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Pivot normalization

source:
Lillian Lee
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Now we also need term frequencies in the index

Brutus −→ 1,2 7,3 83,1 87,2 . . .

Caesar −→ 1,1 5,1 13,1 17,1 . . .

Calpurnia −→ 7,1 8,2 40,1 97,3
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Use heap for selecting the top k in ranking

A heap efficiently implements a priority queue.

Takes O(N) operations to construct (where N is the number
of documents) . . .

. . . then each of k winners can be read off in O(k log k) steps.

Allows to rank in time linear in N (for small k and large N) –
as opposed to O(N log N).
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Binary max heap
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Measures for a search engine
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Measures for a search engine

How fast does it index

Number of documents/bytes per hour

How fast does it search

Latency as a function of index size / queries per second

What is the cost per query?

Given certain requirements, e.g., a 20-billion-page index
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Measures for a search engine

All of the preceding criteria are measurable: we can quantify
speed / size / money
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All of the preceding criteria are measurable: we can quantify
speed / size / money
However, the key measure for a search engine is user happiness.
What is user happiness?
Factors include:

Speed of response
Size of index
Uncluttered UI
Most important: relevance
(Actually, maybe most important: it’s free)

Note that none of these is sufficient: blindingly fast, but useless
answers won’t make a user happy.
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Who is the user?

Who is the user we are trying to make happy?
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Who is the user?

Who is the user we are trying to make happy?
Web search engine: searcher. Searcher finds what she was looking
for. Measure: rate of return to this search engine
Web search engine: advertiser. Do searchers click through to my ads?
Measure: clickthrough rate
Ecommerce: buyer. Buyer buys what she came to the site to buy.
Measures: time to purchase, fraction of “conversions” of searchers to
buyers
Ecommerce: seller. Seller is able to sell her wares (because the search
function directed buyers to the correct items). Measure: profit per
item sold
Enterprise: CEO. Employees are more productive because they find
right away what they are looking for. Measure: profit of the company
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Most common definition of user happiness: Relevance

User happiness is equated with the relevance of search results
to the query.
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Most common definition of user happiness: Relevance

User happiness is equated with the relevance of search results
to the query.

But how do you measure relevance?

Standard methodology in information retrieval consists of
three elements.

A benchmark document collection
A benchmark suite of queries
A binary (or, more rarely, non-binary) assessment of the
relevance of each query-document pair

This is a type of “canned” evaluation – often criticized as not
being realistic enough.

But has been very successful in IR.
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Relevance: query vs. information need

d ′ is relevant to the query q . . .

d ′ is not relevant to the information need i .

User happiness can only be measured by relevance to an
information need, not by relevance to queries.

Our terminology is sloppy in these slides and in IIR: we talk
about query-document relevance judgments even though we
mean information-need-document relevance judgments.
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Precision and recall

Precision (P) is the fraction of retrieved documents that are
relevant

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)

Schütze: Evaluation & Result summaries 16 / 56



Recap Unranked evaluation Ranked evaluation Evaluation benchmarks Result summaries

Precision and recall

Precision (P) is the fraction of retrieved documents that are
relevant

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)

Recall (R) is the fraction of relevant documents that are
retrieved

Recall =
#(relevant items retrieved)

#(relevant items)
= P(retrieved|relevant)

Schütze: Evaluation & Result summaries 16 / 56



Recap Unranked evaluation Ranked evaluation Evaluation benchmarks Result summaries

Precision and recall

Precision (P) is the fraction of retrieved documents that are
relevant

Precision =
#(relevant items retrieved)

#(retrieved items)
= P(relevant|retrieved)

Recall (R) is the fraction of relevant documents that are
retrieved

Recall =
#(relevant items retrieved)

#(relevant items)
= P(retrieved|relevant)

Schütze: Evaluation & Result summaries 16 / 56



Recap Unranked evaluation Ranked evaluation Evaluation benchmarks Result summaries

Precision and recall

Relevant Nonrelevant

Retrieved true positives (TP) false positives (FP)

Not retrieved false negatives (FN) true negatives (TN)

P = TP/(TP + FP)

R = TP/(TP + FN)
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Why do we use complex measures like precision and recall?

Why not something simple like accuracy?

Accuracy is the fraction of decisions (relevant/nonrelevant)
that are correct.

In terms of the contingency table above,
accuracy = (TP + TN)/(TP + FP + FN + TN).

Why is accuracy not a useful measure for web information
retrieval?
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Why not just use accuracy?

