

Text Processing on the Web

Week 13 Learning to Rank / Revision

(source of LeToR slides from Tie-Yan Liu @ MSRA)

Conventional Ranking Models

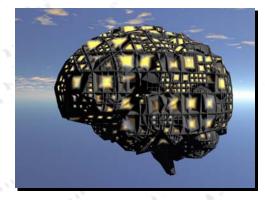
- Content relevance
 - Boolean model, vector space model, probabilistic
 BM25 model, language model
- Page importance
 - Link analysis: HITS, PageRank, etc.
 - And by log mining

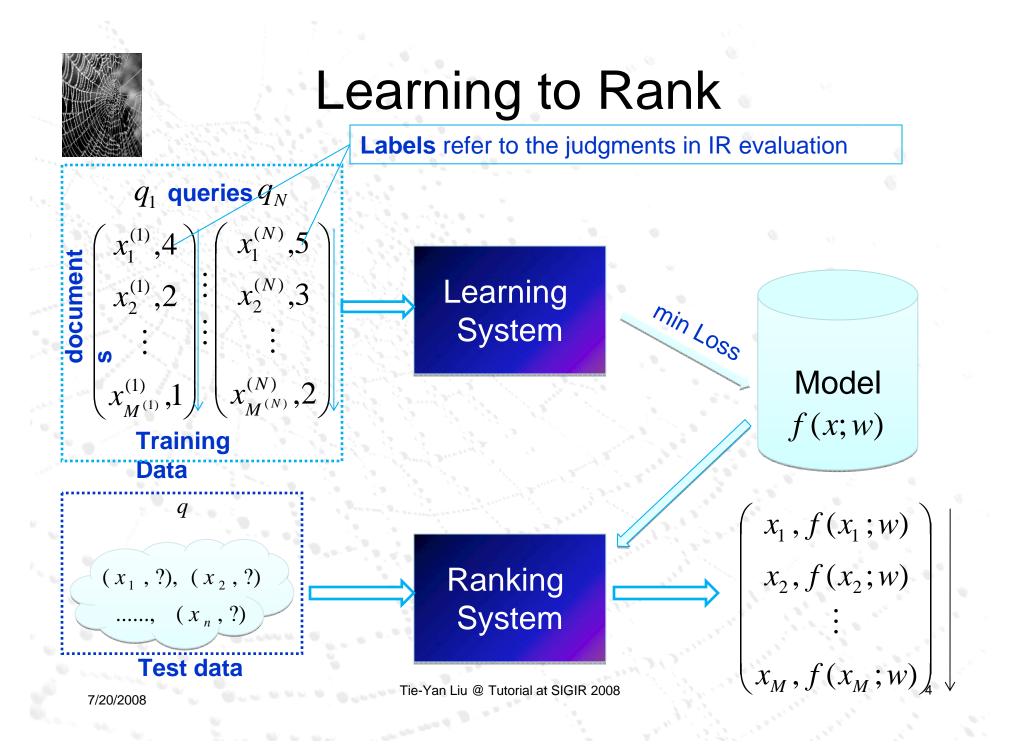
Machine Learning Can Help

- Machine learning is an effective tool
 - To automatically tune parameters
 - To combine multiple evidence
 - To avoid over-fitting (by means of regularization, etc.)

Learning to Rank

- Use machine learning technologies to train the ranking model
- A hot research topic these years





The general idea

- Training examples in the form of <Q,d,{rel,rel}>
- Simple: replace <Q,d> with features: $\vec{x} = \{x_0, x_1, ..., x_n\}$
 - Similarity of Q,d
 - Density of Q within d
 - Other factors PageRank, etc.
- Train a simple learner on this data to get a probabilistic belief of
- Rank by belief on rel to rel

Least Squares Retrieval Function (N. Fuhr, TOIS 1989)

 Relevance judgment for a query-document pair is represented by a vector:

- For binary judgment: y = (1, 0) or (0, 1)

- Use a polynomial function as the ranking function f(x).
- Use least square error (LSE) method to learn the regression function

$$\min \sum_{i=1}^{N} \sum_{j=1}^{M^{(i)}} \left| y_{j}^{(i)} - f(x_{j}^{(i)}) \right|^{2}$$

Discriminative Model for IR

(R. Nallapati, SIGIR 2004)

- Idea: Use discriminative modeling instead of generative model
- Generative models (i.e. via $P(d/R) \cdot P(R)$) include BIR and language model (in their interpretation)
- Discriminative learning algorithms (i.e. model P(R/d) directly) used:
 - Maximum Entropy
 - Support Vector Machines

Conventional ML Approach

- These are examples of a direct ML approach
- Apply regression or classification methods to solve the problem of ranking
 - Regard binary judgments or multi-valued discrete as "non-ordered" categories, or real values.
 - Although ground truths are neither "non-ordered" categories nor real values.

