Introduction to Information Retrieval http://informationretrieval.org

IIR 21: Link Analysis

Hinrich Schütze

Institute for Natural Language Processing, Universität Stuttgart

2008.07.01

Overview

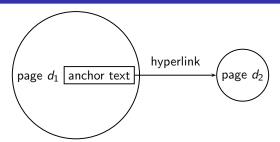
Anchor text

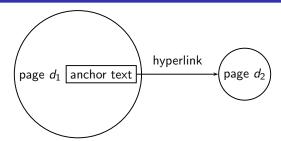
- 2 PageRank
- 3 HITS

Outline

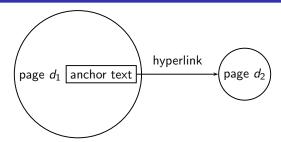
Anchor text

- 2 PageRank
- 3 HITS

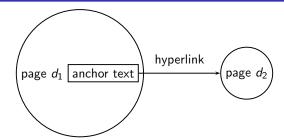




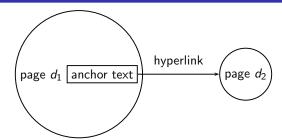
• Assumption 1: A hyperlink is a quality signal.



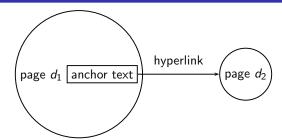
- Assumption 1: A hyperlink is a quality signal.
 - A hyperlink between pages denotes that the author perceived relevance.



- Assumption 1: A hyperlink is a quality signal.
 - A hyperlink between pages denotes that the author perceived relevance.
- Assumption 2: The anchor text describes the target page d_2 .



- Assumption 1: A hyperlink is a quality signal.
 - A hyperlink between pages denotes that the author perceived relevance.
- Assumption 2: The anchor text describes the target page d_2 .
 - We use anchor text somewhat loosely here: the text surrounding the hyperlink. Example: "You can find cheap cars here."



- Assumption 1: A hyperlink is a quality signal.
 - A hyperlink between pages denotes that the author perceived relevance.
- Assumption 2: The anchor text describes the target page d_2 .
 - We use anchor text somewhat loosely here: the text surrounding the hyperlink. Example: "You can find cheap cars here."
- Examples for hyperlinks that violate these two assumptions?

 Searching on [document text + anchor text] is often more effective than searching on [document text only].

 Searching on [document text + anchor text] is often more effective than searching on [document text only].

• Example: Query IBM

- Searching on [document text + anchor text] is often more effective than searching on [document text only].
- Example: Query IBM
 - Matches IBM's copyright page

- Searching on [document text + anchor text] is often more effective than searching on [document text only].
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages

- Searching on [document text + anchor text] is often more effective than searching on [document text only].
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article

- Searching on [document text + anchor text] is often more effective than searching on [document text only].
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page! (if IBM home page is mostly graphical)

- Searching on [document text + anchor text] is often more effective than searching on [document text only].
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page! (if IBM home page is mostly graphical)
- Searching on anchor text is better for the query IBM.

- Searching on [document text + anchor text] is often more effective than searching on [document text only].
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page! (if IBM home page is mostly graphical)
- Searching on anchor text is better for the query *IBM*.
- Represent each page by all the anchor text pointing to it.

- Searching on [document text + anchor text] is often more effective than searching on [document text only].
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page! (if IBM home page is mostly graphical)
- Searching on anchor text is better for the query IBM.
- Represent each page by all the anchor text pointing to it.
- In this representation, the page with the most occurrences of IBM is www.ibm.com.

- Searching on [document text + anchor text] is often more effective than searching on [document text only].
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page! (if IBM home page is mostly graphical)
- Searching on anchor text is better for the query IBM.
- Represent each page by all the anchor text pointing to it.
- In this representation, the page with the most occurrences of IBM is www.ibm.com.

Anchor text containing *IBM* pointing to www.ibm.com

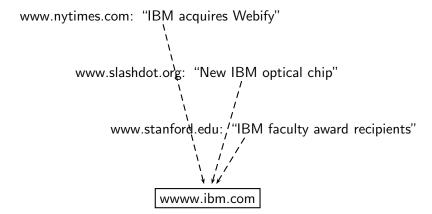
www.nytimes.com: "IBM acquires Webify"

www.slashdot.org: "New IBM optical chip"

www.stanford.edu: "IBM faculty award recipients"

wwww.ibm.com

Anchor text containing *IBM* pointing to www.ibm.com



 Thus: Anchor text is often a better description of a page's content than the page itself.

- Thus: Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than document text. (based on Assumptions 1&2)

- Thus: Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than document text. (based on Assumptions 1&2)
- Indexing anchor text can have unexpected side effects Google bombs.

- Thus: Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than document text. (based on Assumptions 1&2)
- Indexing anchor text can have unexpected side effects Google bombs.
- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.

- Thus: Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than document text. (based on Assumptions 1&2)
- Indexing anchor text can have unexpected side effects Google bombs.
- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many google bombs.

- Thus: Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than document text. (based on Assumptions 1&2)
- Indexing anchor text can have unexpected side effects Google bombs.
- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many google bombs.
- Any "live" Google bombs?

Google bomb

• "who is a failure" on Google

Outline

- Anchor text
- 2 PageRank
- HITS

 Citation analysis: analysis of citations in the scientific literature

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- "Miller (2001)" is a hyperlink linking two scientific articles.

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- "Miller (2001)" is a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- "Miller (2001)" is a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- "Miller (2001)" is a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.

- Citation analysis: analysis of citations in the scientific literature
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- "Miller (2001)" is a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.
- Cocitation similarity on the web?