Simple trick to maximize accuracy in IR: always say no and return nothing
You then get 99.99% accuracy on most queries.
Searchers on the web (and in IR in general) want to find something and have a
certain tolerance for junk.
Accuracy is not a good measure of user happiness, we’ll use precision and recall
instead.
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Difficulties in using precision/recall

We should always average over a large set of queries.
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We should always average over a large set of queries.

There is no such thing as a “typical” or “representative” query.

We need relevance judgments for information-need-document
pairs – but they are expensive to produce.

For alternatives to using precision/recall and having to
produce relevance judgments – see end of this lecture.
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You can increase recall by returning more docs.
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Precision/recall tradeoff

You can increase recall by returning more docs.

Recall is a non-decreasing function of the number of docs
retrieved.

A system that returns all docs has 100% recall!

The converse is also true (usually): It’s easy to get high
precision for very low recall.

Suppose the document with the largest score is relevant. How
can we maximize precision?
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A combined measure: F

F allows us to trade off precision against recall.
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F =
1

α 1
P

+ (1 − α) 1
R

=
(β2 + 1)PR

β2P + R
where β2 =

1 − α

α
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A combined measure: F

F allows us to trade off precision against recall.

F =
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F allows us to trade off precision against recall.

F =
1

α 1
P

+ (1 − α) 1
R

=
(β2 + 1)PR

β2P + R
where β2 =

1 − α

α

α ∈ [0, 1] and thus β2 ∈ [0,∞]

Most frequently used: balanced F with β = 1 or α = 0.5

This is the harmonic mean of P and R: 1
F

= 1
2 ( 1

P
+ 1

R
)

What value range of β do I choose for weighting recall higher
than precision?
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F: Example

relevant not relevant
retrieved 18 2
not retrieved 82 1,000,000,000
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F1 and other averages
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F1 and other averages

02 04 06 08 01 0 0
0 2 0 4 0 6 0 8 0 1 0 0P r e c i s i o n ( R e c a l l f i x e d a t 7 0 % )

M i n i m u mM a x i m u mA r i t h m e t i cG e o m e t r i cH a r m o n i c
We can view the harmonic mean as a kind of soft minimum
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F: Why harmonic mean?

The simple (arithmetic) mean is 50% for “return-everything”
search engine, which is too high.
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F: Why harmonic mean?

The simple (arithmetic) mean is 50% for “return-everything”
search engine, which is too high.

Desideratum: Punish really bad performance on either
precision or recall.

Taking the minimum achieves this.

But minimum is not smooth and hard to weight.

F (harmonic mean) is a kind of smooth minimum.
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Precision-recall curve

Precision/recall/F are measures for unranked sets.
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Precision-recall curve

Precision/recall/F are measures for unranked sets.

We can easily turn set measures into measures of ranked lists.

Just compute the set measure for each “prefix”: the top 1,
top 2, top 3, top 4 etc results

Doing this for precision and recall gives you a precision-recall
curve.
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Each point corresponds to a result for the top k ranked hits (k = 1, 2, 3, 4, . . .).
Interpolation (in red): Take maximum of all future points
Rationale for interpolation: The user is willing to look at more stuff if both
precision and recall get better.
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11-point interpolated average precision

Recall Interpolated
Precision

0.0 1.00
0.1 0.67
0.2 0.63
0.3 0.55
0.4 0.45
0.5 0.41
0.6 0.36
0.7 0.29
0.8 0.13
0.9 0.10
1.0 0.08
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11-point interpolated average precision

Recall Interpolated
Precision

0.0 1.00
0.1 0.67
0.2 0.63
0.3 0.55
0.4 0.45
0.5 0.41
0.6 0.36
0.7 0.29
0.8 0.13
0.9 0.10
1.0 0.08

11-point average: ≈
0.425

How can precision
at 0.0 be > 0?
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Compute interpolated precision at recall levels 0.0, 0.1, 0.2, . . .
Do this for each of the queries in the evaluation benchmark
Average over queries
This measure measures performance at all recall levels.
The curve is typical of performance levels at TREC.
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But we are only interested in the small area in the lower left
corner.
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Similar to precision-recall graph

But we are only interested in the small area in the lower left
corner.

Precision-recall graph “blows up” this area.
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Variance of measures like precision/recall

For a test collection, it is usual that a system does crummily
on some information needs (e.g., P = 0.2 at R = 0.1) and
excellently on others (e.g., P = 0.95 at R = 0.1).
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Variance of measures like precision/recall

For a test collection, it is usual that a system does crummily
on some information needs (e.g., P = 0.2 at R = 0.1) and
excellently on others (e.g., P = 0.95 at R = 0.1).

