
Text Processing on the 
Web

Week 13
Learning to Rank / Revision

(source of LeToR slides from Tie-Yan Liu @ MSRA)
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Conventional Ranking Models

• Content relevance
– Boolean model, vector space model, probabilistic 

BM25 model, language model
• Page importance

– Link analysis:  HITS, PageRank, etc.
– And by log mining
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Machine Learning Can Help

• Machine learning is an effective tool
– To automatically tune parameters
– To combine multiple evidence
– To avoid over-fitting  (by means of regularization, etc.)

• Learning to Rank
– Use machine learning technologies

to train the ranking model
– A hot research topic these years
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Learning to Rank
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The general idea

• Training examples in the form of 
• Simple: replace <Q,d> with features:

– Similarity of Q,d
– Density of Q within d
– Other factors PageRank, etc.

• Train a simple learner on this data to get a 
probabilistic belief of 

• Rank by belief on 
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Least Squares Retrieval Function
(N. Fuhr, TOIS 1989)

• Relevance judgment for a query-document pair 
is represented by a vector: 
– For binary judgment:  y = (1, 0)  or (0, 1)

• Use a polynomial function as the ranking 
function f(x).

• Use least square error (LSE) method to learn the 
regression function
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Discriminative Model for IR
(R. Nallapati, SIGIR 2004)

• Idea: Use discriminative modeling instead of 
generative model

• Generative models (i.e. via P(d|R)·P(R)) include 
BIR and language model (in their interpretation)

• Discriminative learning algorithms (i.e. model 
P(R|d) directly) used:
– Maximum Entropy
– Support Vector Machines
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Conventional ML Approach

• These are examples of a direct ML approach
• Apply regression or classification methods to 

solve the problem of ranking
– Regard binary judgments or multi-valued discrete as 

“non-ordered” categories, or real values.
– Although ground truths are neither “non-ordered”

categories nor real values.

Serious shortcomings.  What’s the problem?
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Ordinal Regression

• Confusion between relevance with ranking
– Absolute and independent relevance assumed

• But relevance is relative and defined only among documents 
for the same query: a non-rel doc for a popular query may 
have higher TF than a rel doc for a rare query

– Also we don’t necessary care about relevance
• Care about ranking w.r.t other possible candidate dn, 

especially at top ranks
• Relative order is important: don’t need to predict accurate 

category, or value of f(x).
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Bridging the Gap

• Go beyond conventional ML methods
1. Ordinal regression (a pointwise approach)

• Target the ground truth of multi-valued discrete.

2. Preference learning (a pairwise approach)
• Target the ground truth of pairwise preference. 
• Also compatible with that of multi-valued discrete.

3. Listwise ranking (a listwise approach)
• Target the ground truth of partial / total order.
• Also compatible with other types of ground truths.
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1. Ordinal Regression: 
A Pointwise Approach

• Input space
– Features of a single document (w.r.t. a query): 

• Output space
– Ordered categories:
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Ordinal Regression vs. 
Regression/Classification

• Regression: Real values
• Classification: Non-ordered categories
• Ordinal regression: Discrete values /

Ordered categories

• Ordinal regression can be regarded as 
something between regression and 
classification.
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2. Preference Learning: 
A Pairwise Approach

• Input space: two documents
– Document pairs: 

• Output space
– Preference:
– Use pairs of features or differences between the two vectors
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Learning to Order Things
(W. Cohen, R. Schapire, et al. NIPS 1998)

• Pairwise ranking function
–

• Important: pairwise loss function

–

• A weighted majority algorithm is used to learn the 
parameters w from the pairwise ground truth.
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Learning to Order Things

• Go from pairwise preferences to a total order:
–

– Con: the optimal total order construction is proven NP 
hard.