Cocitation similarity on Google: similar pages

• Citation frequency can be used to measure the impact of an article.

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure
- Better measure: weighted citation frequency / citation rank

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure
- Better measure: weighted citation frequency / citation rank
 - An article's vote is weighted according to its citation impact.

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure
- Better measure: weighted citation frequency / citation rank
 - An article's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure
- Better measure: weighted citation frequency / citation rank
 - An article's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.
 - This is basically PageRank.

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure
- Better measure: weighted citation frequency / citation rank
 - An article's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.
 - This is basically PageRank.
 - PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure
- Better measure: weighted citation frequency / citation rank
 - An article's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.
 - This is basically PageRank.
 - PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.
 - Citation analysis is a big deal: The budget and salary of this lecturer are / will be determined by the impact of his publications!

- Citation frequency can be used to measure the impact of an article.
 - Each article gets one vote.
 - Not a very accurate measure
- Better measure: weighted citation frequency / citation rank
 - An article's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.
 - This is basically PageRank.
 - PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.
 - Citation analysis is a big deal: The budget and salary of this lecturer are / will be determined by the impact of his publications!
- Recall: Citation in scientific literature = hyperlink on the web

• Simple version of using links for ranking on the web

- Simple version of using links for ranking on the web
 - First retrieve all pages satisfying the query (say venture capital)

- Simple version of using links for ranking on the web
 - First retrieve all pages satisfying the query (say venture capital)
 - Order these by the number of in-links

- Simple version of using links for ranking on the web
 - First retrieve all pages satisfying the query (say venture capital)
 - Order these by the number of in-links
- Simple link popularity (= number of in-links) is easy to spam. Why?

• Imagine a web surfer doing a random walk on the web

- Imagine a web surfer doing a random walk on the web
 - Start at a random page

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = steady state probability = long-term visit rate

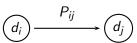
- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = steady state probability = long-term visit rate
- Concept of long-term visit rate clear?

 A Markov chain consists of N states, plus an N × N transition probability matrix P.

- A Markov chain consists of N states, plus an $N \times N$ transition probability matrix P.
- state = page

- A Markov chain consists of N states, plus an N × N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.

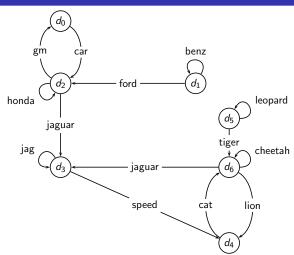
- A Markov chain consists of N states, plus an N × N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.
- For $1 \le i, j \le N$, the matrix entry P_{ij} tells us the probability of j being the next page, given we are currently on page i.



ullet Clearly, for all i, $\sum_{j=1}^{N} P_{ij} = 1$

- Clearly, for all i, $\sum_{j=1}^{N} P_{ij} = 1$
- Markov chains are abstractions of random walks.

Example web graph



Link matrix for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	1	0	0	0
d_3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	1	1	0	1

Transition probability matrix P for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

• Recall: PageRank = long-term visit rate

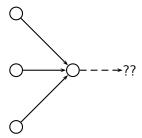
- Recall: PageRank = long-term visit rate
- Long-term visit rate of page *d* is the probability that a web surfer is at page *d* at a given point in time.

- Recall: PageRank = long-term visit rate
- Long-term visit rate of page *d* is the probability that a web surfer is at page *d* at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?

- Recall: PageRank = long-term visit rate
- Long-term visit rate of page *d* is the probability that a web surfer is at page *d* at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.

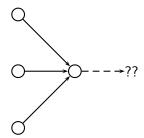
- Recall: PageRank = long-term visit rate
- Long-term visit rate of page *d* is the probability that a web surfer is at page *d* at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.
- First a special case: The web graph must not contain dead ends.

Dead ends



• The web is full of dead ends.

Dead ends



- The web is full of dead ends.
- Random walk can get stuck in dead ends.

Dead ends



- The web is full of dead ends.
- Random walk can get stuck in dead ends.
- If there are dead ends, long-term visit rates are not well-defined (or non-sensical).

• At a dead end, jump to a random web page

- At a dead end, jump to a random web page
- At any non-dead end, with probability 10%, jump to a random web page

- At a dead end, jump to a random web page
- At any non-dead end, with probability 10%, jump to a random web page
- With remaining probability (90%), go out on a random hyperlink (e.g., randomly choose with probability (1-0.1)/4=0.225 one of the four hyperlinks of the page)

- At a dead end, jump to a random web page
- At any non-dead end, with probability 10%, jump to a random web page
- With remaining probability (90%), go out on a random hyperlink (e.g., randomly choose with probability (1-0.1)/4=0.225 one of the four hyperlinks of the page)
- 10% is a parameter.

• With teleporting, we cannot get stuck in a dead end.

- With teleporting, we cannot get stuck in a dead end.
- Concept of teleporting clear?

- With teleporting, we cannot get stuck in a dead end.
- Concept of teleporting clear?
- Even without dead-ends, a graph may not have well-defined long-term visit rates.

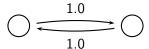
- With teleporting, we cannot get stuck in a dead end.
- Concept of teleporting clear?
- Even without dead-ends, a graph may not have well-defined long-term visit rates.
- More generally, we require that the Markov chain be ergodic.

• A Markov chain is ergodic iff it is irreducible and aperiodic.

- A Markov chain is ergodic iff it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any page to any other page.

- A Markov chain is ergodic iff it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any page to any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.

- A Markov chain is ergodic iff it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any page to any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.
- A non-ergodic Markov chain:



• Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

• A probability (row) vector $\vec{x} = (x_1, \dots, x_N)$ tells us where the random walk is at any point.