Indeed, it is usually the case that the variance of the same
system across queries is much greater than the variance of
different systems on the same query.

That is, there are easy information needs and hard ones.
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What we need for a benchmark

A collection of documents

Documents must be representative of the documents we expect to
see in reality.

A collection of information needs

. . . which we will often incorrectly refer to as queries
Information needs must be representative of the information needs
we expect to see in reality.

Human relevance assessments

We need to hire/pay “judges” or assessors to do this.
Expensive, time-consuming
Judges must be representative of the users we expect to see in
reality.
Relevance assessments are only usable if they are consistent.
How can we measure this consistency or agreement among judges?
Kappa measure in a few slides
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measures of information retrieval effectiveness
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Standard relevance benchmark: Cranfield

Pioneering: first testbed allowing precise quantitative
measures of information retrieval effectiveness

Late 1950s, UK

1398 abstracts of aerodynamics journal articles, a set of 225
queries, exhaustive relevance judgments of all
query-document-pairs

Too small, too untypical for serious IR evaluation today
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Standard relevance benchmark: TREC

TREC = Text Retrieval Conference (TREC)

Organized by the U.S. National Institute of Standards and
Technology (NIST)

TREC is actually a set of several different relevance
benchmarks.

Best known: TREC Ad Hoc, used for first 8 TREC
evaluations between 1992 and 1999

1.89 million documents, mainly newswire articles, 450
information needs

No exhaustive relevance judgments – too expensive

Rather, NIST assessors’ relevance judgments are available
only for the documents that were among the top k returned
for some system which was entered in the TREC evaluation
for which the information need was developed.
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Standard relevance benchmarks: Others

GOV2

Another TREC/NIST collection
25 million web pages
Largest collection that is easily available
But still 3 orders of magnitude smaller than what
Google/Yahoo/MSN index

NTCIR

East Asian language and cross-language information retrieval

Cross Language Evaluation Forum (CLEF)

This evaluation series has concentrated on European languages
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Another TREC/NIST collection
25 million web pages
Largest collection that is easily available
But still 3 orders of magnitude smaller than what
Google/Yahoo/MSN index

NTCIR

East Asian language and cross-language information retrieval

Cross Language Evaluation Forum (CLEF)

This evaluation series has concentrated on European languages
and cross-language information retrieval.
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Kappa is measure of how much judges agree or disagree.

Designed for categorical judgments

Corrects for chance agreement

P(A) = proportion of time judges agree

P(E ) = what agreement would we get by chance

κ =
P(A) − P(E )

1 − P(E )

κ =? for (i) chance agreement (ii) total agreement
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Values of κ in the interval [2/3, 1.0] are seen as acceptable.

With smaller values: need to redesign relevance assessment
methodology used etc.
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Calculating the kappa statistic

Judge 2 Relevance
Yes No Total

Judge 1 Yes 300 20 320
Relevance No 10 70 80

Total 310 90 400

Observed proportion of the times the judges agreed
P(A) = (300 + 70)/400 = 370/400 = 0.925
Pooled marginals
P(nonrelevant) = (80 + 90)/(400 + 400) = 170/800 = 0.2125
P(relevant) = (320 + 310)/(400 + 400) = 630/800 = 0.7878
Probability that the two judges agreed by chance
P(E ) = P(nonrelevant)2 + P(relevant)2 = 0.21252 + 0.78782 = 0.665
Kappa statistic
κ = (P(A)−P(E ))/(1−P(E )) = (0.925−0.665)/(1−0.665) = 0.776
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Judge 2 Relevance
Yes No Total

Judge 1 Yes 300 20 320
Relevance No 10 70 80

Total 310 90 400

Observed proportion of the times the judges agreed
P(A) = (300 + 70)/400 = 370/400 = 0.925
Pooled marginals
P(nonrelevant) = (80 + 90)/(400 + 400) = 170/800 = 0.2125
P(relevant) = (320 + 310)/(400 + 400) = 630/800 = 0.7878
Probability that the two judges agreed by chance
P(E ) = P(nonrelevant)2 + P(relevant)2 = 0.21252 + 0.78782 = 0.665
Kappa statistic
κ = (P(A)−P(E ))/(1−P(E )) = (0.925−0.665)/(1−0.665) = 0.776
(still in acceptable range)
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Interjudge agreement at TREC

information number of disagreements NR R
need docs judged

51 211 6 4 2
62 400 157 149 8
67 400 68 37 31
95 400 110 108 2
127 400 106 12 94
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Impact of interjudge disagreement

Judges disagree a lot. Does that mean that the results of
information retrieval experiments are meaningless?