Serious shortcomings. What's the problem?

Ordinal Regression

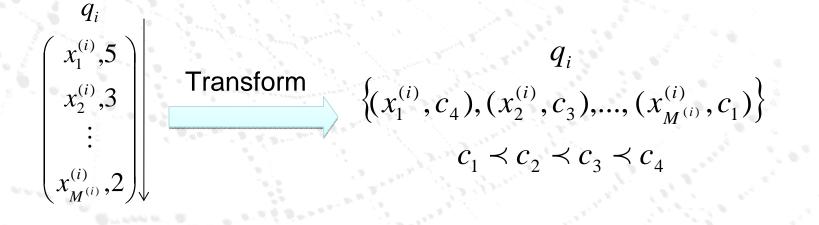
- Confusion between relevance with ranking
 - Absolute and independent relevance assumed
 - But relevance is relative and defined only among documents for the same query: a non-rel doc for a popular query may have higher TF than a rel doc for a rare query
 - Also we don't necessary care about relevance
 - Care about ranking w.r.t other possible candidate d_n, especially at top ranks
 - Relative order is important: don't need to predict accurate category, or value of f(x).

Bridging the Gap

- Go beyond conventional ML methods
 - 1. Ordinal regression (a pointwise approach)
 - Target the ground truth of multi-valued discrete.
 - 2. Preference learning (a pairwise approach)
 - Target the ground truth of pairwise preference.
 - Also compatible with that of multi-valued discrete.
 - 3. Listwise ranking (a listwise approach)
 - Target the ground truth of partial / total order.
 - Also compatible with other types of ground truths.

Ordinal Regression: A Pointwise Approach

- Input space
 - Features of a single document (w.r.t. a query): $X \in R^T$
- Output space
 - Ordered categories: $Y \in \{c_1 \prec c_2 \prec \ldots \prec c_K\}$

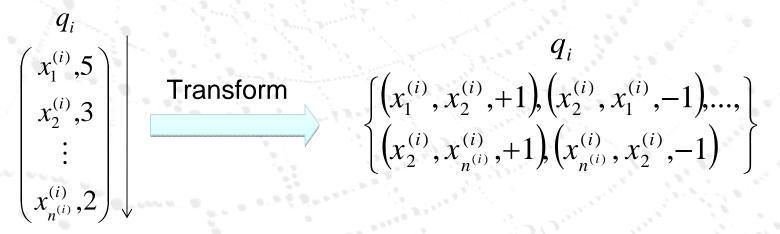


Ordinal Regression vs. Regression/Classification

- Regression: Real values
- Classification: Non-ordered categories
- Ordinal regression: Discrete values / Ordered categories
- Ordinal regression can be regarded as something between regression and classification.

2. Preference Learning: A Pairwise Approach

- Input space: two documents
 - Document pairs: $(X_u, X_v) \in \mathbb{R}^T \times \mathbb{R}^T$
- Output space
 - Preference: $Y \in \{+1,-1\}$
 - Use pairs of features or differences between the two vectors



Learning to Order Things

(W. Cohen, R. Schapire, et al. NIPS 1998)

Pairwise ranking function

$$f(x_u, x_v) = \sum w_t f_t(x_u, x_v)$$

Important: pairwise loss function

$$-L(f) = \sum_{i=1}^{N} \sum_{x_{u}^{(i)} \succ x_{v}^{(i)}} \left(1 - f(x_{u}^{(i)}, x_{v}^{(i)}) \right) / \sum_{i=1}^{N} \sum_{x_{u}^{(i)} \succ x_{v}^{(i)}} 1$$

 A weighted majority algorithm is used to learn the parameters w from the pairwise ground truth.