• A probability (row) vector $\vec{x} = (x_1, \dots, x_N)$ tells us where the random walk is at any point.

• Example: $\begin{pmatrix} 0 & 0 & 0 & \dots & 1 & \dots & 0 & 0 & 0 \\ 1 & 2 & 3 & \dots & i & \dots & N-2 & N-1 & N \end{pmatrix}$

• A probability (row) vector $\vec{x} = (x_1, \dots, x_N)$ tells us where the random walk is at any point.

```
• Example: \begin{pmatrix} 0 & 0 & 0 & \dots & 1 & \dots & 0 & 0 & 0 \\ 1 & 2 & 3 & \dots & i & \dots & N-2 & N-1 & N \end{pmatrix}
```

• More generally: the random walk is on page i with probability x_i .

- A probability (row) vector $\vec{x} = (x_1, \dots, x_N)$ tells us where the random walk is at any point.
- Example: $\begin{pmatrix} 0 & 0 & 0 & \dots & 1 & \dots & 0 & 0 & 0 \\ 1 & 2 & 3 & \dots & i & \dots & N-2 & N-1 & N \end{pmatrix}$
- More generally: the random walk is on page i with probability x_i .
- Example:

```
( 0.05 0.01 0.0 ... 0.2 ... 0.01 0.05 0.03 )
1 2 3 ... i ... N-2 N-1 N
```

- A probability (row) vector $\vec{x} = (x_1, \dots, x_N)$ tells us where the random walk is at any point.
- Example: $\begin{pmatrix} 0 & 0 & 0 & \dots & 1 & \dots & 0 & 0 & 0 \\ 1 & 2 & 3 & \dots & i & \dots & N-2 & N-1 & N \end{pmatrix}$
- More generally: the random walk is on page i with probability x_i .
- Example:

• $\sum x_i = 1$

• If the probability vector is $\vec{x} = (x_1, \dots, x_N)$ at this step, what is it at the next step?

- If the probability vector is $\vec{x} = (x_1, \dots, x_N)$ at this step, what is it at the next step?
- Recall that row *i* of the transition probability matrix *P* tells us where we go next from state *i*.

- If the probability vector is $\vec{x} = (x_1, \dots, x_N)$ at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.
- Equivalently: column j of P tells us "where we came from" (and with which probability).

- If the probability vector is $\vec{x} = (x_1, \dots, x_N)$ at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.
- Equivalently: column j of P tells us "where we came from" (and with which probability).
- So from \vec{x} , our next state is distributed as $\vec{x}P$.

• The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ of probabilities.

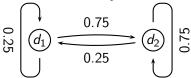
- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the generic notation \vec{x} for a probability vector.)

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the generic notation \vec{x} for a probability vector.)
- π_i is the long-term visit rate (or PageRank) of page i.

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the generic notation \vec{x} for a probability vector.)
- π_i is the long-term visit rate (or PageRank) of page i.
- So we can think of PageRank as a very long vector one entry per page.

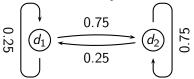
Steady state example

• What is the steady state in this example?



Steady state example

• What is the steady state in this example?



• Solution: $\vec{\pi} = (\pi_1 \ \pi_2) = (0.25 \ 0.75)$

How do we compute the steady state vector?

• In other words: how do we compute PageRank?

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ is the PageRank vector, the vector of steady-state probabilities . . .
- ...and if the distribution in this step is described by \vec{x} , then the distribution in the next step is distributed as $\vec{x}P$.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities . . .
- ...and if the distribution in this step is described by \vec{x} , then the distribution in the next step is distributed as $\vec{x}P$.
- But $\vec{\pi}$ is the steady state! So: $\vec{\pi} = \vec{\pi} P$

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities . . .
- ...and if the distribution in this step is described by \vec{x} , then the distribution in the next step is distributed as $\vec{x}P$.
- But $\vec{\pi}$ is the steady state! So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ is the PageRank vector, the vector of steady-state probabilities . . .
- ...and if the distribution in this step is described by \vec{x} , then the distribution in the next step is distributed as $\vec{x}P$.
- But $\vec{\pi}$ is the steady state! So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ is the PageRank vector, the vector of steady-state probabilities . . .
- ...and if the distribution in this step is described by \vec{x} , then the distribution in the next step is distributed as $\vec{x}P$.
- But $\vec{\pi}$ is the steady state! So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...
- ullet that is, $\vec{\pi}$ is the left eigenvector with the largest eigenvalue.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, \dots, \pi_N)$ is the PageRank vector, the vector of steady-state probabilities . . .
- ...and if the distribution in this step is described by \vec{x} , then the distribution in the next step is distributed as $\vec{x}P$.
- But $\vec{\pi}$ is the steady state! So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for P ...
- ... that is, $\vec{\pi}$ is the left eigenvector with the largest eigenvalue.
- Transition probability matrices always have largest eigenvalue
 1.

• Recall: regardless of where we start (except for pathological cases), we eventually reach the steady state $\vec{\pi}$.

- Recall: regardless of where we start (except for pathological cases), we eventually reach the steady state $\vec{\pi}$.
- Start with (almost) any distribution \vec{x} , e.g., uniform distribution

- Recall: regardless of where we start (except for pathological cases), we eventually reach the steady state $\vec{\pi}$.
- Start with (almost) any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.

- Recall: regardless of where we start (except for pathological cases), we eventually reach the steady state $\vec{\pi}$.
- Start with (almost) any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.

- Recall: regardless of where we start (except for pathological cases), we eventually reach the steady state $\vec{\pi}$.
- Start with (almost) any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.