No.

Large impact on absolute performance numbers

Virtually no impact on ranking of systems

Supposes we want to know if algorithm A is better than
algorithm B

An information retrieval experiment will give us a reliable
answer to this question.
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Critique of pure relevance

We’ve defined relevance for an isolated query-document pair.

Alternative definition: marginal relevance

The marginal relevance of a document in a result list is the
additional information it contributes.

Example: a duplicate can be highly relevant, but it has zero
marginal relevance.

Marginal relevance is a better measure of user happiness.

But it is virtually impossible to run information retrieval
experiments based on marginal relevance.

Why?
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Evaluation at large search engines

Recall is difficult to measure on the web

Search engines often use precision at top k , e.g., k = 10 . . .

. . . or measures that reward you more for getting rank 1 right
than for getting rank 10 right.

Search engines also use non-relevance-based measures.

Example 1: clickthrough on first result
Not very reliable if you look at a single clickthrough (you may
realize after clicking that the summary was misleading and the
document is nonrelevant) . . .
. . . but pretty reliable in the aggregate.
Example 2: Ongoing studies of user behavior in the lab – recall
last lecture
Example 3: A/B testing
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A/B testing

Purpose: Test a single innovation

Prerequisite: You have a large search engine up and running.

Have most users use old system

Divert a small proportion of traffic (e.g., 1%) to the new
system that includes the innovation

Evaluate with an “automatic” measure like clickthrough on
first result

Now we can directly see if the innovation does improve user
happiness.

Probably the evaluation methodology that large search
engines trust most

Variant: Give users the option to switch to new
algorithm/interface
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2 Unranked evaluation

3 Ranked evaluation

4 Evaluation benchmarks

5 Result summaries
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How do we present results to the user?

Most often: as a list – aka “10 blue links”

How should each document in the list be described?

This description is crucial.

User can identify good hits (= relevant hits) based on
description.

No need to “click” on all documents sequentially
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Most commonly: doc title, url, some metadata . . .
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Most commonly: doc title, url, some metadata . . .
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Summaries

Two basic kinds: (i) static (ii) dynamic

A static summary of a document is always the same,
regardless of the query that hit the document.

Dynamic summaries are query-dependent. They attempt to
explain why the document was retrieved for the query at hand.
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Static summaries

In typical systems, the static summary is a subset of the
document.

Simplest heuristic: the first 50 or so words of the document

More sophisticated: extract from each document a set of
“key” sentences

Simple NLP heuristics to score each sentence
Summary is made up of top-scoring sentences.
Machine learning approach: see IIR 13

Most sophisticated: complex NLP to synthesize/generate a
summary

For most IR applications: not quite ready for prime time yet
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Dynamic summaries

Present one or more “windows” or snippets within the
document that contain several of the query terms.
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Dynamic summaries

Present one or more “windows” or snippets within the
document that contain several of the query terms.

Generated in conjunction with scoring

Prefer snippets in which query terms occurred as a phrase

Prefer snippets in which query terms occurred jointly in a
small window

The summary that is computed this way gives the entire
content of the window – all terms, not just the query terms.
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A dynamic summary

Query: “new guinea economic development”

Snippets (in bold) that were extracted from a document: . . . In recent years,

Papua New Guinea has faced severe economic difficulties and economic
growth has slowed, partly as a result of weak governance and civil war, and
partly as a result of external factors such as the Bougainville civil war which led
to the closure in 1989 of the Panguna mine (at that time the most important
foreign exchange earner and contributor to Government finances), the Asian
financial crisis, a decline in the prices of gold and copper, and a fall in the
production of oil. PNG’s economic development record over the past few

years is evidence that governance issues underly many of the country’s
problems. Good governance, which may be defined as the transparent and
accountable management of human, natural, economic and financial resources
for the purposes of equitable and sustainable development, flows from proper
public sector management, efficient fiscal and accounting mechanisms, and a
willingness to make service delivery a priority in practice. . . .
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Google examples for dynamic summaries
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Generating dynamic summaries

Where do we get these other terms in the snippet from?

We cannot construct a dynamic summary from the positional
inverted index – at least not efficiently.

We need to cache documents.

The positional index tells us: query term occurs at position
4378 in the document.

Byte offset or word offset?

Note that the cached copy can be outdated

Don’t cache very long documents – just cache a short prefix
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Dynamic summaries are a big part of user happiness because

We can quickly scan them to find the relevant document we
then click on.
In many cases, we don’t have to click at all and save time.
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