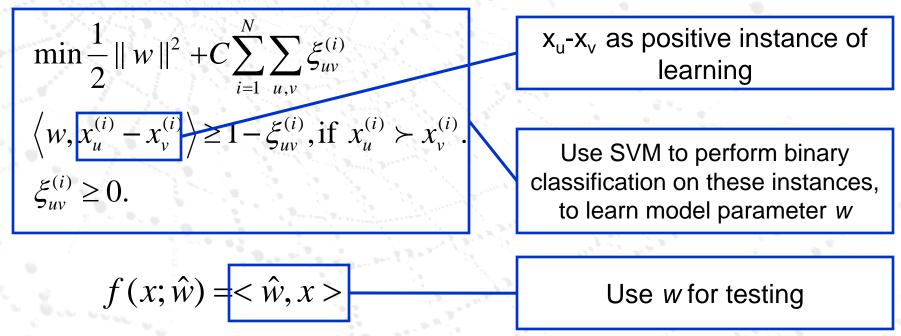
Learning to Order Things

- Go from pairwise preferences to a total order:
 - $\max_{\rho} AGREE(\rho, f) = \sum_{x_u, x_v: \rho(x_u) > \rho(x_v)} f(x_u, x_v)$
 - Con: the optimal total order construction is proven NP hard.
 - Then must approximate:
 - Use a greedy ordering
 - Proven: the agreement for the approximation algorithm is at least half the optimal agreement

Ranking SVM

(R. Herbrich, T. Graepel, et al., Advances in Large Margin Classifiers, 2000; T. Joachims, KDD 2002)

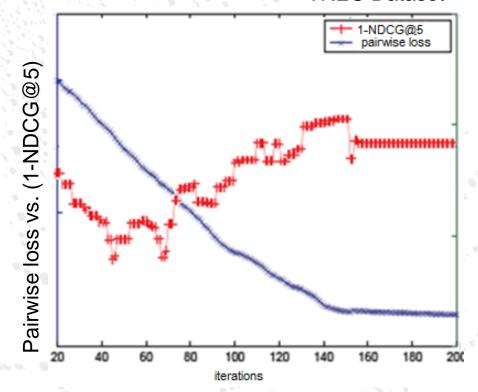
 Formally discussed that ordinal regression can be solved by pairwise preference learning



Use SVM to perform pairwise classification

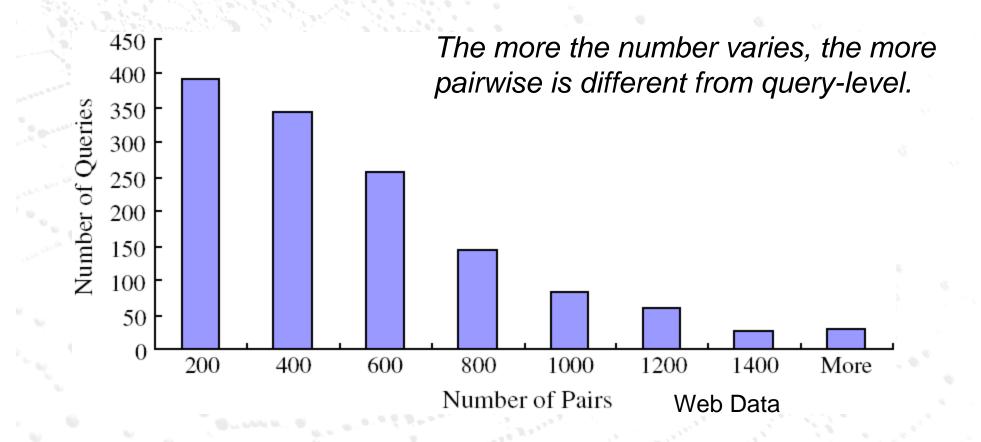
Results look ... poor

 It is not clear how pairwise loss correlates with query-level IR evaluation measures.
 TREC Dataset



Min-Yen Kan / National University of Singapore

Possible Explanation?



A case for query-specific loss

- Consider two queries with 40 and 5 document results. Say a system gets 780 of the 790 possible pairs correct
 - Sys 1: gets all of the 5*4/2 = 10 pairs from Q2 wrong
 - Sys 2: gets a random 10 of the 40*39/2 = 780 pairs wrong
- Clearly, we prefer Sys 2. How to cater for this?
- Change the loss function (evaluation function)

A Possible Solution

Introduce a per-query normalization to the pairwise loss function.