- Recall: regardless of where we start (except for pathological cases), we eventually reach the steady state $\vec{\pi}$.
- Start with (almost) any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of P until the product looks stable.

- Recall: regardless of where we start (except for pathological cases), we eventually reach the steady state $\vec{\pi}$.
- Start with (almost) any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of P until the product looks stable.
- This is called the power method.

• Two-node example: $\vec{x} = (0.5, 0.5), P = \begin{pmatrix} 0.25 & 0.75 \\ 0.25 & 0.75 \end{pmatrix}$

- Two-node example: $\vec{x} = (0.5, 0.5), P = \begin{pmatrix} 0.25 & 0.75 \\ 0.25 & 0.75 \end{pmatrix}$
- $\vec{x}P = (0.25, 0.75)$

- Two-node example: $\vec{x} = (0.5, 0.5), P = \begin{pmatrix} 0.25 & 0.75 \\ 0.25 & 0.75 \end{pmatrix}$
- $\vec{x}P = (0.25, 0.75)$
- $\vec{x}P^2 = (0.25, 0.75)$

- Two-node example: $\vec{x} = (0.5, 0.5), P = \begin{pmatrix} 0.25 & 0.75 \\ 0.25 & 0.75 \end{pmatrix}$
- $\vec{x}P = (0.25, 0.75)$
- $\vec{x}P^2 = (0.25, 0.75)$
- Convergence in one iteration!

Preprocessing

- Preprocessing
 - Given graph of links, build matrix P

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - ullet From modified matrix, compute $\vec{\pi}$

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - ullet From modified matrix, compute $ec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page *i*.

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page i.
- Query processing

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page i.
- Query processing
 - Retrieve pages satisfying the query

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page i.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation
 - From modified matrix, compute $\vec{\pi}$
 - $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

 Real surfers are not random surfers – Markov model is not a good model of surfing.

- Real surfers are not random surfers Markov model is not a good model of surfing.
 - Issues: back button, short vs. long paths, bookmarks, directories – and search!

- Real surfers are not random surfers Markov model is not a good model of surfing.
 - Issues: back button, short vs. long paths, bookmarks, directories – and search!
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.

- Real surfers are not random surfers Markov model is not a good model of surfing.
 - Issues: back button, short vs. long paths, bookmarks, directories – and search!
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query video service

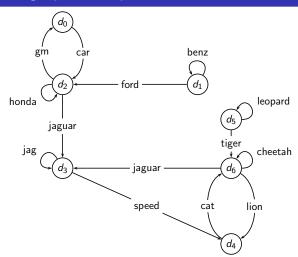
- Real surfers are not random surfers Markov model is not a good model of surfing.
 - Issues: back button, short vs. long paths, bookmarks, directories – and search!
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query *video service*
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both words.

- Real surfers are not random surfers Markov model is not a good model of surfing.
 - Issues: back button, short vs. long paths, bookmarks, directories – and search!
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query video service
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both words.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.

- Real surfers are not random surfers Markov model is not a good model of surfing.
 - Issues: back button, short vs. long paths, bookmarks, directories – and search!
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query video service
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both words.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desirable

- Real surfers are not random surfers Markov model is not a good model of surfing.
 - Issues: back button, short vs. long paths, bookmarks, directories – and search!
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query video service
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both words.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desirable
- In practice: rank according to weighted combination of many factors, including raw text match, anchor text match, PageRank and many other factors

Web graph example



Transition (probability) matrix

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
d_2	0.33	0.00	0.33	0.33	0.00	0.00	0.00
d_3	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Transition matrix with teleporting

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.02	0.02	0.88	0.02	0.02	0.02	0.02
d_1	0.02	0.45	0.45	0.02	0.02	0.02	0.02
d_2	0.31	0.02	0.31	0.31	0.02	0.02	0.02
d_3	0.02	0.02	0.02	0.45	0.45	0.02	0.02
d_4	0.02	0.02	0.02	0.02	0.02	0.02	0.88
d_5	0.02	0.02	0.02	0.02	0.02	0.45	0.45
d_6	0.02	0.02	0.02	0.31	0.31	0.02	0.31

Power method vectors $\vec{x}P^k$

	\vec{x}	$\vec{x}P^1$	$\vec{x}P^2$	$\vec{x}P^3$	$\vec{x}P^4$	$\vec{x}P^5$	$\vec{x}P^6$	$\vec{x}P^7$	$\vec{x}P^8$	$\vec{x}P^9$	$\vec{x}P^{10}$	$\vec{x}P^{11}$	$\vec{x}P^{12}$	$\vec{x}P^{13}$
d_0	0.14	0.06	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05
												0.04		
d_2	0.14	0.25	0.18	0.17	0.15	0.14	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11
												0.25		
d_4	0.14	0.12	0.16	0.19	0.19	0.20	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
d_5	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
da	0.14	0.25	0.23	0.25	0.27	0.28	0.29	0.29	0.30	0.30	0.30	0.30	0.31	0.31

 Frequent claim: PageRank is the most important component of web ranking.

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes . . .

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes . . .
 - Rumor has it that PageRank in its original form (as presented here) has a negligible impact on ranking!

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes . . .
 - Rumor has it that PageRank in its original form (as presented here) has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes . . .
 - Rumor has it that PageRank in its original form (as presented here) has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.
 - Adressing link spam is difficult and crucial.

Outline

Anchor text

- 2 PageRank
- 3 HITS

• Premise: there are two different types of relevance on the web.

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - Bob's list of recommended hotels in London

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - Bob's list of recommended hotels in London
- Relevance type 2: Authorities. An authority page is a direct answer to the information need. Authority pages occur repeatedly on hub pages.

