the two documents can be quite large.

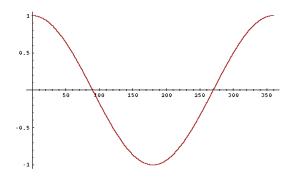
• The following two notions are equivalent.

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine(query,document) in increasing order

- The following two notions are equivalent.
 - Rank documents according to the angle between query and document in decreasing order
 - Rank documents according to cosine(query,document) in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval $[0^{\circ}, 180^{\circ}]$

Cosine



Recap Term frequency tf-idf weighting The vector space

What about angles $> 180^{\circ}$?

Length normalization

• How do we compute the cosine?

Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length – here we use the L₂ norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

• This maps vectors onto the unit sphere ...

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length – here we use the L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- This maps vectors onto the unit sphere . . .
- ... since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- This maps vectors onto the unit sphere ...
- ... since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, longer documents and shorter documents have weights of the same order of magnitude.

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- This maps vectors onto the unit sphere . . .
- ullet . . . since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, longer documents and shorter documents have weights of the same order of magnitude.
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

• q_i is the tf-idf weight of term i in the query.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term i in the document.

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term i in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .

$$\cos(\vec{q}, \vec{d}) = \text{SIM}(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- q_i is the tf-idf weight of term i in the query.
- d_i is the tf-idf weight of term i in the document.
- $|\vec{q}|$ and $|\vec{d}|$ are the lengths of \vec{q} and \vec{d} .
- This is the cosine similarity of \vec{q} and \vec{d} or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

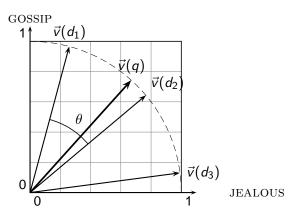
Cosine for normalized vectors

 For normalized vectors, the cosine is equivalent to the dot product or scalar product.

Cosine for normalized vectors

- For normalized vectors, the cosine is equivalent to the dot product or scalar product.
- $\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$ (if \vec{q} and \vec{d} are length-normalized).

Cosine similarity illustrated



How similar are the novels? SaS: Sense and Sensibility, PaP: Pride and Prejudice, and WH: Wuthering Heights?

How similar are the novels? SaS: Sense and Sensibility, PaP: Pride and Prejudice, and WH: Wuthering Heights?

term frequencies (counts)

term	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERING	0	0	38

term frequencies (counts)

term	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERING	0	0	38

term frequencies (counts)

log frequency weighting

term	SaS	PaP	WH
AFFECTION	115	58	20
JEALOUS	10	7	11
GOSSIP	2	0	6
WUTHERING	0	0	38

term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30
JEALOUS	2.0	1.85	2.04
GOSSIP	1.30	0	1.78
WUTHERING	0	0	2.58

term frequencies (counts)

log frequency weighting

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	115	58	20	AFFECTION	3.06	2.76	2.30
JEALOUS	10	7	11	JEALOUS	2.0	1.85	2.04
GOSSIP	2	0	6	GOSSIP	1.30	0	1.78
WUTHERING	0	0	38	WUTHERING	0	0	2.58

(To simplify this example, we don't do idf weighting.)

log frequency weighting

term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30
JEALOUS	2.0	1.85	2.04
GOSSIP	1.30	0	1.78
WUTHERING	0	0	2.58

	_	
Inc	frequency	Walahtina
IUE	HEQUEITLY	WEIGHTINE
0		0 0

				& COSITIC HOTHIAIIZATION			
term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

log frequency weighting

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

•
$$cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$$
.

log frequency weighting

				a coome normanzation			
term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

- $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.
- $cos(SaS,WH) \approx 0.79$

log frequency weighting

				& cosine normanzation			
term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

- $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.
- $cos(SaS,WH) \approx 0.79$
- $cos(PaP,WH) \approx 0.69$

log frequency weighting

log frequency weighting & cosine normalization

term	SaS	PaP	WH	term	SaS	PaP	WH
AFFECTION	3.06	2.76	2.30	AFFECTION	0.789	0.832	0.524
JEALOUS	2.0	1.85	2.04	JEALOUS	0.515	0.555	0.465
GOSSIP	1.30	0	1.78	GOSSIP	0.335	0.0	0.405
WUTHERING	0	0	2.58	WUTHERING	0.0	0.0	0.588

- $cos(SaS,PaP) \approx 0.789 * 0.832 + 0.515 * 0.555 + 0.335 * 0.0 + 0.0 * 0.0 \approx 0.94$.
- $cos(SaS,WH) \approx 0.79$
- $cos(PaP,WH) \approx 0.69$
- Why do we have cos(SaS,PaP) > cos(SAS,WH)?