 $\min \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \mu^{(i)} \sum_{u,v} \xi_{uv}^{(i)}$

Query-level normalizer

 $\max_{i} \#\{\text{instance pairs associated with } q_i\}$

#{instance pairs associated with q_i }

Loss function desiderata:

 1)Insensitive to number of document pairs.
 2)Top ranks should be more important
 3)Upper bound on loss.
 Difficult
 queries shouldn't have more importance.

Pairwise Summary

Pros:

- No longer assume absolute relevance
- Use pairwise relationship to represent relative ranking.

Cons

- Minimizing document pairs classification error and not errors in ranking of documents.
- # of generated document pairs can vary
 - Need to fix loss, otherwise model can be biased

3. A Listwise Approach

- Input space
 - Document collection w.r.t. a query

$$(X_1^{(q)},...,X_{M^{(q)}}^{(q)}) \in (\mathbb{R}^T)^{M^{(q)}}$$

- Output space
 - Permutation of these documents: $Y \in \prod_{M^{(q)}}$
- By treating the list of documents associated with the same query as a learning instance, one can naturally obtain
 - The rank (position) information,
 - The query-level information.
- Opportunity to model more of the unique properties of IR ranking in the learning process.

Direct Optimization of IR Measures

- Let's try to directly optimize the ranking results.
 - But this is difficult:
 - Evaluation functions such as NDCG are non-smooth and non-differentiable, since they depend on ranks
 - Most optimization was developed to handle smooth and differentiable functions

• Two methods:

- 1. Smooth out the evaluation function with a surrogate;
- 2. Use other optimization routines (e.g., genetic algorithms).

ListNet

(Z. Cao, T. Qin, T. Liu, et al. ICML 2007)

 Loss function = KL-divergence between two permutation probability distributions

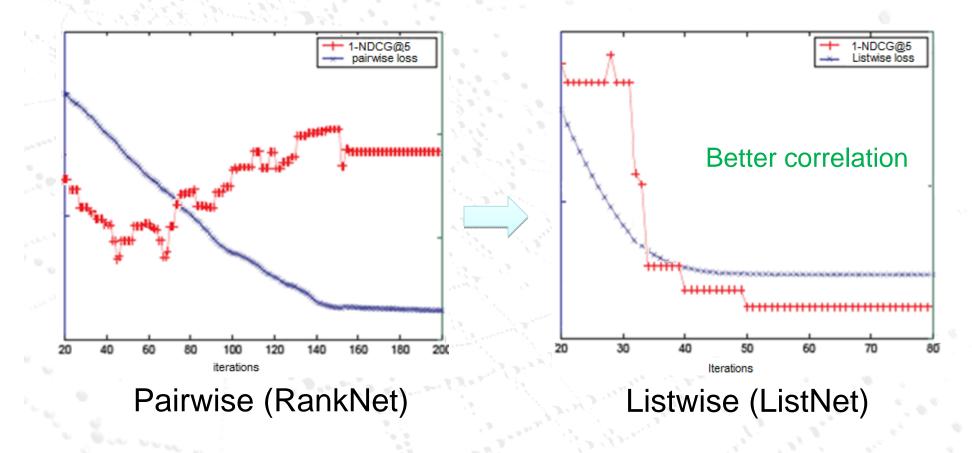
$L(f) \propto D\left(P\left(\pi \mid e^{(\psi(y))}\right) \mid \left| P\left(\pi \mid e^{(f(x))}\right) \right)$