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - Bob's list of recommended hotels in London
- Relevance type 2: Authorities. An authority page is a direct answer to the information need. Authority pages occur repeatedly on hub pages.
 - Home page of Four Seasons Hotel London

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - Bob's list of recommended hotels in London
- Relevance type 2: Authorities. An authority page is a direct answer to the information need. Authority pages occur repeatedly on hub pages.
 - Home page of Four Seasons Hotel London
- Most approaches to search (including PageRank ranking) don't make the distinction between these two very different types of relevance.

Hubs and authorities

 A good hub page for a topic points to many authority pages for that topic.

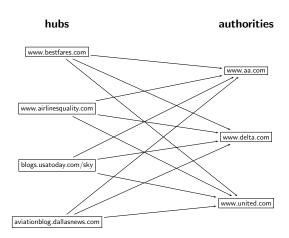
Hubs and authorities

- A good hub page for a topic points to many authority pages for that topic.
- A good authority page for a topic is pointed to by many hub pages for that topic.

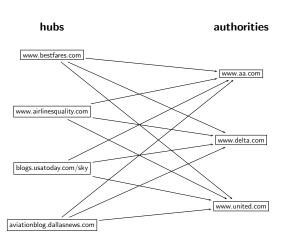
Hubs and authorities

- A good hub page for a topic points to many authority pages for that topic.
- A good authority page for a topic is pointed to by many hub pages for that topic.
- Circular definition we will turn this into an iterative computation.

Example for hubs and authorities



Example for hubs and authorities



Definition clear?

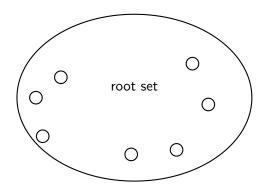
• Do a regular web search first

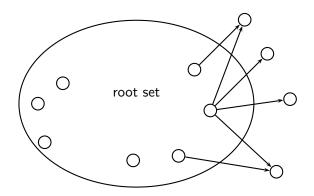
- Do a regular web search first
- Call the search result the root set

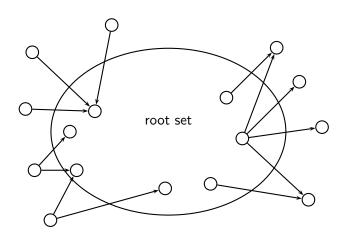
- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set

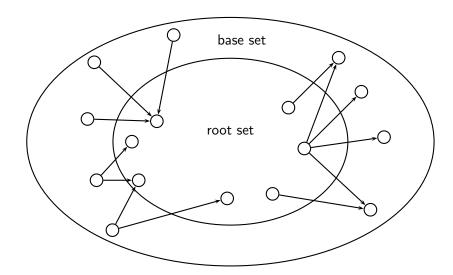
- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call this larger set the base set

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call this larger set the base set
- Finally, compute hubs and authorities for this (small) web graph









• Root set typically has 200-1000 nodes.

- Root set typically has 200-1000 nodes.
- Base set may have up to 5000 nodes.

- Root set typically has 200-1000 nodes.
- Base set may have up to 5000 nodes.
- Computation of base set:

- Root set typically has 200-1000 nodes.
- Base set may have up to 5000 nodes.
- Computation of base set:
 - Follow out-links by parsing the pages in the root set

- Root set typically has 200–1000 nodes.
- Base set may have up to 5000 nodes.
- Computation of base set:
 - Follow out-links by parsing the pages in the root set
 - Find d's in-links by searching for all pages containing a link to d

- Root set typically has 200-1000 nodes.
- Base set may have up to 5000 nodes.
- Computation of base set:
 - Follow out-links by parsing the pages in the root set
 - Find d's in-links by searching for all pages containing a link to d
 - This assumes that our inverted index supports search for links (in addition to terms).

• Compute for each page d in the base set a hub score h(d) and an authority score a(d)

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)
- After convergence:

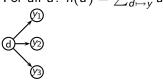
- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)
- After convergence:
 - Output pages with highest h scores as top hubs

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)
- After convergence:
 - Output pages with highest h scores as top hubs
 - Output pages with highest a scores as top authorities

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)
- After convergence:
 - Output pages with highest h scores as top hubs
 - Output pages with highest a scores as top authorities
 - So we output two ranked lists

Iterative update

• For all d: $h(d) = \sum_{d \mapsto y} a(y)$



Iterative update

• For all d: $h(d) = \sum_{d \mapsto y} a(y)$

• For all d: $a(d) = \sum_{v \mapsto d} h(y)$

Iterative update

• For all d: $h(d) = \sum_{d \mapsto v} a(y)$

• For all d: $a(d) = \sum_{v \mapsto d} h(y)$

• Iterate these two steps until convergence

Scaling

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration
 - Scaling factor doesn't really matter.

Scaling

- To prevent the a() and h() values from getting too big, can scale down after each iteration
- Scaling factor doesn't really matter.
- We care about the relative (as opposed to absolute) values of the scores.

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration
 - Scaling factor doesn't really matter.
 - We care about the relative (as opposed to absolute) values of the scores.
- In most cases, the algorithm converges after a few iterations.

