

Linear algebra in less than 30 minutes

Eigenvalues \& Eigenvectors

- Eigenvectors (for a square $m \times m$ matrix \mathbf{S})

- How many eigenvalues are there at most?

$$
\mathbf{S} \mathbf{v}=\lambda \mathbf{v} \Longleftrightarrow(\mathbf{S}-\lambda \mathbf{I}) \mathbf{v}=\mathbf{0}
$$

only has a non-zero solution if $\quad|\mathbf{S}-\lambda \mathbf{I}|=\mathbf{0}$
this is a m-th order equation in λ which can have at most m distinct solutions (roots of the characteristic polynomial) - can be complex even though \mathbf{S} is real.

Illustration of Eigenvectors

Matrix $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right)$
describes an
affine transformation
$x \mapsto A x$

Eigenvector
$\mathrm{x} 1=\left(\begin{array}{ll}0.520 .85\end{array}\right)^{\top}$
for Eigenvalue $\lambda 1=3.62$
Eigenvector
$\mathrm{x} 2=(0.85-0.52)^{\top}$
for Eigenvalue $\lambda 2=1.38$

Min-Yen Kan / National University of Singapore

Matrix-vector multiplication

$$
\begin{array}{r}
S=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{array}{c}
\text { has eigenvalues } 3,2,0 \text { with } \\
\text { corresponding eigenvectors }
\end{array} \\
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad v_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{array}
$$

On each eigenvector, S acts as a multiple of the identity matrix: but as a different multiple on each.
Any vector (say $x=\left(\begin{array}{l}2 \\ 4 \\ 6\end{array}\right)$ can be viewed as a combination of the eigenvectors: $\quad x=2 v_{1}+4 v_{2}+6 v_{3}$

Matrix vector multiplication

- Thus a matrix-vector multiplication such as $S x(S, x$ as in the previous slide) can be rewritten in terms of the eigenvalues/vectors:

$$
\begin{aligned}
& S x=S\left(2 v_{1}+4 v_{2}+6 v_{3}\right) \\
& S x=2 S v_{1}+4 S v_{2}+6 S v_{3}=2 \lambda_{1} v_{1}+4 \lambda_{2} v_{2}+6 \lambda_{3} v_{3}
\end{aligned}
$$

- Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.
- Suggestion: the effect of "small" eigenvalues is small.

Eigenvalues \& Eigenvectors

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

$$
S v_{\{1,2\}}=\lambda_{\{1,2\}} v_{\{1,2\}} \text {, and } \lambda_{1} \neq \lambda_{2} \Rightarrow v_{1} \bullet v_{2}=0
$$

All eigenvalues of a real symmetric matrix are real.

$$
\text { for complex } \lambda \text {, if }|S-\lambda I|=0 \text { and } S=S^{T} \Rightarrow \lambda \in \mathfrak{R}
$$

All eigenvalues of a positive semidefinite matrix are non-negative

$$
\forall w \in \mathfrak{R}^{n}, w^{T} S w \geq 0 \text {, then if } S v=\lambda v \Rightarrow \lambda \geq 0
$$

Example

- Let $S=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ Real, symmetric.
- Then $\quad S-\lambda I=\left[\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right] \Rightarrow(2-\lambda)^{2}-1=0$.
- The eigenvalues are 1 and 3 (nonnegative, real).
- The eigenvectors are orthogonal (and real):

$$
\binom{1}{-1} \quad\binom{1}{1}
$$

Plug in these values and solve for eigenvectors.