Probability distribution defined by the ground truth

Probability distribution defined by the model output

- Model = Neural Network
 - Algorithm = Gradient Descent

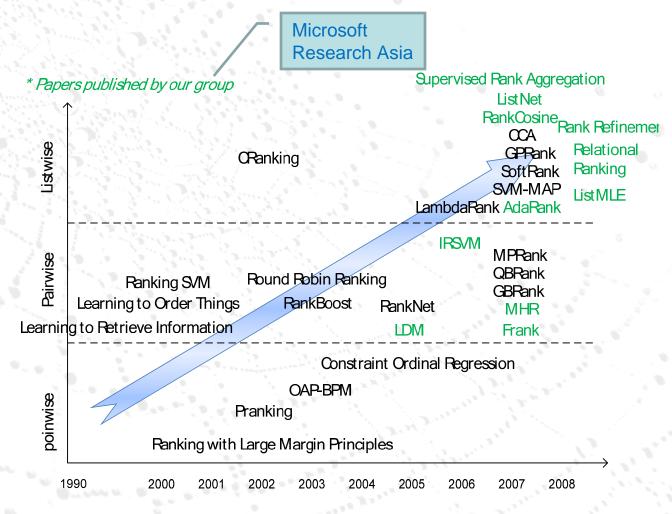
Experimental Results



Training Performance on TD2003

Min-Yen Kan / Dtatasety of Singapore

Summary: Trends



Min-Yen Kan / National University of Singapore

26

Selected References

- N. Fuhr. Optimum polynomial retrieval functions based on the probability ranking principle, TOIS, 1989.
- W. W. Cohen, R. E. Shapire, et al. Learning to order things, Journal of Artificial intelligence research, 1999.
- R. Herbrich, T. Graepel, et al. Support Vector Learning for Ordinal Regression, ICANN1999
- R. Herbrich, T. Graepel, et al. Large Margin Rank Boundaries for Ordinal Regression, Advances in large margin classifiers, 2000
- T. Joachims, Optimizing Search Engines Using Clickthrough Data, KDD 2002.
- Y. Freund, R. Iyer, et al. An Efficient Boosting Algorithm for Combining Preferences, JMLR 2003.
- R. Nallapati, Discriminative model for information retrieval, SIGIR 2004.
- C.J.C. Burges, T. Shaked, et al. Learning to Rank using Gradient Descent, ICML 2005.
- A. Trotman, Learning to rank, Information Retrieval, 2005
- D. Metzler, W. B. Croft, et al. Direct maximization of rank-based metrics for information retrieval, CIIR, 2005
- H. Yu, SVM Selective sampling for ranking with application to data retrieval, KDD 2005.
- I. Tsochantaridis, T. Hofmann, et al. large margin methods for structured and interdependent output variables, JMLR, 2005.
- T. Joachims, A support vector method for multivariate performance measures, ICML 2005.
- Z. Cao, T. Qin, et al. Learning to Rank: From Pairwise to Listwise Approach, ICML 2007.
- T. Qin, T.-Y. Liu, et al, Query-level Loss Function for Information Retrieval, Information Processing and Management, 2007.
- T. Qin, T.-Y. Liu, et al, Learning to Rank Relational Objects and Its Application to Web Search, WWW 2008.
- F. Xia. T.-Y. Liu, et al. Listwise Approach to Learning to Rank Theory and Algorithm, ICML 2008.

Revision

28

Announcements

- I will be away right before the exam (17-22 Nov), so please come ask questions earlier
- Send me anonymous mail (via IVLE) about what you liked about the course, what you disliked
 - Criticisms always more helpful
 - You can also save it for the "official feedback" if you'd like

Final Exam

- 2 hours, 26 Nov, in the evening
- Open book
- 3 multi-part questions, no calculation needed
 - But that doesn't mean there's no math
- Similar to other past year exams and more open-ended tutorial questions

Course in a nutshell

W0: Math
W1: Web basics and models
W2: Basic IR
W3: Probabilistic IR
W4: Dimensionality Reduction
W5: Link Structure
W6: Passage Retrieval W7: Question Answering
W8: Summarization
W9: Intro to Machine Learning
W9: Text Categorization
W11: Sequence Labeling
W12: CRF + Info. Extraction
W13: Learning to Rank

Text Analysis Example

Photo credit: markehr

Singapore Flyer

Singapore Flyer Pte Ltd 30 Raffles Avenue, #01-07 Singapore 039803 Telephone: (65) 6854 5200 Fax: (65) 6339 9167

Singapore Flyer is the world's largest observation wheel. Standing at a stunning 165m from the ground, the Flyer offers you breathtaking, panoramic views of the Marina Bay, our island city and beyond. There's also a wide range

READ

- Information Units
 - IR: terms: raffles x 1; Singapore x 3; pte x 1 ...
 - IE: info units: Singapore Flyer, Raffles Avenue, Marina Bay, (65) 6854-5200 ... and their relations
 - QA: Which is the nearest MRT to Singapore Flyer? Answer: City Hall MRT
 - NLP: understanding the contents

W0-W1: Math and Web basics

- Size and growth of the web
 - Size: an instance of Bayesian estimation
 - Growth: instances of temporal graph modeling new nodes and edges added/changed over timesteps
- Compare these to other instances in the course
- Math:
 - Prior and posterior probabilities
 - Parameter estimation: EM (the chicken and egg problem)