Hubs

- schools
 LINK Page-13
- "ú–{,ÌŠw□Z
- □a‱,□¬Šw□Zfz□[f□fy□[fW
- 100 Schools Home Pages (English)
- K-12 from Japan 10/...rnet and Education)
 http://www..iglobe.ne.jp/~IKESAN
- nttp://www..igiobe.ne.jp/~ir
 ,I,f,j=¬Šw=Z,U"N,P'g•"Œê
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cav's Homepage(Japanese)
- -v*ionŠwoZ,Ìfzo[fofvo[fW
- UNIVERSITY
- %J—³=¬Šw=Z DRAGON97-TOP
- $\Box \hat{A}$ %" $\Box \neg \hat{S}w \Box Z, T"N, P"gfz \Box [f \Box fy \Box [fW]]$
- ¶µ°é¼ÂÁ© ¥á¥Ē¥å¡¼ ¥á¥Ë¥å¡¼

Authorities

- The American School in Japan
- The Link Page
- ‰ª□è□s—§`ā'c□¬Šw□Zfz□[f□fy□[fW
- Kids' Space
- ^A=é=s—§^A=é=½**=¬Šw=Z
 (/=é
*'c'åŠw=='®=¬Šw=Z
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
- welcome to Miasa E&J school
- = __'b=)@§=E‰j•l=s—§'†=)=¼=¬Šw=Z,ify http://www...p/~m maru/index.html
- fukui haruyama-es HomePage
- Torisu primary school
- goo
- Yakumo Elementary, Hokkaido, Japan
- FUZOKU Home Page
- Kamishibun Elementary School...

Hubs

- schools LINK Page-13
- "ú–{.ÌŠw≡Z
- □a‰,□¬Šw□Zfz□[f□fv□[fW
- 100 Schools Home Pages (English)
- K-12 from Japan 10/...rnet and Education) http://www...iglobe.ne.jp/~IKESAN
- ,I,f,j□¬Šw□Z,U"N,P'g•"Œê
- □ÔŠ—'¬—\$□ÔŠ—"Œ□¬Šw□Z
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Homepage(Japanese) -v"io¬ŠwoZ.lfzo[fofvo[fW
- UNIVERSITY
- %J—°=¬Šw=Z DRAGON97-TOP
- □‰*□¬Šw□Z,T"N,P'qfz□[f□fv□[fW
- ¶u°é¼ÂÁ© ¥á¥Ē¥â;¼ ¥á¥Ë¥â;¼

Authorities

- The American School in Japan
- The Link Page
- %°□è□s—§`ā'c□¬Šw□Zfz□If□fv□IfW
- Kids' Space
- A□é□s—§A□é□¼•□¬Šw□Z «(□é«°c'åŠw•□'®□¬Šw□Z
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.ip welcome to Miasa F&J school
- p=10E§=E‰j+lps—§'†=1=¼=¬Šw=Z,İfy
 - http://www...p/~m maru/index.html
 - fukui haruvama-es HomePage
 - Torisu primary school
- Yakumo Elementary. Hokkaido, Japan
- FUZOKU Home Page
- Kamishibun Elementary School...

• The guery was "Japan elementary schools".

Hubs

- schools
 LINK Page-13
- "ú–{,ÌŠw⊒Z
- □a‰_□¬Šw□Zfz□[f□fy□[fW
- 100 Schools Home Pages (English)
 K-12 from Japan 10/...rnet and Education)
- K-12 from Japan 10/...rnet and Education
 http://www..iglobe.ne.jp/~IKESAN
- I,f,j=¬Šw=Z,U"N,P'g*"Œê
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Homepage(Japanese)
 -v'ic¬ŠwcZ.ìfzc[fcfvc[fW]
- UNIVERSITY
- %J—°=¬Šw=Z DRAGON97-TOP
- □‰¹□¬Šw□Z,T"N,P'gfz□[f□fy□[fW
- ¶µ°é¼ÂÁ© ¥á¥Ë¥å¡¼ ¥á¥Ë¥å¡¼

Authorities

- The American School in Japan
- The Link Page
- ‰ª□è□s—§^ā"c□¬Šw□Zfz□[f□fy□[fW
- Kids' Space
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
 welcome to Miasa E&J school
- D "PD10E§DE%ij+ID9—§'†D1D'/AD¬ŠWDZ,Îfy
- http://www...p/~m_maru/index.html
 - fukui haruyama-es HomePage
 - Torisu primary school
- Yakumo Elementary. Hokkaido. Japan
- FUZOKU Home Page
- Kamishibun Elementary School...
- The query was "Japan elementary schools".
- HITS pulled together good pages regardless of page content.

Hubs

- schools
 LINK Page-13
- "ú–{,ÌŠw⊒Z
- □a‱,□¬Šw□Zfz□[f□fy□[fW
- 100 Schools Home Pages (English)
- K-12 from Japan 10/...rnet and Education)
 http://www...iglobe.ne.jp/~IKESAN
- I,f,j=¬Šw=Z,U"N,P'g="Œê
- □ÓŠ—'¬—§□ÓŠ—"Œ□¬Šw□Z
- Koulutus ja oppilaitokset TOYODA HOMEPAGE
- Education
- Education
- Cay's Homepage(Japanese)
 -v'ic¬ŠwcZ.Ìfzc[fcfvc[fW]
- UNIVERSITY
- %J—³=¬Šw=Z DRAGON97-TOP
- □‰⁴□¬Šw□Z,T"N,P'gfz□[f□fy□[fW
- ¶µ°é¼ÂÁ© ¥á¥Ē¥å¡¼ ¥á¥Ë¥å¡¼

Authorities

- The American School in Japan
- The Link Page
- ‰ª⊐è⊐s—§°ā°c⊐¬Šw⊐Zfz⊐[f⊐fy⊐[fW
- Kids' Space
 ^À=é=s—§^À=é=¼•*==Šw=Z
- Alels—§ Alels* I GWLZ
 «(Ié«°c'åŠw•I'®I¬ŠwIZ
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
 welcome to Miasa E&J school
- __'bal@seboj•las—§'tala¼a¬ŠwaZ,Ìfy
- http://www...p/~m_maru/index.html
- fukui haruyama-es HomePage
 Torisu primary school
- ronsu prim
- Yakumo Elementary.Hokkaido.Japan
- FUZOKU Home Page
- Kamishibun Elementary School...
- The guery was "Japan elementary schools".
- HITS pulled together good pages regardless of page content.
- An English query was able to retrieve Japanese-language pages!