• Then must approximate:
– Use a greedy ordering
– Proven: the agreement for the approximation algorithm 

is at least half the optimal agreement
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Ranking SVM
(R. Herbrich, T. Graepel, et al. , Advances in Large Margin 

Classifiers, 2000;  T. Joachims, KDD 2002)

• Formally discussed that ordinal regression can 
be solved by pairwise preference learning
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Results look … poor

• It is not clear how pairwise loss correlates with query-level 
IR evaluation measures.
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Possible Explanation?
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Web Data

The more the number varies, the more 
pairwise is different from query-level.



A case for query-specific loss

• Consider two queries with 40 and 5 document 
results.  Say a system gets 780 of the 790 
possible pairs correct
– Sys 1: gets all of the 5*4/2 = 10 pairs from Q2 wrong
– Sys 2: gets a random 10 of the 40*39/2 = 780 pairs 

wrong
• Clearly, we prefer Sys 2. How to cater for this?
• Change the loss function (evaluation function)
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A Possible Solution

• Introduce a per-query normalization to the 
pairwise loss function.
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Query-level normalizer 

Loss function desiderata:

1)Insensitive to number 
of document pairs. 
2)Top ranks should be 
more important
3)Upper bound on loss.  
Difficult    
queries shouldn’t have 
more importance.



Pairwise Summary

Pros:
• No longer assume 

absolute relevance
• Use pairwise 

relationship to 
represent relative 
ranking.

Cons
• Minimizing document 

pairs classification 
error and not errors in 
ranking of documents.

• # of generated 
document pairs can 
vary 
– Need to fix loss, 

otherwise model can 
be biased
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3. A Listwise Approach
• Input space

– Document collection w.r.t. a query

• Output space
– Permutation of these documents:

• By treating the list of documents associated with the same 
query as a learning instance, one can naturally obtain
– The rank (position) information,
– The query-level information.

• Opportunity to model more of the unique properties of IR 
ranking in the learning process.
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Direct Optimization of IR 
Measures

• Let’s try to directly optimize the ranking results.
• But this is difficult:

– Evaluation functions such as NDCG are non-smooth 
and non-differentiable, since they depend on ranks

– Most optimization was developed to handle smooth 
and differentiable functions

• Two methods:
1.Smooth out the evaluation function with a surrogate;
2.Use other optimization routines (e.g., genetic 

algorithms).
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ListNet 
(Z. Cao, T. Qin, T. Liu, et al. ICML 2007)

• Loss function = KL-divergence between two 
permutation probability distributions

• Model = Neural Network
• Algorithm = Gradient Descent
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Probability distribution defined 
by the ground truth

Probability distribution 
defined by the model output



Experimental Results

Pairwise (RankNet)
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Training Performance on TD2003 
Dataset

Listwise (ListNet)

Better correlation
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Revision



Min-Yen Kan / National University of Singapore 29

Announcements

• I will be away right before the exam (17-22 Nov), 
so please come ask questions earlier

• Send me anonymous mail (via IVLE) about what 
you liked about the course, what you disliked
– Criticisms always more helpful
– You can also save it for the “official feedback” if you’d 

like
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Final Exam

• 2 hours, 26 Nov, in the evening
• Open book

• 3 multi-part questions, no calculation needed
– But that doesn’t mean there’s no math

• Similar to other past year exams and more 
open-ended tutorial questions 
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Course in a nutshell

W0: Math 
W1: Web basics and models
W2: Basic IR
W3: Probabilistic IR 
W4: Dimensionality 

Reduction
W5: Link Structure
W6: Passage Retrieval

W7: Question Answering
W8: Summarization 
W9: Intro to Machine Learning 
W9: Text Categorization
W11: Sequence Labeling
W12: CRF + Info. Extraction
W13: Learning to Rank
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Text Analysis Example

• Information Units
– IR: terms: raffles x 1; Singapore x 3; pte x 1 …
– IE: info units: Singapore Flyer, Raffles Avenue, Marina Bay, (65) 6854-5200 …

and their relations 
– QA: Which is the nearest MRT to Singapore Flyer?