Computing the cosine score

```
CosineScore(q)
     float Scores[N] = 0
    float Length[N]
 3
     for each query term t
 4
     do calculate w_{t,q} and fetch postings list for t
 5
         for each pair(d, tf_{t,d}) in postings list
 6
         do Scores[d] + = w_{t,d} \times w_{t,a}
     Read the array Length
    for each d
     do Scores[d] = Scores[d]/Length[d]
     return Top K components of Scores[]
10
```

Components of tf-idf weighting

Term	frequency	Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + rac{0.5 imes ext{tf}_{t,d}}{ ext{max}_t(ext{tf}_{t,d})}$	p (prob idf)	$\max\{0,\log \tfrac{\textit{N}-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Components of tf-idf weighting

Term frequency		Docum	ent frequency	Normalization			
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1		
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$		
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \tfrac{\mathit{N}-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u		
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$		
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$						

Best known combination of weighting options

Components of tf-idf weighting

Term frequency		Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log rac{\mathit{N}-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

Default: no weighting

• We often use different weightings for queries and documents.

Recap Term frequency tf-idf weighting The vector space

- We often use different weightings for queries and documents.
- Notation: qqq.ddd

Recap Term frequency tf-idf weighting The vector space

tf-idf example

We often use different weightings for queries and documents.

Notation: qqq.ddd

Example: ltn.lnc

- We often use different weightings for queries and documents.
- Notation: qqq.ddd
- Example: Itn.Inc
- query: logarithmic tf, idf, no normalization

- We often use different weightings for queries and documents.
- Notation: qqq.ddd
- Example: ltn.lnc
- query: logarithmic tf, idf, no normalization
- document: logarithmic tf, no df weighting, cosine normalization

- We often use different weightings for queries and documents.
- Notation: qqq.ddd
- Example: ltn.lnc
- query: logarithmic tf, idf, no normalization
- document: logarithmic tf, no df weighting, cosine normalization
- Isn't it bad to not idf-weight the document?

- We often use different weightings for queries and documents.
- Notation: qqq.ddd
- Example: ltn.lnc
- query: logarithmic tf, idf, no normalization
- document: logarithmic tf, no df weighting, cosine normalization
- Isn't it bad to not idf-weight the document?
- Example query: "best car insurance"

- We often use different weightings for queries and documents.
- Notation: qqq.ddd
- Example: ltn.lnc
- query: logarithmic tf, idf, no normalization
- document: logarithmic tf, no df weighting, cosine normalization
- Isn't it bad to not idf-weight the document?
- Example query: "best car insurance"
- Example document: "car insurance auto insurance"

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto										
best										
car										
insurance										

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

tf-idf example: ltn.lnc

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0									
best	1									
car	1									
insurance	1									

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0					1				
best	1					0				
car	1					1				
insurance	1					2				

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0				1				
best	1	1				0				
car	1	1				1				
insurance	1	1				2				

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0				1	1			
best	1	1				0	0			
car	1	1				1	1			
insurance	1	1				2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000			1	1			
best	1	1	50000			0	0			
car	1	1	10000			1	1			
insurance	1	1	1000			2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3		1	1			
best	1	1	50000	1.3		0	0			
car	1	1	10000	2.0		1	1			
insurance	1	1	1000	3.0		2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1			
best	1	1	50000	1.3	1.3	0	0			
car	1	1	10000	2.0	2.0	1	1			
insurance	1	1	1000	3.0	3.0	2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1			
best	1	1	50000	1.3	1.3	0	0			
car	1	1	10000	2.0	2.0	1	1			
insurance	1	1	1000	3.0	3.0	2	1.3			

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1		
best	1	1	50000	1.3	1.3	0	0	0		
car	1	1	10000	2.0	2.0	1	1	1		
insurance	1	1	1000	3.0	3.0	2	1.3	1.3		

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	
best	1	1	50000	1.3	1.3	0	0	0	0	
car	1	1	10000	2.0	2.0	1	1	1	0.52	
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	

$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

$$1/1.92\approx0.52$$

$$1.3/1.92\approx0.68$$

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized: document weights after cosine normalization, product: the product of final query weight and final document weight

Final similarity score between query and document: $\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$

Query: "best car insurance". Document: "car insurance auto insurance".

word			query				docu	ment		product
	tf-raw	tf-wght	df	idf	weight	tf-raw	tf-wght	weight	n'lized	
auto	0	0	5000	2.3	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0	0	0	0	0
car	1	1	10000	2.0	2.0	1	1	1	0.52	1.04
insurance	1	1	1000	3.0	3.0	2	1.3	1.3	0.68	2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted term frequency, df: document frequency, idf: inverse document frequency, weight: the final weight of the term in the query or document, n'lized; document weights after cosine normalization, product: the product of final query weight and final document weight

Final similarity score between query and document: $\sum_{i} w_{qi} \cdot w_{di} = 0 + 0 + 1.04 + 2.04 = 3.08$ Questions?

• Represent the query as a weighted tf-idf vector

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
- Rank documents with respect to the query

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity between the query vector and each document vector
- Rank documents with respect to the query
- Return the top K (e.g., K=10) to the user

Resources

• Chapters 6 and 7 of IIR

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir

Recap Term frequency tf-idf weighting The vector space

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- Vector space for dummies

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- Vector space for dummies
- Exploring the similarity space (Moffat and Zobel, 2005)

- Chapters 6 and 7 of IIR
- Resources at http://ifnlp.org/ir
- Vector space for dummies
- Exploring the similarity space (Moffat and Zobel, 2005)
- Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of IIR)