Hubs

- schools
 LINK Page-13
- "ú–{,ÌŠw≡Z
- □a‰,□¬Šw□Zfz□[f□fy□[fW 100 Schools Home Pages (English)
- K-12 from Japan 10/...rnet and Education)
- http://www..iglobe.ne.jp/~IKESAN
- ,I,f,j⊡¬Šw⊡Z,U"N,P'g•"Œê
- □ÔŠ—'¬—§□ÔŠ—"Œ□¬Šw□Z Koulutus ja oppilaitokset
- Koulutus ja oppilaitokse TOYODA HOMEPAGE
- Education
- Education
- Cay's Homepage(Japanese)
 -v'ic¬ŠwcZ.ìfzc[fcfvc[fW]
- UNIVERSITY
- %J—³=¬Šw=Z DRAGON97-TOP
- □‰⁴□¬Šw□Z,T"N,P'gfz□[f□fy□[fW
- ¶u°é¼ÂÁ© ¥á¥Ē¥â;¼ ¥á¥Ë¥â;¼

Authorities

- The American School in Japan
- The Link Page
- %ª□è□s—§*ā°c□¬Šw□Zfz□[f□fy□[fW
- Kids' Space
- KEIMEI GAKUEN Home Page (Japanese)
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
 welcome to Miasa E&J school
- http://www...p/~m_maru/index.html
- fukui haruyama-es HomePage
 - Torisu primary school
- Yakumo Elementary.Hokkaido.Japan
- FUZOKU Home Page
- Kamishibun Elementary School...
- The guery was "Japan elementary schools".
- HITS pulled together good pages regardless of page content.
- An English query was able to retrieve Japanese-language pages!
- Once the base set is assembled, we only do link analysis, no text matching.

Hubs

- schools
 LINK Page-13
- "ú–{,ÌŠw⊒Z
- □a‰,□¬Šw□Zfz□[f□fy□[fW
- 100 Schools Home Pages (English)
 K-12 from Japan 10/...rnet and Education)
- http://www...iglobe.ne.jp/~IKESAN
- I,f,j□¬Šw□Z,U"N,P'g•"Œê
- □ÒŠ—'¬—§□ÒŠ—"Œ□¬Šw□Z
- Koulutus ja oppilaitokset
- TOYODA HOMEPAGE
- Education
- Cay's Homepage(Japanese) -v'i=¬Šw=Z.ìfz=[f=fv=[fW]
- -y1=7SW=2,I
 UNIVERSITY
- %J—³=¬Šw=Z DRAGON97-TOP
- □‰*□¬Šw□Z,T"N,P'gfz□[f□fy□[fW
- ¶µ°é¼ÂÁ© ¥á¥Ē¥åj¼ ¥á¥Ë¥åj¼

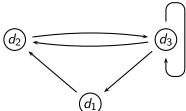
Authorities

- The American School in Japan
- The Link Page
- %*IèIs—\$`a"cI¬ŠwIZfzIIfI fvIIfW
- Kids' Space
- A□é□s—§A□é□¼•"□¬Šw□Z
- Shiranuma Home Page
- fuzoku-es.fukui-u.ac.jp
 welcome to Miasa E&J school
- ### Welcome to Whasa Edd School
 #### "### DESTERNI" | 12 S—S'†2121427 Šw2Z, Îfy
 - http://www...p/~m_maru/index.html
 - fukui haruyama-es HomePage
 - Torisu primary school
 - Yakumo Elementary.Hokkaido.Japan
- FUZOKU Home Page
- Kamishibun Elementary School...
- The query was "Japan elementary schools".
- HITS pulled together good pages regardless of page content.
- An English query was able to retrieve Japanese-language pages!
- Once the base set is assembled, we only do link analysis, no text matching.
- Danger: topic drift the pages found by following links may not be related to the original query.

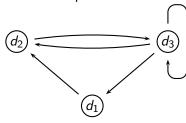
• We define an $N \times N$ adjacency matrix A.

- We define an $N \times N$ adjacency matrix A.
- For $1 \le i, j \le N$, the matrix entry A_{ij} tells us whether there is a link from page i to page j ($A_{ij} = 1$) or not ($A_{ij} = 0$).

- We define an $N \times N$ adjacency matrix A.
- For $1 \le i, j \le N$, the matrix entry A_{ij} tells us whether there is a link from page i to page j ($A_{ij} = 1$) or not ($A_{ij} = 0$).
- Example:



- We define an $N \times N$ adjacency matrix A.
- For $1 \le i, j \le N$, the matrix entry A_{ij} tells us whether there is a link from page i to page j ($A_{ij} = 1$) or not ($A_{ij} = 0$).
- Example:



	d_1	d_2	d
d_1	0	1	0
d_2	1	1	1
dз	1	0	0

• Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
- Similarly for \vec{a} , the vector of authority scores

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
- Similarly for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \mapsto y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
- Similarly for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \mapsto y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ... and we can write $a(d) = \sum_{y \mapsto d} h(y)$ as $\vec{a} = A^T \vec{h}$

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
- Similarly for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \mapsto y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ...and we can write $a(d) = \sum_{y \mapsto d} h(y)$ as $\vec{a} = A^T \vec{h}$
- HITS algorithm in matrix notation:

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
- Similarly for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \mapsto y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ...and we can write $a(d) = \sum_{y \mapsto d} h(y)$ as $\vec{a} = A^T \vec{h}$
- HITS algorithm in matrix notation:
 - Compute $\vec{h} = A\vec{a}$

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
- Similarly for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \mapsto y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ...and we can write $a(d) = \sum_{y \mapsto d} h(y)$ as $\vec{a} = A^T \vec{h}$
- HITS algorithm in matrix notation:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$

- Define the hub vector $\vec{h} = (h_1, \dots, h_N)$ as the vector of hub scores. h_i is the hub score of page d_i .
- Similarly for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \mapsto y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ...and we can write $a(d) = \sum_{y \mapsto d} h(y)$ as $\vec{a} = A^T \vec{h}$
- HITS algorithm in matrix notation:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
 - Iterate until convergence

HITS as eigenvector problem

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$ Compute $\vec{a} = A^T \vec{h}$

HITS as eigenvector problem

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T \vec{h}$ and $\vec{a} = A^T A \vec{a}$

HITS as eigenvector problem

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T \vec{h}$ and $\vec{a} = A^T A \vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA .

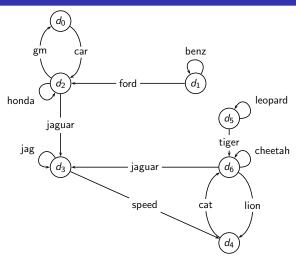
HITS as eigenvector problem

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T \vec{h}$ and $\vec{a} = A^T A \vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA .
- So the HITS algorithm is actually a special case of the power method and hub and authority scores are eigenvector values.

HITS as eigenvector problem

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T\vec{h}$ and $\vec{a} = A^TA\vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA .
- So the HITS algorithm is actually a special case of the power method and hub and authority scores are eigenvector values.
- HITS and PageRank both formalize link analysis as eigenvector problems.

Example web graph



Raw matrix H for HITS

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
d_2	1	0	1	2	0	0	0
d_3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	2	1	0	1

Hub vectors $\overline{h_0, \vec{h}_i} = \frac{1}{d_i} H \cdot \vec{a}_i, i \geq 1$

	$ec{h}_0$	$ec{h}_1$	\vec{h}_2	\vec{h}_3	$ec{h}_4$	\vec{h}_5
d_0	0.14	0.06	0.04	0.04	0.03	0.03
d_1	0.14	0.08	0.05	0.04	0.04	0.04
d_2	0.14	0.28	0.32	0.33	0.33	0.33
d_3	0.14	0.14	0.17	0.18	0.18	0.18
d_4	0.14	0.06	0.04	0.04	0.04	0.04
d_5	0.14	0.08	0.05	0.04	0.04	0.04
d_6	0.14	0.30	0.33	0.34	0.35	0.35

Authority vectors $\vec{a}_i = \frac{1}{c_i} H^T \cdot \vec{h}_{i-1}, i \geq 1$

	a_1	a_2	a 3	<i>a</i> ₄	a_5	a_6	a_7
d_0	0.06	0.09	0.10	0.10	0.10	0.10	0.10
d_1	0.06	0.03	0.01	0.01	0.01	0.01	0.01
d_2	0.19	0.14	0.13	0.12	0.12	0.12	0.12
d_3	0.31	0.43	0.46	0.46	0.46	0.47	0.47
d_4	0.13	0.14	0.16	0.16	0.16	0.16	0.16
d_5	0.06	0.03	0.02	0.01	0.01	0.01	0.01
d_6	0.19	0.14	0.13	0.13	0.13	0.13	0.13

• Pages with highest in-degree: d₂, d₃, d₆

- Pages with highest in-degree: d₂, d₃, d₆
- Pages with highest out-degree: d₂, d₆

- Pages with highest in-degree: d_2 , d_3 , d_6
- Pages with highest out-degree: d₂, d₆
- Pages with highest PageRank: d₆

- Pages with highest in-degree: d_2 , d_3 , d_6
- Pages with highest out-degree: d₂, d₆
- Pages with highest PageRank: d₆
- Pages with highest hub score: d_6 (close: d_2)

- Pages with highest in-degree: d₂, d₃, d₆
- Pages with highest out-degree: d₂, d₆
- Pages with highest PageRank: d₆
- Pages with highest hub score: d_6 (close: d_2)
- Pages with highest authority score: d_3

 PageRank can be precomputed, HITS has to be computed at query time.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- The PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- The PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- The PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- The PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.
- On the web, a good hub almost always is also a good authority.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- The PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.
- On the web, a good hub almost always is also a good authority.
- Why?

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- The PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.
- On the web, a good hub almost always is also a good authority.
- Why?
- The actual difference between PageRank ranking and HITS ranking is therefore not as large as one might expect.

• Chapter 21 of IIR

- Chapter 21 of IIR
- Resources at http://ifnlp.org/ir

- Chapter 21 of IIR
- Resources at http://ifnlp.org/ir
- American Mathematical Society article on PageRank (popular science style)

- Chapter 21 of IIR
- Resources at http://ifnlp.org/ir
- American Mathematical Society article on PageRank (popular science style)
- Jon Kleinberg's home page (main person behind HITS)

- Chapter 21 of IIR
- Resources at http://ifnlp.org/ir
- American Mathematical Society article on PageRank (popular science style)
- Jon Kleinberg's home page (main person behind HITS)
- Google's official description of PageRank: PageRank reflects our view of the importance of web pages by considering more than 500 million variables and 2 billion terms. Pages that we believe are important pages receive a higher PageRank and are more likely to appear at the top of the search results.