W2-W3: Models of IR

- Heuristic systems
 - TF.IDF (compare IDF to RF in text classification)
- Prob IR
 - Model how a query is an representation of a document
 - A mathematical basis for IDF
- Language Modeling
 - Putting word order dependencies in the retrieval model
 - First look at Hidden Markov Models and n-grams

W4: Dimensionality Reduction

Link to machine learning and text classification

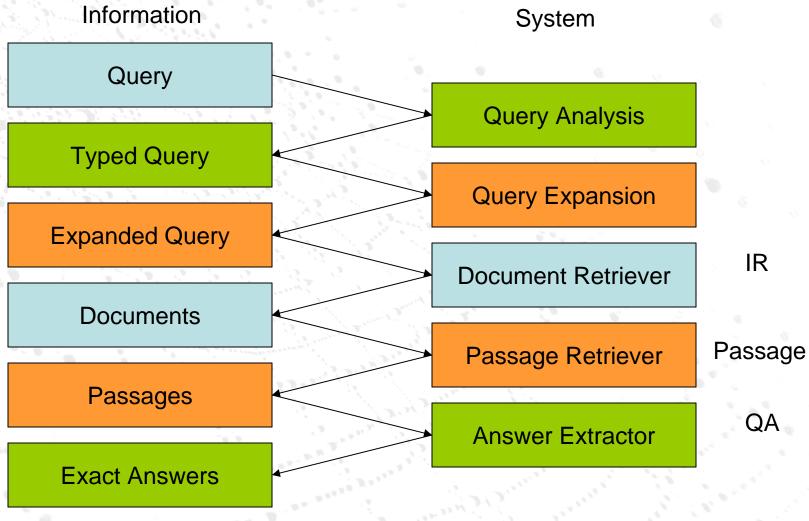
- Upwards of 30K dimensions, sparse vectors
- Reduce to save space, and help both recall and precision
- LSI: apply singular value decomposition to find best orthogonal axes to represent doc-term matrix
- pLSI: view this from a probabilistic interpretation, using a unigram LM and using a latent topic variable in modeling
- Both have problems determining k, # of topics/dimensions, similar to text clustering

W5: Link structure

- Dealing with hyperlinks. Can be generalized to recommendation frameworks.
- PageRank: Random Walk + Teleportation
 - Topic sensitive teleportation
- HITS: Hubs and authorities
 - Salsa: SVD

Still needs work integrating within standard IR





W6-W7: Passage retrieval and QA

- From document to exact answer retrieval
- Need heavier duty processing for smaller fragments
 - Query Expansion (from external websites, from lexicons, from logs)
 - Density based retrieval towards syntactic analysis
 - Carefully targeted NLP analysis helps
 - Question Typing
 - When questions are in NL form or when we can infer more about the user's context

W8-W12: Applying machine learning to NLP/IR tasks

- Many NLP/IR tasks can be framed as learning problems
- Supervised: have labeled training data; learn a function
- Unsupervised: have training data, no label; learn a clustering/pattern
- Semi supervised:
 - Small amounts of labeled data, lots of unlabeled data: text classification, named entity recognition
 - Labeled data but not at the fine-grained answer level: IE, summarization

Feature Engineering

- Domain independent
- Task independent
- Order independent
- Language independent
- Shallow NLP
- Local context statistics (TF, position)
- Orthographic

- Domain dependent
- Task dependent
- Context sensitive
- Language dependent
- Deep NLP
- Corpus wide statistics (IDF, RF)

Text problems: Dealing with 10K+ features, skewed datasets, finding an appropriate learning algorithm (not just SVMs)

W8-W12: Application areas

- Summarization
 - Selecting sentences or text units
- Text Classification
 - Selecting one or more categories for a text unit
- Sequence Labeling / Information Extraction
 - Identifying a chunk
 - Selecting a chunk tag
 - Managing co-reference

W13: Learning to Rank

Three lessons learned

- Probabilistic analyses of text processing
 - Bayesian Analysis
- Feature/vector creation
 - Latent variables
 - Aspects of the problem and setting
- Dealing with aspects of text processing
 - Size of number of features
- Still very much open ended research topics
 - Heuristic IR still scales better
 - Adversarial IR is a real issue
 - Integration of better knowledge sources and scalability continues to be a problem

That's it!

Thanks for learning about Text processing!