Answer: City Hall MRT
– NLP: understanding the contents

Singapore Flyer

Singapore Flyer Pte Ltd  30 Raffles Avenue, #01-07  
Singapore 039803 
Telephone:  (65) 6854 5200  Fax: (65) 6339 9167 

Singapore Flyer is the world's largest observation wheel. 
Standing at a stunning 165m from the ground, the Flyer 
offers you breathtaking, panoramic views of the Marina 
Bay, our island city and beyond. There's also a wide range 
of shops, restaurants, activities and facilities.   READ 
MORE >>

Photo credit: markehr
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W0-W1: Math and Web basics

• Size and growth of the web
– Size: an instance of Bayesian estimation
– Growth: instances of temporal graph modeling

new nodes and edges added/changed over timesteps

• Compare these to other instances in the course

• Math:
– Prior and posterior probabilities
– Parameter estimation: EM (the chicken and egg problem)
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W2-W3: Models of IR

• Heuristic systems
– TF.IDF (compare IDF to RF in text classification)

• Prob IR
– Model how a query is an representation of a document
– A mathematical basis for IDF

• Language Modeling
– Putting word order dependencies in the retrieval model
– First look at Hidden Markov Models and n-grams
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W4: Dimensionality Reduction

Link to machine learning and text classification

• Upwards of 30K dimensions, sparse vectors
• Reduce to save space, and help both recall and 

precision

• LSI: apply singular value decomposition to find best 
orthogonal axes to represent doc-term matrix

• pLSI: view this from a probabilistic interpretation, using a 
unigram LM and using a latent topic variable in modeling

• Both have problems determining k, # of 
topics/dimensions, similar to text clustering
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W5: Link structure

• Dealing with hyperlinks.  Can be generalized to 
recommendation frameworks.

• PageRank: Random Walk + Teleportation
– Topic sensitive teleportation

• HITS: Hubs and authorities
– Salsa: SVD 

Still needs work integrating within standard IR
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W6-W7: Passage retrieval and QA 

Query

Expanded Query

Documents

Passages

Exact Answers

Query Expansion

Document Retriever

Passage Retriever

Answer Extractor

IR

Passage

QA

Information System

Typed Query

Query Analysis
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W6-W7: Passage retrieval and QA

• From document to exact answer retrieval
• Need heavier duty processing for smaller 

fragments
– Query Expansion (from external websites, from 

lexicons, from logs)
– Density based retrieval towards syntactic analysis

• Carefully targeted NLP analysis helps

– Question Typing
• When questions are in NL form or when we can infer more 

about the user’s context 
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W8-W12: Applying machine 
learning to NLP/IR tasks

• Many NLP/IR tasks can be framed as learning problems

• Supervised: have labeled training data; learn a function
• Unsupervised: have training data, no label; learn a 

clustering/pattern
• Semi supervised: 

– Small amounts of labeled data, lots of unlabeled data: 
text classification, named entity recognition

– Labeled data but not at the fine-grained answer level: 
IE, summarization
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Feature Engineering

• Domain independent
• Task independent
• Order independent
• Language independent
• Shallow NLP
• Local context statistics 

(TF, position)
• Orthographic

• Domain dependent
• Task dependent
• Context sensitive
• Language dependent
• Deep NLP
• Corpus wide statistics

(IDF, RF)

Text problems: Dealing with 10K+ features, skewed datasets, 
finding an appropriate learning algorithm (not just SVMs)
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W8-W12: Application areas

• Summarization
– Selecting sentences or text units

• Text Classification
– Selecting one or more categories for a text unit

• Sequence Labeling / Information Extraction
– Identifying a chunk
– Selecting a chunk tag
– Managing co-reference



W13: Learning to Rank

• BUG
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Three lessons learned

• Probabilistic analyses of text processing
– Bayesian Analysis

• Feature/vector creation
– Latent variables
– Aspects of the problem and setting

• Dealing with aspects of text processing
– Size of number of features

• Still very much open ended research topics
– Heuristic IR still scales better
– Adversarial IR is a real issue
– Integration of better knowledge sources and scalability continues 

to be a problem
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That’s it!

Thanks for learning about
Text processing!


